
Extensions of the theory of observational purity
and a practical design for JML

David R. Cok
Eastman Kodak Company

Research Laboratories
1999 Lake Avenue

Rochester, NY 14650 USA
david.cok@kodak.com

Gary T. Leavens
School of Electrical Engineering and Computer

Science
University of Central Florida
4000 Central Florida Blvd.

Orlando, FL 32816-2362 USA
leavens@eecs.ucf.edu

ABSTRACT
To prevent erratic behavior during runtime checking, JML only al-
lows assertions to call pure, i.e., side-effect free, methods. How-
ever, JML’s notion of purity checking is too conservative. For ex-
ample, Object’s equals method needs to be used in assertions, but
some classes use side effects in their equals method to maintain
hidden caches or to trigger lazy evaluation, and so these methods
cannot be pure in JML’s sense. To handle such cases JML and
similar interface specification languages need a less conservative
notion of pure methods. In this paper we apply and slightly ex-
tend the existing theory of “observationally pure” methods to JML,
and explain our language design. This design is practical and ac-
commodates common uses. Our extension of current theory pro-
vides appropriate encapsulation combined with inheritance, invari-
ants, method specifications, frame conditions, secret helper meth-
ods, and multiple sets of secret state locations. We also introduce
a semantics for static analysis that preserves correctness without
imposing non-interference.

Keywords: specification languages, runtime assertion check-
ing, documentation, tools, observational purity, query method, pure
method, formal methods, program verification, programming by
contract, Java language, JML language, OpenJML, OpenJDK.

1. INTRODUCTION

1.1 Motivation
Subroutines, or methods, are a useful and important abstraction

mechanism in both programming and in specification. Using the
methods of an object-oriented programming language in design-
by-contract style specification languages (such as Eiffel [13], JML
[10, 8], and Spec# [3]) avoids duplication between program code
and specification and improves understanding. For example, spec-
ifications often use methods that extract values from objects (e.g.,
getX) and that compare the values of objects (e.g., equals in Java).

However, using program methods in specifications causes sev-
eral potential problems. Operationally, it is important to prevent

Copyright (c) 2008 by David R. Cok and Gary T. Leavens

runtime assertion checking from observably changing the results
of a program, as side effects from assertion checking would greatly
complicate debugging [13, 8]. Mathematically, formal verification
is easiest when specifications are simple and direct, and thus do
not involve feedback between the meaning of the specification and
the program being specified. Thus, for both dynamic and static
checking, methods that have no effect on a program’s state are most
suitable for use in specification, as they map neatly to simple math-
ematical abstractions. For these reasons JML only allows “pure”
Java methods to be used in assertions.

However, our specification experience is that JML’s current re-
strictions cause serious problems. One problem is Object’s equals
method in Java. This method is key to the specification of Java’s
Collection subtypes, since programs use it to decide when ele-
ments are equivalent. Thus specifications need to call this method,
and hence in JML it must be pure. But, due to JML’s specification
inheritance [7], specifying Object’s equals method as pure means
that in all subtypes of Object, i.e., in all types, it must be pure.
However, there are several examples of equals methods in Java
libraries and applications that are not pure [10].

Thus what is needed is a weaker notion of purity that allows such
examples but still guarantees safe runtime checking and allows for
simple mathematical modeling.

1.2 Observational Purity
Several researchers [2, 4, 14] have noted this problem and in-

vestigated the theory of observationally pure methods, which have
limited and well-encapsulated effects on a program’s state. The
state changes made by such methods are hidden from the bulk of
the program, and thus such methods can be used safely in speci-
fications. However, verifying that such changes do not cause in-
terference with other computations in the program is difficult. To
date there is no interface specification language with a practical
and implemented design allowing observationally pure methods to
be called in specifications.1 This lack is a serious impediment to
writing specifications on a large scale (e.g., for the JDK libraries)
and to progress in using static verification on real-world software.

