
Adapting JML to generic types and Java 1.6

David R. Cok
Eastman Kodak Company Research Laboratory

1999 Lake Avenue
Rochester, NY 14650 USA
david.cok@kodak.com

ABSTRACT
Despite the current effort to implement the Java Modeling Lan-
guage for Java 1.5, and in particular for generic types, there has
been no analysis of the effect of such a transition on JML itself,
nor of what language changes should be implemented to take best
advantage of the features of current Java. This paper analyzes the
interactions between JML and the new features of Java 1.5 and 1.6,
and it proposes appropriate changes to JML. Many implementation
details for JML tools can be handled by choosing an existing Java
1.5+ compiler as a base; however, there are adjustments to the typ-
ing of JML expressions that would be appropriate, and there are
issues needing careful attention arising from refinements, autobox-
ing, lock ordering operations, specification of enhanced for loops,
type erasure, and the runtime execution of specifications involving
type parameters. The features are implemented experimentally in
OpenJML, an OpenJDK-based implementation of JML.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications; D.2.4
[Software Engineering]: Software/Program Verification; F.3.1 [Logics
and Meaning of Programs]: Specifying and Verifying and Rea-
soning about Programs

Keywords
specification, JML, Java, generics

1. INTRODUCTION
The Java Modeling Language (JML) [7, 8] has been a success-

ful, widely used specification language for Java programs. Many
tools [2] have been generated and many research groups1 have used
it as a basis for research and experimentation. The JML2 tool suite
was written and maintained for Java 1.4. Java 1.5, introduced in
2004, brought significant changes to Java, but the work to evolve
JML tools to work with Java 1.5 stalled for lack of resources. That

1Publications from a variety of groups using JML are given at
http://www.jmlspecs.org.

Copyright 2008 Eastman Kodak Company

omission is only now being addressed by the building of new ver-
sions of JML on top of Eclipse [4] and OpenJDK [12], although
those projects are not yet ready with released tools.

Not explicitly addressed in those tool-building activities, how-
ever, are the changes to JML itself that are needed to keep it aligned
with the generic type and other capabilities of Java 1.5 and 1.6. This
paper addresses that deficiency.

Versions of Java beginning with Java 1.5 introduced many new
features into the language; we will consider the following here:

• generic types and methods
• enhanced for statement
• autoboxing and unboxing
• annotations
• varargs
• static import
• enum types
• java.lang.SuppressWarnings
• the Java compiler, AST and annotation processing APIs

This paper presents an assessment of JML with respect to these
features of Java, recommending alterations and extensions to JML
where that would be beneficial for the language. We also note areas
where similar activities are underway in other groups and highlight
aspects that would benefit from cooperation. The issues discussed
are relevant to interface specification languages for other program-
ming languages with generic types, but we consider them only in
the concrete context of Java and JML.

2. ENHANCEMENTS TO JML
In the following subsections we discuss the impact on and pro-

pose alterations to JML to accommodate the evolution of Java. A
JML tool that is built upon a Java compiler will be able to accom-
modate most language changes without difficulty. The implemen-
tation effort is reduced further if the Java compiler infrastructure is
used for parsing and type-checking JML expressions as well. Nev-
ertheless, there are several issues that must be attended to.

2.1 Generic methods and types
The most significant language addition in Java 1.5 was generic

types and methods. Type names in a JML specification may now
be parameterized with concrete types or type variables, and model
methods may now have type parameters. This affects the JML
grammar in ways corresponding to the changes in the Java gram-
mar: alterations are needed in the definitions of reference-type,
class-definition, interface-definition, class-extends-clause, name-
weakly-list, method-decl, and primary-expr (for method calls).

For tools built on existing compilers (and maintained by others)
the infrastructure needed to support generic types in JML comes

with the Java compiler. Parameterized model methods and param-
eterized model types by themselves pose no new difficulties.

2.2 Type parameters
However, the body of a class or method now has some additional

type names in scope—those of the type parameters. In the case
of methods, the scope of these type parameters extends over the
method specifications. Thus the name lookup procedure for method
and type specifications must include the type parameters. Model
methods also may now be generic, so signature matching and type
resolution for model methods must be enhanced in the same way
as it is for ordinary Java methods.

Type names are not common in method and type specifications
since those are mostly expressions. However, they can occur in
type literals, instanceof and cast expressions, in declarations in
forall and old clauses in method specifications, and in quantified
and set comprehension expressions.

Within type and method specifications, the properties of a partic-
ular type parameter must be ascertained. Java properties such as the
methods defined for the type are determined just as in the program
code. JML also needs to determine which specifications apply to a
method of a type parameter. Those are defined as the union of the
specifications from the types making up the upper bounds of the
type parameter.

2.3 Refinement
The first significant departure from what a Java compiler pro-

vides is in resolving refinement. JML allows the specifications for
a class to be in a separate file from the source itself. In fact, the
source may not even be present, since we may be specifying a bi-
nary file. In addition, there may be more than one refinement file
for a given class. Refinement resolution consists of attaching each
specification to the correct Java construct. So, declarations in spec-
ification files must be matched to Java declarations or entities in
binary files.