Observational purity is one of a number of levels of purity that
have been identified in past discussions [1]: strong purity – no side
effects (besides consumption of time, acquiring and release of stack
space); weak purity – allocation and modification of new objects al-
lowed; and observational purity – confined changes to the program
state allowed. JML’s pure annotation corresponds to weak purity.
Observational purity is the focus of this paper, hence for brevity we

1There have been some beginnings of implementation in Spec# [3]
and by Cok in JML.

class Super {
//@ protected normal_behavior
//@ ensures \result >= 0;
protected /*@ spec_public pure @*/ int computeValue() {

int i = 0; /* ... expensive code ... */
return i;

}

//@ public normal_behavior
//@ ensures \result == computeValue();
public /*@ query @*/ int getValue() {

return computeValue();
} }

class Cache extends Super {
/*@ secret*/ private int cachedValue; //@ in getValue;
/*@ secret*/ private boolean isCached = false;

//@ in getValue;

/*@ secret private invariant isCached ==>
(cachedValue == computeValue()); */

public /*@ query */ int getValue() {
if (!isCached) {

cachedValue = computeValue();
isCached = true;

}
return cachedValue;

}

@Secret("getValue")
public /*@ pure @*/ boolean isCached() {
return isCached;

} }

Figure 1: Caching a value that is expensive to compute.

will often shorten “observationally pure” and “observational pu-
rity” to “opure” and “opurity.”

The classic example (discussed by others also, e.g., [2, 9]) of an
opure method uses a cache, as shown in Fig. 1 (ignore the JML an-
notations, contained in comments, for now). In the figure, method
getValue() computes some value; the computation, performed by
computeValue(), is expensive and may be needed more than once.
In the superclass, computeValue() is called each time. In the sub-
class, when the method is first called the computation is performed
and the result stored in a private location; on subsequent calls, the
stored value is returned. If not for the assignment to the private field
cachedValue, the subclass’s getValue() method would be weakly
pure and thus readily used in a specification. To complicate mat-
ters, the superclass’s getValue() method is weakly pure, but a call
to getValue() may invoke the subclass’s method, which has side
effects.

Despite these complications, getValue() is opure, and so could
be used in a specification, since the locations it modifies are neatly
encapsulated within class Cache, and it seems that they have no in-
fluence on the execution of a calling program. But we need mech-
anisms to guarantee that the alteration of program state does not
change the result of any future computations, such as through the
use of isCached().

A more complex example is a shared database. For example,
one could cache the results of several methods in a shared database
that maps tuples of arguments to computed results. In this case,
we need to guarantee both that storing one result does not affect

others and that knowledge of whether a result is stored does not in-
appropriately affect the program’s execution. Here, the information
intended to be secret is not so neatly encapsulated.

1.3 Goals and Problem
Our main goal is to allow some use of opure methods in specifi-

cations. This usage must allow safe runtime assertion checking and
have a simple and consistent semantics for static verification. That
is, runtime assertion checking must guarantee that the side effects
of executing a specification do not observably affect the execution
of the program. Furthermore, the semantics of static verification
must be usable and consistent with program executions that per-
form assertion checks during runtime.

We would like to preserve other goals of JML [8] as well. To
the extent possible we want to continue to use JML to specify Java
programs as they are written, without constraining valid programs
to some Java subset. In particular, we prefer not to require a specific
use of Java visibility modifiers in order to accommodate opurity.

1.4 Contributions
In brief, our solution follows previous work [2, 4, 14] by allow-

ing opure methods to be used in specifications; the keyword query
declares such methods. The portion of the program state that a
query method may modify is declared using secret and is called
secret state, since we wish it to be unobserved by the remainder of
the program [4]. The remainder of the program state is open.

This paper makes the following contributions toward solving the
practical problems of observational purity:

• we propose a specific application of current theory to a lan-
guage design in JML;

• in the process we identify two issues with the current theory;
• we extend the current theory to accommodate multiple pieces

of secret state, inheritance, invariants and method specifica-
tions, frame conditions, and secret helper methods;

• we introduce a semantics for static analysis that preserves
correctness while not imposing non-interference;

• and we identify areas of concern needing additional work.

2. PREVIOUS WORK
Although the limitations of JML’s requirement that methods used

in specifications be weakly pure are well known [9], only recently
has significant effort been applied to the theoretical foundations of
opurity. The theoretical work to date consists of a family of papers
[2, 4, 14] with two threads of work, drawing on background work in
simulation, information security, encapsulation, and representation
independence. We will summarize that work here and draw on it
heavily. For formal details and proofs, the reader is encouraged to
consult the cited papers.

The theory concentrates on determining when side-effects of run-
time assertion checking do not affect the execution and correctness
of a program. To do so, we define a relationship � (read as cou-
pled) among program states (Naumann’s D-simulation, Barnett et
al.’s C-simulation), such that states for which we expect the same
behavior are related. For example, since weakly pure operations
allocate new objects and change locations within such newly allo-
cated objects, a coupling relation for weak purity would be such
that if h � k, then for all locations reachable from the domain of
h, corresponding locations are in k with the same values, allowing
only newly allocated objects in k and their fields to differ.

To define a suitable coupling relation �S that ignores the side-
effects of opure methods on secret state S, one could imagine re-
lating any two states h and k that differ only in their values for the
fields S (and are thus equivalent in their open state). But this turns

out to be too loose a condition. The secret portions of program
state cannot be allowed to be arbitrarily different in general (unless
that secret state is not used at all). Usually the secret state needs
to be consistent in some manner with the open state. Technically,
this condition is imposed by requiring that �S is an observational
congruence that is preserved by all statements and methods. Be-
ing an observational congruence for statements means that when-
ever h �S h′, each well-formed statement C preserves �S (in the
sense that executing C in h produces state k, then executing C in
h′ produces state k′ and k �S k′). This preservation is enforced
differently, depending on access to S:

• Each well-formed statement that does not directly access S
must preserve �S . This condition prohibits �S from ex-
posing information about the structure of the secret part of
the heap, S, and requires it to be an equivalence relation on
open parts of the heap. This condition implies that, whenever
h �S k, each expression that does not itself mention S re-
turns the same value when run in both h and k, and that each
method that does not access S also preserves �S .

• Each method that directly accesses S must be shown to pre-
serve �S , and hence these methods cannot expose informa-
tion about S to their callers. Since invariants can be formu-
lated as boolean-valued methods, all invariants that relate the
secret state to the open state must also be preserved by �S .

The prior work generally describes the �S relation as parame-
terized by a class; however we define �S with respect to a set of
fields, S, that constitute the secret state.

Methods are related by ≈S if executing them on related (�S)
states produces related states. Note that a method is not neces-
sarily ≈S to itself, if it makes use of the differences in the secret
state. Naumann shows that for weakly pure assertions, and given
that there are no language constructs that expose the structure of
the heap, replacing assert Q by skip in any context does indeed
preserve equivalence of states, and thus weak purity is acceptable
in specifications.

The theory continues with a definition of opure expressions. An
expression E is observationally pure with respect to S if there is a
coupling relation �S such that execution of E preserves �S . That
is, E only causes changes within S and those changes are consis-
tent with the invariants that are part of the definition of �S .

To summarize this discussion of the prior work so far, a method
m with side-effects on a portion S of the program state may be
used in an assertion without jeopardizing correctness under the fol-
lowing circumstances:

(a) for each pre-state h (which includes m’s arguments), the ex-
ecution of m on h produces a post-state k such that h �S k,
and

(b) every method of the program (including m) preserves �S .

The two threads of theoretical work diverge at the point of check-
ing condition (a).

Equivalence to weak purity.
In Naumann’s work [14], opurity is demonstrated by the follow-

ing result:
Suppose expressions (or procedures) M and N , acting re-
spectively on states h and h′, where h �S h′, produce states
k and k′, where k �S k′. Then if N terminates when M
does and N is weakly pure, then M is observationally pure.

Thus to demonstrate opurity of a method, it is sufficient to find
another method that is weakly pure and preserves coupling rela-
tionships as defined above.

Information flow.
In Barnett et al.’s work [2], opurity is demonstrated by an infor-

mation flow analysis. In this case, one demonstrates that the result
of executing a method is independent of any secret information to
which the method may have access. An information flow analysis
on the body of the method tracks which fields hold secret informa-
tion, how that secret information is propagated, and how it affects
control flow, in order to assure that the result of the method is not
influenced by secret information.

That alone is too strict. In our cache example of Fig. 1, we def-
initely do want to be able to return the content of the secret cache
when appropriate, as getValue() does. Hence Barnett et al. allow
a method to return secret information if it can be demonstrated that
the secret information is equivalent to information that is open.