The first task is to match class declarations. This is straightfor-
ward since there is at most one class with a given fully qualified
name. There remains to be sure that the type parameters of the
class in the specification file match those defined in Java, both in
number and in any bounds restrictions. In general the parameter
names may not be the same among the various class declarations,
so a mapping of names may be required. It would be prudent to
require that type parameter names be consistent among Java source
and any JML specification files, simply to aid comprehension.

The second task is to match the declarations within a class. Fields
have unique names, so they can be matched by name and their types
checked for equality, taking into account type parameters. Method
names are not unique and must be matched by signature, taking
into account type parameters of the class and any type parameters
declared for the method itself. (Thus refinement resolution must
occur after the type name portion of a compiler’s symbol table is
built; it cannot be a simple textual match.) This sort of generic
signature mapping is not needed in Java and must be implemented
by the JML tool itself. It is made simpler, and does not restrict
JML expressibility, if corresponding type variables have the same
names.

Proposal: The names of type parameters of a parameterized class,
interface or method must be the same in all JML specification files
for that program construct and must match those used in the Java
source file, if that is available. (This not strictly necessary, but is a
convenience for implementation.)

2.4 Type specifications

The type variables of a generic class are in scope in type specifi-
cation clauses such as invariants and constraints. It is conceivable
that, like generic methods, one may want to parameterize axioms,
invariants, constraints or initially clauses as well. The syntax would
be straightforward and would take this form:

axiom <T> (predicate);
Of the possibilities, parameterized axioms would appear to be the
most useful. Here is an example:

axiom <T> (JMLObjectSet.<T>EMPTY().size() == 0);
Experimentation may uncover good use cases that cannot be natu-
rally expressed without parameterization. The implications for the
encoding of specifications into the logic of target theorem provers
are unknown, however, so it is best to leave this potential feature as
experimental.

Proposal: Reserve the following syntax for parameterized axioms,
on an experimental basis, pending good use cases and practical
experience:
axiom-clause := axiom (predicate |

< TypeParameter [, TypeParameter]... > (predicate)) ;
where TypeParameter is a nonterminal defined in the Java Lan-
guage Specification.

2.5 Method specifications
Method specifications are in the scope of any class or method

type parameters, so type resolution needs to be applied just as it
would be for the formal parameters or in body of the method. Al-
though there are declarations in forall and old clauses, no addi-
tional parameterization of the specification appears to be useful.

There is one syntactic location where the JML grammar needs
embellishment: the callable clause. This clause tells what meth-
ods may be called by the method at hand. Methods are denoted by
their signatures, if necessary. Some disambiguation by type param-
eter may also be necessary. The current grammar for a callable
clause contains a list of method names that has the following gram-
mar, in part:
method-name-list := method-name [, method-name]...
method-name := method-ref [(param-disambig-list)]

| method-ref-start . *
We allow a method-name to be prefixed by an optional list of type
arguments, as in
method-name-list := method-name-gen [, method-name-gen]...
method-name-gen :=

[< ActualTypeArgument [, ActualTypeArgument]... >] method-name
method-name := method-ref [(param-disambig-list)]

| method-ref-start . *
where ActualTypeArgument is defined in the grammar for Java.

Proposal: Enhance JML to allow the syntax above for lists of meth-
ods in callable clauses.

2.6 Specification expressions

2.6.1 \TYPE

The \TYPE type is JML’s analog of the java.lang.Class type.
Originally \TYPE was distinct from java.lang.Class in order to
represent primitive types as well. However, Java evolved to rep-
resent primitive types as Class objects, so currently JML defines
\TYPE as fully equivalent to Class. With the introduction of generic
types, \TYPE could now be defined to be equivalent to Class<?>.

However, the Java runtime representation of class information
erases any type parameter information: both List<Integer> and
List<String> are simply represented as List<?>, for example.
Thus, in order to retain the full information available statically, it
would be better to define \TYPE as a fully reified combination of

the raw type information in Class<?> and the type arguments of a
specific instantiation of the raw type; the behavior of \TYPE can be
defined with appropriate axioms. Retaining this information would
allow static checkers to warn about type-unsafe usage in Java that
results in runtime exceptions.

In order to have the runtime JML behavior match the static anal-
ysis behavior, we need to define an executable representation of
this combined information. One possibility is to have \TYPE encap-
sulate the com.sun.mirror.type classes. A restriction with this
API is that it is meant to model the entities (e.g., types) in a spe-
cific declared program, rather than providing a facility to model
types in general. Consequently it appears easier to model Java types
straightforwardly as a separately declared executable class with ap-
propriate specifications for static reasoning and implemented using
Java APIs where they exist.

An expanded type system in JML may require some additional
explicit type operators, such as the ability to extract a type param-
eter from a type object or to construct a parameterized type. How-
ever, there is insufficient experience with the specification needs
with such a type system or with the proof rules that would be
needed to propose a design at this time. We leave that for future
work.