3. OBSERVATIONS ON THE THEORY

3.1 Adjustments
In our view, the details of the theory described in the previous

section could be profitably adjusted in two areas.
A minor issue is that the definitions given for observational pu-

rity in the related work do not explicitly require the returned result
to be independent of secret state. This is an omission in Naumann’s
paper [14](Defs. 4.2, 5.3). In Barnett et al.’s work [2], opurity re-
quires an accompanying simulation; it is not possible to define such
a simulation if the purportedly opure method returned a result that
varied with secret state. However, listing the requirement explicitly
in the definition makes for easier static checking than if it is simply
implicit in the required simulation.

Second, both papers do not consider executions in which some
assertions are false, as they rely on a semantics of assert in which
the assert statement does not terminate if the assertion expression
is false. Barnett et al. [2] explicitly state that they only consider
terminating computations; thus, only computations in which all
assertions are true are considered. This vacuously precludes the
possibility that an assertion might become false because of side ef-
fects of runtime checking. However, that is an important possibil-
ity that should be ruled out. Furthermore, in JML’s runtime asser-
tion checker, a false assertion does not terminate the program, but
throws an exception. While technically JML’s semantics also does
not specify anything after such an exception (because the exception
is a subtype of java.lang.Error), in practice one might continue
to execute after catching the exception, and thus the program might
check further assertions after it occurred.

3.2 Static Checking
The theoretical work described above focused on runtime check-

ing. It derived conditions under which any side effects of execut-
ing assertions would have no effect on the open program state (up
to an equivalence relation). However, this is a stronger condition
than is needed for static checking. In static checking we need only
know that using an opure method call in a specification does not
make the meaning of what it specifies vary, depending on secret
state. It is possible that executing an assertion would change the
program state significantly and observably and yet the meanings of
all specifications would remain unaffected and the program would
always run correctly. That is, the stronger condition established by
the simulation arguments in the prior work is sufficient to prove
that correctness is maintained, but may not be necessary for correct
static verification.

There has already been work on the semantics of using strongly
and weakly pure methods in specifications [1, 6]. It is straightfor-
ward to replace the invocation of a program method m with a call

to an uninterpreted logical function f (whose arguments may in-
clude the program heap and the receiver object). The properties of
f are given precisely by the specifications of m: f is well-defined
when m’s preconditions are satisfied and m terminates normally;
the result of f is constrained only by m’s normal postcondition.
Thus an axiom for f can be created and used in verification against
a specification that calls m. In the following, we call this semantics
the weakly pure semantics.

What semantics should be used for calls to an opure method m′?
A simple, intuitive semantics is to ignore the side effects of m′ and
produce the corresponding uninterpreted function f ′ and axioms
exactly as in the weakly pure semantics. This is equivalent to re-
placing a call to m′ by a call to a weakly pure method that has the
same specifications as m′.

However, the weakly pure semantics does not necessarily match
the behavior of runtime checking. To precisely model the complete
execution of runtime checks, all specifications become assumptions
and assertions, and methods in specifications are treated precisely
as methods in program code are treated: locations that might have
been modified by a method call are havocked - treated as undeter-
mined except for the constraints of invariants or postconditions.

Recall that open methods may not reference secret state except
through opure methods, and the results of these methods may not
depend on secret state. Furthermore no presumptions are made
about the secret portion of the pre-state other than that invariants
are satisfied. Thus nothing in the execution of an open method can
depend on the status of the secret state. It follows that prohibiting
opure methods from directly referring to secret state in their pre-
and postconditions guarantees that the weakly pure semantics can
be soundly used for opure method calls in open methods.

The prior theory prohibits opure methods from being used in
specifications in contexts that manipulate secret state, since such
methods may themselves modify secret state, so non-interference
cannot be assured. We argue below that soundness of static ver-
ification is preserved, even though non-interference is not, when
query methods are used in invariants and method specifications of
opure methods, so long as the method specifications do not also re-
fer to secret state. In that case the same arguments as above hold,
namely that a weakly pure semantics for opure methods is equiva-
lent to a runtime semantics, for opure and secret methods.

Thus we conclude that, provided some restrictions are followed,
in static verification one can safely model opure methods using the
weakly pure semantics. The restrictions are that secret information
cannot be accessed in opure method specifications and opure meth-
ods may not be used in assertions in the bodies of opure and secret
methods that refer to the same secret state.

3.3 Theoretical extensions
The previous work has laid an excellent theoretical foundation.

However there are some practical issues that require adapting and
extending the results summarized above. Some additional points,
unaddressed in this paper, are discussed in Sec. 6.
• Both of the main related works [2, 14] primarily use the class as
the encapsulation unit. That is too coarse for practical use. The
secret information is often restricted to one or just a few methods
in a class and is not directly used by other methods. Hence, as both
papers anticipate, we will define a smaller encapsulation unit.
• All of the previous work discusses the situation with secret state
declared in just one class. In practice, a program will declare many
pieces of secret state, associated with many different objects, and
direct access to these pieces of secret state may occur in over-
lapping regions of the program. Note particularly that we define
pieces of secret state as potentially associated with individual ob-

jects, rather than with a static declaration of a class or set of fields;
in this way, operations on an object do not necessarily affect the
secret state of other objects. We must ensure that the theory (and
our language design) still applies in such situations.

• Naumann’s work [14] prohibits all methods from exposing the
values of secret state in a class, as this is required for proofs of
observational purity via simulation outside that class. This is an
overly strong restriction that we relax. For example, a class may
define some helper methods that expose and manipulate secret state
and that are intended to be used only within the implementation of
opure methods.

4. APPLICATION TO JML
We apply the theoretical results above by making a number of

modifications and translations within the context of JML.

4.1 Syntax
JML retains the pure modifier to mean weakly pure, as before.

We add to the grammar of JML as follows.

• There are two new modifiers, secret and query, so the non-
terminal jml-modifier [11] now has the additional options
secret and query.

• In the package org.jmlspecs.annotations there are new
annotation types: Secret and Query. Each may take a sin-
gle argument, named value (so the key may be omitted) that
is a String naming a secret datagroup; the default value of
the parameter is an empty String. The name may be fully
qualified or it may be unqualified. An unqualified name is,
as usual, made into a fully qualified name by prepending the
fully qualified name of the class containing the annotation.

As an example, the code in Figure 1 is annotated according to
the proposed design.

4.2 Design and Semantics
This subsection describes the basic components of our design for

JML and basic semantic checks.
The intent of our design is to partition the set of fields into two

groups, open and secret, and to partition the set of methods into
three groups: an open group that does not directly manipulate secret
state, a secret group that can abstract manipulation of and access to
secret state, and a query group that can also access and manipu-
late secret state, but in a way hidden from calling methods. Secret
fields and methods constitute, use, or expose secret state. Query
methods are intended to be opure. All methods and fields that are
not annotated with query or secret are open.

4.2.1 Modifiers Themselves
The secret modifier is equivalent to a Secret annotation with

no argument; these may be applied only to declarations of the fol-
lowing:

• a field, including datagroups, ghost and model fields, and
• a method (but not a constructor).

The Secret annotation with an argument can only be applied to
method declarations.

The query modifier is equivalent to a Query annotation with no
argument. The query modifier or annotation may be applied only
to declarations of a class, interface, or a method; neither may be
applied to a constructor or a field declaration.

4.2.2 Secret Fields and Datagroups
Groups of secret fields are used to define encapsulation bound-

aries for opurity. This is a difference from related work on opu-
rity, which uses classes. Since JML already uses subtype-extensible
“datagroups” [12] to group fields for purposes of specifying frame
axioms (i.e., what fields a method may modify), we reuse this con-
cept to group fields for defining encapsulation boundaries. Nontriv-
ial datagroups are typically declared as model (specification only)
fields. JML also has a type JMLDataGroup that can be used to de-
clare such model fields. Note that instance (non-static) datagroups
are associated with individual objects, not with the class as a whole.

A secret datagroup is declared using the Secret annotation or
modifier on the datagroup’s declaration. A field f is a secret field
if it is declared using the Secret annotation or modifier.

A secret datagroup may contain only secret fields or other secret
datagroups. A field must be in a secret datagroup and may not be
in an open datagroup.