In the following sections we use Class<?> to mean Java’s cur-
rent runtime representation of class information (with erasure) and
\TYPE to mean a representation in JML that reifies all statically
declarable types.

Proposal: Represent \TYPE as an entity distinct from Class<?>,
reifying Java’s raw type information and the type parameter infor-
mation.

2.6.2 \type

The specification expression \type(t) is currently defined by
JML to be equivalent to t.class for a type name t. Java does
not allow applying .class to a type name with parameters, as in
List<Integer>.class. The runtime type literals do not retain the
type parameter information, although it is used for parsing and
typechecking. The expression \type(List<Integer>), however,
can be allowed. Thus it is consistent with the discussion of the pre-
vious section to define the type of \type(t) as \TYPE, allowing it
to hold all of the type parameter information in an expression such
as \type(List<Integer>).

Proposal: The type of \type is \TYPE. The value of \type(t) is
equivalent to t.class for any unparameterized type name t. We al-
low \type(t) for parameterized type names, even though the types
so represented cannot be expressed as Java class literals without
erasure occurring.

2.6.3 \typeof

The \typeof predicate returns the dynamic type (a value of type
\TYPE) of its argument. The argument may be of primitive type. Its
analog in Java is Object.getClass(). The value of \typeof(x) is

• undefined if x is null,
• equal to x.getClass() if x has nongeneric reference type,

and
• equal to t.class if x has primitive type t.

We maintain the definition of \typeof as returning a value of type
\TYPE. Then \typeof applied to an argument of parameterized type
can include the additional type information that getClass erases.

Proposal: The result type of \typeof is \TYPE; the expression is
undefined if the argument is null.

2.6.4 subtype operation (<:)
JML defines a binary operation <: between two \TYPE values

meaning “is a subtype of”. With the equivalence of \TYPE and
Class, JML defined t1 <: t2 as t2.isAssignableFrom(t1). With
the introduction of generics, isAssignableFrom no longer correctly
models subtype relationships as seen by the compiler. We can de-
fine <: to act on two \TYPE values, but the runtime implementation
of that operation must be separately implemented. Arguments that
represent primitive types can be treated uniformly; a primitive type
is not a subtype of anything but itself.

Proposal: The arguments of <: still have type \TYPE and can in-
clude the \TYPE representations of primitive types. The operation
is undefined if either argument is null.

2.6.5 \elemtype

The \elemtype function takes an argument of type \TYPE and
returns a value of type \TYPE. If the argument is an array type, the
result is the component type of that array. This is equivalent to
the method Class.getComponentType (for erased types). Conse-
quently it is convenient to also define \elemtype to return null if
the argument is not an array type, but undefined if the argument is
null. Note that the argument is expected to be an array type, not an
object of an array type. That is, the common use is, inconveniently,
\elemtype(\typeof(o)) for an object o, and not \elemtype(o).

Proposal: The argument and return types of \elemtype are
\TYPE; \elemtype is undefined if the argument is null; the value of
the expression is null if x.isArray() is false for an argument x.

2.6.6 \nonnullelements

The \nonnullelements predicate returns true if its argument is
both non-null and an array object all of whose elements are non-
null. It has been undefined if the argument is null or not an array
object. The semantics can be improved with better typing, such
as with the signature \nonnullelements(Object[] t) and corre-
sponding signatures for each primitive type. No specifically generic
method typing is needed. Multidimensional arrays are handled be-
cause any array is an instance of Object. The test for undefinedness
(because the argument is not an array) is now changed: it was a se-
mantic check on the argument’s dynamic type, but now is simply a
type check on the argument’s static type.

Proposal: Change the signature of the \nonnullelements function
to be a set of overloaded functions with argument types of Object[]
and t[] for each primitive type t.

2.6.7 set comprehension and JMLObjectSet

JML has a construct that allows the definition of new sets as
expressions. For example, we can write

new JMLObjectSet {Integer i; o.contains(i); i > 0},

where o is a Collection<Integer>. The value of this expression
is a JMLObjectSet that contains exactly the positive elements of o.

In current JML, the type of the result of a set comprehension is
org.jmlspecs.models.JMLObjectSet, which is a set of Objects.
However, the result type is in the process of being changed to
org.jmlspecs.lang.JMLSetType, an interface defined in the core
language package org.jmlspecs.lang. Any type that implements
JMLSetType may be named in the constructor portion of the set
comprehension expression. However, the type of the elements of
the set is known from the declaration inside the set comprehension
expression. The result should be a parameterized collection; in the
example, this would be

JMLObjectSet<Integer> s =
new JMLObjectSet {Integer i; o.contains(i); i > 0)}.

So, if C is the generic (without type arguments) type named after
the new token and T is the element type named in the declaration,
then the type of the result is C<T>, which then must implement
JMLSetType<T>.

Proposal: The JML model interface JMLSetType<E> is parameter-
ized by the type of its elements. The set comprehension expression
of the form

new C { T e; ...; ...}
has type C<E>, where E is T if T is a reference type and is
T ’s boxed equivalent if T is a primitive type, and where C<E>
must implement JMLSetType<E>. The model types JMLObjectSet,
JMLValueSet, and JMLEqualsSet would implement JMLSetType.

2.6.8 \lockset

The value of the \lockset keyword is the set of all objects whose
associated monitor is owned by the thread in which the \lockset
expression is evaluated. It currently has type JMLObjectSet, but
should now be JMLSetType<Object>.

Proposal: The type of \lockset is JMLSetType<Object>.

2.6.9 \max

The \max function takes a JMLObjectSet as an argument and re-
turns an Object. Typically the argument is \lockset. The value
of the expression is the object in its argument that is the largest
(measured by the lock ordering operation) of all the elements in the
argument set that are locked by the current thread. Corresponding
to previous changes, the signature of the \max function is best ex-
pressed as

<T> T \max(JMLSetType<T> o) .

Proposal: The signature of \max is
<T> T \max(JMLSetType<T> o).

The expression is undefined if the argument is null; the result is null
if the argument contains no objects locked by the current thread.

2.6.10 Autoboxing and the lock ordering operations
< and <=

JML overrides the less-than (<) and less-than-or-equal (<=) bi-
nary operations to apply to two Objects, returning a result accord-
ing to a user-defined ordering. This feature interacts with Java’s
auto-boxing. Specifically, the operations are now ambiguous when
the arguments are a primitive numeric type and its autoboxed equiv-
alent: for int i and Integer j, (i < j) could be either the nu-
meric comparison between i and the unboxed j or it could be the
lock-order operation between the boxed i and j. The operations are
also ambiguous between two numeric reference types: for Integer
i and Integer j, (i < j) could be either the numeric comparison
between the unboxed i and the unboxed j (as it would be in Java)
or it could be the lock-order operation between the i and j (as it
would be currently in JML without auto-unboxing).

Proposal: This issue is currently under discussion2, but the favored
resolution is to deprecate < and <= as the lock-ordering operators,
replacing them with the nonoverloaded new tokens <# and <#=.

2.6.11 autoboxing and class literals for \bigint and
\real

JML introduced two new types, \bigint and \real: \bigint
is the set of infinite-precision integers; \real models the real num-
bers. Both are intended to provide infinite-precision quantities from
2on the mailing list jmlspecs-interest@lists.sourceforge.net

mathematics to be used in specifications, rather than only the finite-
precision types from programming languages. Although the rele-
vant semantics has been a point of discussion, the definition of JML
is simplest if both are interpreted as primitive types. Then we also
need to define the boxed equivalents: java.lang.BigInteger and
a new model type org.jmlspecs.lang.JMLReal, respectively.

JMLReal would have a specification that is appropriate for real
numbers. Its runtime implementation necessarily needs to approxi-
mate the behavior of reals. Also, since there is no infinite-precision
primitive integer, the difference between primitive and reference
types for \bigint must be handled by the type checker, with the
executable implementation using BigInteger for both.

For each primitive type there is a corresponding class literal. It
is different but of the same type as the literal for its boxed type.
Thus int.class and Integer.class are unequal but both have
type Class<Integer>. The corresponding Class values are needed
for \bigint and \real. Class objects are typically obtained using
native methods from the underlying virtual machine, so one cannot
create Class objects for new kinds of primitive types. However, we
can model these new primitive types as \TYPE values.

Proposal: Define \bigint and \real as primitive types. Define
java.lang.BigInteger and org.jmlspecs.lang.JMLReal as the
corresponding boxed object types, with auto boxing and unboxing
conversions corresponding to the other primitive types. Model the
literals for these primitive types as \TYPE values. Chalin et al. [3]
has explored the implications of various semantics of numeric op-
erations in more detail.

2.6.12 \only_called

The arguments of the \only_called predicate are method sig-
natures. These must now be allowed to be parameterized method
signatures, with either specific types or wildcard types. The same
syntax is used for the method signatures as in the callable method
specification clause.

Proposal: The arguments of \only_called are now instances of
method-name-gen as defined in section 2.5.

2.7 Annotations
The annotation feature was a second major change in Java 1.5. In

this case existing usage was not changed, but a new capability was
created for describing properties of program constructs, and many
groups began experimenting with annotations expressing type con-
straints. In conjunction with annotations, the Java framework pro-
vides an API to process annotations as part of compilation. With
this API, additional syntactic or semantic checks can be performed
that are not part of the compiler (or of pure Java). A number of
annotation-related projects may influence the future of JML:

• JML tools are already experimenting with replacing mod-
ifiers in declarations (e.g., pure, non_null) with equivalent
annotations (@Pure, @NonNull) from a JML-specific annota-
tion package: org.jmlspecs.annotations.

• Taylor [1] experimented with using annotations for all JML
specifications. This requires specification expressions to be
String arguments to annotations. The approach is feasible but
incurs different usability issues than the current JML design.
Just as current JML must process comments containing ex-
tensions to Java expressions, an annotation-based specifica-
tion language would need to parse and type-check the String
arguments of annotations as extensions to Java expressions.
There is currently no compiler or annotation processing sup-
port for this language processing.