For a given query method we require there to be a secret data-
group G that contains the (secret) fields that constitute the secret
state and that the query method might modify. As we will see,
methods must be declared as either secret or query for datagroup G
if they directly access (i.e., read or write) members of G.

Secret fields may not be used in the program or specifications of
open methods; secret fields may not be used in the method specifi-
cations of query methods.

4.2.3 Pure and Query Types
A type, i.e., a class or interface, may be declared using the key-

word pure in JML. Such a type is called a pure type. In a pure type
all methods not declared as query methods are implicitly declared
to be pure [11].

We extend this convention to the Query annotation: in a query
type, all methods not declared as pure are implicitly declared as
query methods with the same query keyword or annotation.

(We do not allow secret types.)

4.2.4 Pure Methods
Weakly pure methods are still declared using pure. However, the

current rules for (weakly) pure methods are changed slightly.
A method is a pure method iff it either: (a) has a pure modifier

or annotation, (b) overrides or implements a pure method, or (c) is
declared in a pure type and neither overrides a query method nor
has a query modifier or annotation.

4.2.5 Secret Methods
A method declared with the secret annotation (or modifier) indi-

cates that the method can directly access and modify some secret
datagroup in a way that need not be opure.

A method m is a secret method for datagroup G if one of the
following holds.

• Method m is declared with the annotation @Secret("G").
• Method m is declared with the secret keyword or with the

annotation @Secret (with no arguments), and all the methods
that m overrides are secret methods for datagroup G.

Note that if a secret method does not override a secret method,
it must use an annotation that names a datagroup. This datagroup
must be visible whenever it is used. Thus, if a method is declared
secret for G in multiple interfaces and classes, the datagroup G
must be visible at all the declaration sites.

A secret method may not override or be overridden by a non-
secret method.

A method may not be both a query method and a secret method
for the same datagroup.

Secret methods may not be used in the program or specifications
of open methods; secret methods may not be used in the method
specifications of query methods.

Finally, it must be shown that any changes by a secret method to
open state must be independent of the secret state. For this we re-
quire that any such changes be specified using open computations.

4.2.6 Query Methods
A method declared with the query modifier or annotation indi-

cates that the method must be observationally pure with respect to
some secret datagroup.

A method m is a query method for datagroup G if one of the
following holds.

• Method m is declared with the annotation @Query("G") (or
is declared in a class with this annotation and is not declared
with the modifier pure nor overrides a pure method).

• m overrides some method, and each method m′ that m over-
rides is a query method for datagroup G. m optionally but
preferably has a query annotation or modifier.

• Neither of the above applies, method m is declared with the
query keyword or with the annotation @Query (with no argu-
ments), and G has the same name as m. If there is no decla-
ration of a datagroup with the same name as the method m
in scope, then m’s name is implicitly declared to be a secret
datagroup in the same class as m, with the same Java visi-
bility as the method, with the static modifier iff m is static,
and with type JMLDataGroup.

If an implicit declaration of a datagroup with the same name as
a query method would be illegal, then the query annotation must
explicitly give the name of the associated datagroup.

A method may not be declared with both query and pure modi-
fiers; furthermore, a query method may not override a pure method.
However, a pure method may override a query method.

A query method must have a specification, and that specification
must contain at least one normal-behavior specification case.

The default assignable clause for a specification case of a query
method for datagroup G is assignable G. If an assignable clause
is given for a query method, it may contain only secret fields or
datagroups. Furthermore, a query method m may only directly
modify (at most) the pre-state fields in the datagroup with which
it is associated (it is effectively an open method for other secret
datagroups and may not directly read or write the secret fields of
those other secret datagroups).

Finally, the return value of a query method for a datagroup G
must be shown to be independent of G. This can be established,
per [2], by proving that the returned result is equal to the result
of an open computation. This will be trivial if the query method’s
postcondition has a form such as ensures \result== In such
cases the condition that establishes that the return value is inde-
pendent of secret state is the same as the postcondition, since we
require that the postcondition does not read any secret state. (There
is no point to a void query method.)

4.3 Rules for Legal Use
In this subsection we describe how other parts of JML interact

with secret and query fields and methods.

4.3.1 Static and Instance Datagroups
The discussion above extended the use of secret state to multiple,

disjoint datagroups of secret state within one program. As long as
the datagroups are disjoint we can treat a method as opure for one
datagroup but open for others.