• The JSR-308 project [9, 11] seeks to allow annotations in
conjunction with any use of a type name in Java. This would
allow annotations to be used as type modifiers. Then sub-
types such as non-null types or readonly types could be eas-
ily defined and used uniformly; checkers for them could be
built using the annotation processing API, as pure extensions
to Java (as has been demonstrated).

• The JSR-305 project [10] seeks to standardize the naming of
annotations. Currently, similarly named annotations are used
by different groups for similar purposes, but with some dif-
ferences in semantics. For example, JSR-305 defines @Non-
Null, @CheckForNull, and @Nullable as three different nul-
lity related annotations, where JSR-308 and JML use just
two: @NonNull and @Nullable, and IntelliJ uses @NotNull
and @Nullable. This project would enable the expression of
many very specific custom specifications; some examples are
that the return value of a method should not be ignored, that
a numeric value is positive, that a numeric value is nonzero,
and that a collection (or string or array) is not empty.

Proposal: JML should migrate to using annotations instead of
modifiers, particularly if JSR-308 is adopted. (If not, current JML
syntax will need to be retained, at least for those syntactic loca-
tions where annotations are not allowed.) JML should continue to
investigate using annotations for a broader range of specifications.

In addition the JML community needs to engage with the broader
static analysis community in the following ways:

• JSR-308 will allow annotations to be used in more places
than they currently are and will allow annotations to replace
JML modifiers. It should be supported by the JML commu-
nity.

• Continue investigation into allowing annotations in other lo-
cations in order to support current JML specifications. JML
currently allows specifications as statements within method
bodies, statement modifiers, and declarations within classes.

• Common fully qualified names for annotations as advocated
by JSR-305 would be a good thing, as long as the seman-
tics are also the same. Using the same (unqualified) anno-
tation names with different semantics for different tools is a
nuisance, or even with the same semantics but in different
packages. There is not yet consensus on the appropriate se-
mantics for each standard annotation name (for example, for
nullity annotations).

• JML provides a general mechanism to express a large family
of specifications, with a goal of a broad view of static analy-
sis extending as far as possible toward software verification.
Annotations in general, particularly if names are standard-
ized by JSR-305, provide a means to define many specific
annotations, with a goal of enabling best-effort checks of
commonly used, quite specific, specification predicates. It
is an open question about how these two approaches should
coexist and what combination provides the best and most us-
able tools for the software developer and specifier.

Proposal: The JML community should engage more vigorously
with both JSR-305 and JSR-308 to enable outcomes that are mu-
tually beneficial and allow a good migration path for JML.

2.8 Other general changes to Java

2.8.1 Static import
The Java static import statement allows a compilation unit to use

static names from another class without qualifying them with a
class name. JML has a model import statement corresponding to
Java’s import. The types imported by a model import statement are
only available in JML statements and not in the Java program itself.
With the introduction of Java’s static import, JML’s model import
should also have a static option.

This is expected to have little effect on JML implementations.
In fact most implementations to date do not distinguish Java from
JML imports—all imported names are available in both parts of a
compilation unit. This is an incompleteness in the JML implemen-
tations, but it rarely causes trouble and problems can be worked
around by using fully qualified names.

A proper implementation of JML’s model import needs to keep
two namespaces of imported names: the Java namespace and the
Java+JML namespace. Neither the OpenJDK nor the Eclipse Java
compilers can be readily extended to do this. However, the problem
is no more difficult with the addition of static imports.

2.8.2 Enum types
The Enum type facility adds true type-safe Enum types to Java.

Presuming a JML implementation can use a Java compiler to parse
and typecheck JML expressions, this feature is available to JML
tools without additional implementation effort.

2.8.3 varargs
The varargs feature allows the declaration of methods that take

an arbitrary number of arguments (of the same type). A Java com-
piler will also provide this capability to JML tools. Keep in mind
that model methods should also have the varargs feature. Typically
these are parsed in the same way that Java methods are.

2.8.4 Enhanced for statement
The enhanced for statement causes no difficulties for JML tools

in itself. However, specifying it is a problem. Traditional while, do,
and for statements have an iteration variable that is available to and
almost always needed by the specifier in writing loop invariants.
For example, a simple for loop might be specified as follows:

int sum = 0;
//@ loop_invariant 0<=i && i<=10;
//@ loop_invariant sum == i * (i+1)/2;
for (int i=0; i<10; i++) {

sum = sum + i;
}

It is important to have the loop variable i available, so that the in-
variant can be written in terms of the iterations already completed.
The loop variant also needs the loop variable to be able to show that
the loop is making progress toward termination.

The enhanced for loop provides no such variable. An example
of such a loop is this:

int[] array = ...
int sum = 0;
for (int element : array) {

sum = sum + element;
}

The loop invariant we would like to write is

sum == (\sum int k; 0<=k && k<i; array[k]),

where i is the index of the next array element to be processed. But
this value is not available. Java provides two types of enhanced for

statements: one takes an array, as in the example above, the other
takes an object of type Iterable.