Most datagroups are sets of instance fields belonging to a given
object. Then the datagroups for two different objects, even of the

same type, are disjoint. A method that is opure for one object is
open for the other and can be used without restriction in the second
object’s specifications. The equals method, for example, can be
declared query for the non-static Object.equals datagroup. The
equals method is restricted from being used in the body of query
methods of its own overriding methods for the same object, but
equals can be called on other objects. Thus equals for a Collection
can make use of equals for its elements, as long as the Collection
object is not an element of itself.

In order to enforce this disjointness, static fields may not be el-
ements of secret instance datagroups. Also, pending further ex-
perimentation, secret fields are forbidden to be members of two
different secret datagroups where one is not a subset of the other.

4.3.2 Use in Type-Level Specification Clauses
Invariants and (history) constraints may directly read secret fields

and call pure secret methods, but only those declared in the same
type or a supertype. No other type specifications (including ini-
tially, represents, monitors-for, readable-if, and writable-if clauses
and axioms) may directly read secret fields or call secret methods.

A query method may be called in invariants and constraints of
type specifications of any type. A query method for a datagroup
G declared in a type T may also be called from within other type
specification clauses, but such calls are prohibited from subtypes of
T (including T itself).

By the theory above, a query or secret method m for datagroup
G is not allowed to call a query method p for G (including m it-
self), on the same object, in its own type or method specification.
We relax that rule to allow query methods in type and method spec-
ifications according to the following argument.

In statically verifying a method m, the invariants and method
specifications are assumed at the beginning of the body and as-
serted at its end(s). The final assertion cannot affect the course
of the execution within m, and the theory has established that it
is immaterial to open methods calling m. Query methods called
prior to the body of m may alter secret state, but must maintain
the invariants that apply to the secret state. As long as there are
no direct references to secret fields in the type or method speci-
fications, there can be no interference in any runtime checking of
those specifications. Thus, at the beginning of the method’s body,
the invariants will still hold and coupling will be preserved. Static
verification will only assume that the invariants hold and will not
assume any more specific information about the secret state. By as-
suming a weakly pure semantics for query methods combined with
no knowledge of secret state, we verify a conservative approxima-
tion to any runtime execution that agrees with the specifications.

In runtime checking, the invariant is asserted as part of checking
the preconditions. This may well alter the secret state in a way
that is visible within the body of m; for example, only a part of
the control flow may ever be executed. However, presuming that
the static verification shows that the method is correct, executing
the invariant at runtime will not affect the truth of any assertions
executed in the body of the method.

Thus we conclude that using query methods in type and method
specifications is permissible. A particular invariant may not both
call query methods and also call secret methods or use secret fields;
query method specifications may not refer to secret methods or
fields at all; secret method specifications may not mix query meth-
ods and secret fields or methods.

An alternate reasoning for this conclusion provides a different
perspective. Consider two sorts of statement sequences: (A) state-
ments that call opure methods but do not access secret state, and (B)
statements that access secret state but do not call opure methods.

The prior theory demonstrated that open methods, which consist
of type (A) sequences, preserve correctness; it also demonstrated
that opure methods, which consist of type (B) sequences, preserve
correctness as well (presuming in each case that the methods main-
tain instance invariants). Now an opure method with specifications
consists, during runtime checking, of invariant checks, precondi-
tion checks, the method body, postcondition checks and invariant
checks. This is equivalent to a sequence of method calls; it will
preserve correctness if each step is either type (A) or (B), as noted
in the conclusion above.

4.3.3 Use in Method Specifications
Secret fields and methods for a datagroup G may be accessed

or called in method specifications only by secret methods for data-
group G. Method specifications of non-secret methods must not
read secret fields or call secret methods.

As concluded in the previous section, query methods for a data-
group G may be used in any method specification that does not also
access secret methods or fields for G.

However, assignable clauses in any method specification may
mention secret datagroups, if the method being specified calls query
methods in its program or specifications (but see the discussion in
section 5.2).