Spec# [6] has solved this problem by introducing a \values key-
word whose value is a sequence of all of the values that have been
iterated over so far. For Java and JML, I propose a corresponding
solution, but with two keywords.

• Associated with each enhanced for loop is a new keyword \index
of type int. The keyword represents the 0-based number of the
current iteration. For enhanced for loops based on arrays this is also
the index in the array of the current array value. The keyword is in
scope within the body of the loop and in the loop specifications just
prior to the loop. The value of \index begins at 0 and increments
until equal to array.length, for array-based loops. The keyword
may not be assigned to. Thus the example above is equivalent to
(were \index a valid Java variable)

int[] array = ...
int sum = 0;
for (int \index = 0; \index < array.length; \index++) {

int element = array[\index];
sum = sum + element;

}

We can specify our example as follows

int[] array = ...
int sum = 0;
/*@ loop_invariant sum ==

(\sum int k; 0<=k && k<\index; array[k]); */
//@ decreasing array.length - \index;
for (int element : array) {

sum = sum + element;
}

• A second new keyword is \values. This keyword would have
type org.jmlspecs.lang.JMLList<T>, where T is the type of the
iteration variable and Iterable<T> is the type of the iteration col-
lection. The value of \values is a sequence of the values returned
so far (prior to the current iteration) by the iterator (autoboxed if the
loop is an array-type loop and the array element type is a primitive
type). Thus

Set<Integer> set = ... // all positive integers
int max = 0;
for (Integer i : set) {

if (max<i) max = i;
}

would be specified as

Set<Integer> set = ... // all positive integers
int max = 0;
/*@ loop_invariant max == \values.size() == 0 ? 0 :

(\max int k; \values.contains(k); k); */
for (Integer i : set) {

if (max<i) max = i;
}

There are two alternatives for when the addition of the loop vari-
able’s value to the \values list occurs: (a) as part of the update
step (after the loop body is executed), or (b) immediately after the
value is extracted from the iterator. These two alternatives are be-
ing evaluated; the discussion below assumes the first design. Loop
invariants are the same in both cases. However, in (a), \index al-
ways equals the size of \values, but in the body of an iteration, the

current value of the loop variable is not yet in the \values list; if
the loop is exited by a break statement, that value will not be in the
list. In (b), extracted values are always in the list, but what is true
in an invariant is not necessarily true in the body, since \index and
\values are updated at different times. In the first design,

//@ loop_invariant ...
for (T element : array) {

... body ...
}

is equivalent to (where T’ is T or its boxed equivalent)

int \index = 0;
JMLList<T’> \values = ... (empty list of T’)...
T element;
for (; \index < array.length ;

\index++, \values.add(element)) {
... check loop invariant
element = array[\index];
... body ...

}
... check loop invariant ...

and

//@ loop_invariant ...
for (T element : iterable) {

... body ...
}

is equivalent to

int \index = 0;
JMLList<T> \values = ... (empty list of T)...
Iterator<T> iterator = iterable.iterator();
T element;
for (; iterator.hasNext() ;

\index++, \values.add(element)) {
... check loop invariant
element = iterator.next();
... body ...

}
... check loop invariant ...

Note that if the Iterable collection is known to have fixed size,
then something like list.size() - \values.size() makes an
appropriate loop variant. However, the size of an Iterable is not
necessarily known or fixed.

It is not strictly necessary to define both \index and \values
since (\index == \values.size()). However, \index is more
natural for loops that iterate over arrays, and it seems more readable
and easier for reasoning engines to use, hence the proposal here
is to define both keywords. If loops are nested, the \index and
\values keywords in the inner loop will hide the corresponding
keywords for an outer loop.

Proposal: Define the keywords \index and \values for enhanced
for loops with the semantics described above. Create a parameter-
ized interface JMLList<E> in org.jmlspecs.lang.

2.8.5 SuppressWarnings and nowarn

Java 1.5 introduced the java.lang.SuppressWarnings annota-
tion as a mechanism for user control over compiler warnings. The
arguments of the annotation name the warnings that then will not be
issued in the context to which the annotation applies. JML has had

a lexical construct, nowarn, that offered similar capabilities. Thus
the question: can java.lang.SuppressWarnings replace nowarn?

The short answer is partially. There is a key difference between
the two constructs. The nowarn token is lexical; it may occur any-
where in the source code and applies to the source code line on
which it appears. An annotation is constrained to appear in con-
junction with declarations and packages; the SuppressWarnings
annotation is allowed on type, field, method, constructor, param-
eter, and local variable declarations. It is also relevant that the
SuppressWarnings annotation has only source retention and is un-
available at runtime. The JSR-308 proposal would expand the use
of annotations to also be allowed on types anywhere they appear.

The warnings from JML tools are of two sorts. Some warnings
are compiler-like: misuse of various language constructs. Where
these are nonfatal, they can be suppressed just like compiler warn-
ings might be. The more important warnings from JML are runtime
or statically found assertion violations. These are associated with
nearly every JML construct and implicitly with many Java language
features. To be useful, a warning suppressor for JML needs (a) to
be more fine-grained than at the method declaration level, and (b)
to be able to be applied to any sort of specification construct. Thus
the SuppressWarnings annotation is not currently an adequate re-
placement for nowarn, although it can provide similar functionality
on a coarser scale. A Java annotation that could appear anywhere a
comment could appear would be very useful for JML.

Proposal: JML tools should recognize a common (to be agreed
upon) set of warning names for various kinds of assertion viola-
tions and recognize their use in SuppressWarnings annotations.
The nowarn construct should continue to be used (using the same
set of warning names) and should not be deprecated for now.

2.9 Model classes
JML contains a library of classes (in org.jmlspecs.models) in-

tended to model mathematical constructs and to be useful in speci-
fications. Consequently they are designed as types with immutable
values and pure, functional methods. The classes have specifica-
tions suitable for static analysis and implementations that can be
executed at runtime, although they are not necessarily efficient.

Many of these classes implement collections or related constructs
and they should be rewritten as generic classes or interfaces, similar
to the reimplementation of Java’s collection classes, but retaining
the design of immutable values. Specifically, the following should
be reimplemented (here # stands for one of Object, Equals, and
Value):

• Collection classes that should be parameterized by element
type:

JMLCollection, JML#Bag, JML#Sequence, JMLSetType,
JML##Pair (e.g., JMLEqualsObjectPair), JML#Set,
JML#To#Map, JML#To#Relation, JMLList#Node

• Other types needing generic parameters:
StringOfObject, JMLComparable, JMLIterator,
JMLModelObjectSet, JMLModelValueSet,
JMLValueBagSpecs, JMLObjectSequenceSpecs,
JMLValueSequenceSpecs, JMLValueSetSpecs

• Enumerations that should be converted to Iterators, with type
parameters:

JMLEnumeration, JMLEnumerationToIterator,
JML#BagEnumerator, JML#SequenceEnumerator,
JML#SetEnumerator, JML#To#RelationEnumerator,
JML#To#RelationImageEnumerator

• Comparison operations needing type parameters (similar to
java.lang.Comparable):

org.jmlspecs.models.resolve.*CompareTo

Although not directly a result of the move to generic types, the
model classes are not quite appropriately divided between the pack-
ages org.jmlspecs.lang and org.jmlspecs.models. The design
is that classes in org.jmlspecs.lang are needed by the language
features themselves. Consequently JMLSetType is there since it
is the type of a set comprehension expression and \lockset, and
JMLDataGroup is used for datagroups. In addition, JMLIterator
and JMLIterable are used by JMLSetType and should be in
org.jmlspecs.lang.

Proposal: The model classes should be reimplemented with generic
types. The generic versions should be placed in a new package,
org.jmlspecs.genericmodels. JMLIterator and JMLIterable
should be moved to org.jmlspecs.lang.

2.10 Existing specifications
There are many JDK classes with at least partial JML specifica-

tions (although many more are needed). Many of those classes,
particularly collection classes, became generic classes when the
language moved from 1.4 to 1.5. The JML specifications for those
classes now need to be ported as well. For the most part that work
is straightforward, but there is one interesting aspect.

Most of the specifications for nongeneric collections include a
ghost field \TYPE elementType, intended to hold the dynamic type
of the elements of the collection. This is now superseded by the
type parameter of the generic collection. Static analysis tools op-
erating on source code can readily use the type information of type
parameters. However, current Java erases the generic type infor-
mation in binary classes; expressions such as \type(E) or E.class
for a type parameter E are not legal. Thus runtime checking of JML
will still need the elementType information.

A runtime assertion checker might correct this deficit by pass-
ing the type information into constructors and generic methods as
additional parameters. A constructor expression such as, for exam-
ple, new HashSet<Integer>(), would effectively be rewritten as
new HashSet$(Integer.class); the type parameter information
would be stored in synthetic fields inside the class, equivalent to
the elementType specification fields. A solution such as this is a
matter for future research; it is expected to encounter tricky inter-
actions among proof rules, generic type systems, and Java’s current
type erasure.

Proposal: All of the existing JDK specifications need to be ported
to Java 1.5. The elementType ghost field previously used in col-
lection, enumeration and iteration types can be deprecated once
generic type information is retained in compiled Java. Interim run-
time assertion checking implementations can experiment with the
auxiliary method parameter solution described above for access-
ing type parameter information at runtime.

2.11 The compiler, syntax tree and annotation
processing APIs

The compiler, compiler tree and annotation processing APIs to-
gether offer a promising step toward better future JML tool gener-
ation. The annotation processing API allows user code to process
the parse trees of compilation units as parsing occurs. The tool can
choose to process all files or only those that are marked with rec-
ognized annotations. New compilation units can be generated and
entered into the parsing process. The compiler tree API allows the
ASTs to be traversed and inspected, and the compiler invocation
API allows programmatic control of the compilation process.

However, the current capabilities of these APIs are not yet suffi-
cient for easy construction of JML tools.

• JML needs to parse Java-like expressions, obtaining ASTs
representing expressions. Most of JML’s expression syntax
is the same as Java’s, but there are some JML-specific exten-
sions. There is as yet no facility either for extending the com-
piler or even for invoking the compiler on code fragments.
The fact that the public API ignores Java comments, which
is where JML specifications currently reside, is an additional
complication.

• JML needs to be able to use and extend the name resolution
and type checking capabilities of the Java compiler. Those
compiler phases happen after annotation processing is per-
formed, so there is currently no way (through the public API)
to apply type checking to the JML specification expressions
or to extend it for JML extensions.

• For runtime checking, a JML tool needs to modify the syn-
tax tree to represent the source code with assertion checks
included. The public APIs currently do not allow replacing
one compilation unit with a revision nor revising a compila-
tion unit’s AST directly.

However, if the extended parsing and typechecking problems were
resolved, the annotation processing API could enable static check-
ing, so future developments in these APIs are worth following.
Note that the functionality needed to implement static or runtime
checking for JML can be created by direct extension of the pub-
licly available OpenJDK source code, as tools such as the Checker
framework [9] and the OpenJML [12] project have done.

3. IMPLEMENTATION AND FUTURE
WORK

These enhancements to current JML are implemented on an ex-
perimental basis in the OpenJML project. OpenJML is a JML
parser and typechecker built by extending the OpenJDK 1.6 source
code. Porting the specifications of model types and the JDK is in
progress.

Evaluation of JML’s specification capabilities against industrial
code is an ongoing activity that is being carried out in the context
of some issues left unaddressed by this paper: the degree to which
full reification of parameterized types is a needed design choice, the
need for additional specification constructs for type manipulation,
the relationship between the goal of full verification and checks
of specific conditions (as, for example, by the FindBugs [5] tool),
and the appropriate use of the evolving Java APIs for implementing
static analysis tools.

4. CONCLUSIONS
The migration of JML to Java 1.5 and 1.6 has been mostly a task

of accommodating the generic type facility of the recent versions
of Java. The assessment described in this paper identified a number
of areas where typing changes of JML features and a conversion
to using generic types throughout JML would be beneficial. JML
extensions are needed in the enhanced for statement and changes in
the lock ordering operation; generics require some enhancements to
refinement resolution; and some careful design work is needed to
integrate JML’s additional primitive types and to model reified and
erased types statically and at runtime. Other changes to Java, such
as annotations and some new public APIs, may provide benefits as
they evolve, but are not ready to be used for implementing JML

itself or to replace existing JML features. Finally, the usefulness of
annotations and annotation processing has prompted a number of
projects to adopt annotation processing for static analysis; the JML
community should engage more fully with those efforts for mutual
benefit.

5. REFERENCES
[1] K. P. Boysen. A specification language design for the Java

Modeling Language (JML) using Java 5 annotations.
Technical Report 08-03, Department of Computer Science,
Iowa State University, 226 Atanasoff Hall, Ames, Iowa
50011, Apr. 2008.

[2] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll. An overview of
JML tools and applications. In T. Arts and W. Fokkink,
editors, Eighth International Workshop on Formal Methods
for Industrial Critical Systems (FMICS 03), volume 80 of
Electronic Notes in Theoretical Computer Science (ENTCS),
pages 73–89. Elsevier, June 2003.

[3] P. Chalin. JML support for primitive arbitrary precision
numeric types: Definition and semantics. Journal of Object
Technology, 3(6):57–79, June 2004.

[4] P. Chalin, P. R. James, and G. Karabotsos. An integrated
verification environment for JML: Architecture and early
results. In Sixth International Workshop on Specification and
Verification of Component-Based Systems (SAVCBS 2007),
pages 47–53. ACM, Sept. 2007.

[5] D. Hovemeyer and W. Pugh. Finding more null pointer bugs,
but not too many. In PASTE ’07: Proceedings of the 7th
ACM SIGPLAN-SIGSOFT workshop on Program analysis
for software tools and engineering, pages 9–14, New York,
NY, USA, 2007. ACM.

[6] B. Jacobs, E. Meijer, F. Piessens, and W. Schulte. Iterators
revisited: Proof rules and implementation. In 7th Workshop
on Formal Techniques for Java-like Programs (FTfJP), July
2005.

[7] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design
of JML: A behavioral interface specification language for
Java. ACM SIGSOFT Software Engineering Notes,
31(3):1–38, Mar. 2006.

[8] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok.
How the design of JML accommodates both runtime
assertion checking and formal verification. Science of
Computer Programming, 55(1-3):185–208, Mar. 2005.

[9] M. M. Papi, M. Ali, T. L. Correa Jr., J. H. Perkins, and M. D.
Ernst. Practical pluggable types for Java. In ISSTA 2008,
Proceedings of the 2008 International Symposium on
Software Testing and Analysis, Seattle, WA, USA,
July 22–24, 2008.

[10] http://jcp.org/en/jsr/detail?id=305.
[11] http://jcp.org/en/jsr/detail?id=308.
[12] Unpublished information is available at

http://jmlspecs.svn.sourceforge.net/viewvc/
jmlspecs/OpenJML/trunk/OpenJML/README.