In the context in which a query method is used within a specifi-
cation (e.g., taking into account any short-circuit guards), the pre-
condition of at least one normal-behavior specification case must
be satisfied. This establishes that the execution of the method is
well-defined, just as well-definedness requires that the receiver of
a field selection operation is non-null [5]. A query method’s se-
mantics are generated only from its normal-behavior specification
cases. (Pure methods should obey a corresponding rule.)

4.3.4 Use in Method Bodies
Secret methods and fields may not be used in the Java programs

or JML assertions in the bodies of open methods. Query methods
may not be used in assertions in the bodies of query or secret meth-
ods for the same datagroup, but may be used in secret and query
methods for other datagroups. Query methods may be used in the
Java code of method bodies. This is a major benefit of basing en-
capsulation on datagroups, since one can use one query method in
the body specifications of another, as long as they are associated
with (different instances of) different datagroups.

4.3.5 Use in Constructors and their Specifications
Constructors are open and may not be declared to be query or se-

cret. Specifications of constructors may not directly refer to secret
fields or call secret methods. However, constructor specifications
do implicitly include any invariants that mention secret fields.

A constructor’s body may read, write, or call any open field or
method, any secret field declared in its class, and any query or se-
cret method for a datagroup that is declared within its class. Any
secret fields hold default values when a constructor begins execut-
ing, so there is no secret state information to leak.

A constructor may not call secret methods or access secret fields
of its superclasses, as that secret state is already initialized.

To avoid interference, query methods may not be used in asser-
tions within the body of a constructor.

Specifications of constructors may not directly refer to secret
fields or call secret methods. However, constructor specifications
do implicitly include any invariants that mention secret fields.

5. DISCUSSION
We expect our design to provide a means of using simple opurity

patterns while providing a platform for further experimentation. A
key test of this proposed design is usability: assessments of its prac-
ticality on larger code bases than test examples are underway. In
particular, it serves well for specifying library classes such as the
JDK whose implementation is unknown but whose user-supplied
overriding methods may be opure.

A key aspect of this design is that it accommodates disjoint sets
of secret state and that those sets may be associated with individ-
ual objects. Although the previous theory applies in large part un-
changed, it presumed a syntactically defined encapsulation bound-
ary. This allows us to call opure methods on one object in the ex-
ecution of the method on another, at the cost of proving that the
objects are different instances.

Another interesting aspect of the design is that secret fields and
methods may be public. This is intentional, as it allows existing
code to be annotated in a way that preserves observational purity.
If such annotations can be given in a way that follows our design,
then it will be safe. However, we do recommend that secret fields
and methods not be public.

One does need to plan ahead for opurity. If a method is ever
going to be overridden and implemented using some secret state,
it must be declared a query method from the start. It cannot be
pure in a superclass and query in a derived class. This means that
nearly every method that might be used in a specification should be
declared query rather than pure. That is why the implicitly declared
secret datagroup for a method is part of the design—so that the only
specification needed in the simplest case is to declare a method as
a query method.

5.1 Annotations
The secret annotations enable a simple level of encapsulation.

This is sufficient for the more common examples of opurity. Fur-
ther use will show whether this is adequate for large-scale software
systems.

It may be that experience will show the need to be able to use
secret as a type modifier and, for example, be able to declare lo-
cal variables and formal parameters as secret, in support of detailed
information flow analysis. For now we rely on proofs that any as-
signments to non-secret fields consist of open information. Since
this is only needed for the return result of query methods and for
secret methods that might assign to open state, we expect the need
for a full information flow analysis to be rare.

5.2 Frame Conditions
So far, nothing we have established about opurity has changed

the rules regarding frame conditions: each method must declare
those fields that it might modify, either directly or indirectly through
methods it calls. However, consider the following. Since meth-
ods that override Object.equals may and do modify secret state,
Object.equals must be declared a query method and specified that
it might modify the method’s secret datagroup. A library method
HashSet.contains presumably uses equals, although its imple-
mentation may not be known. If it does, it would need to declare
that it might modify equals’s datagroup. These frame conditions
will propagate everywhere. Requiring them for secret state that
users do not know or care about would be a decided inconvenience.

So may the frame conditions regarding secret state be omitted?
If we do so, then we must assume that any method may indirectly
modify any secret state in the program. That is, every non-pure
method in the program implicitly has a frame condition that allows
modification of any secret state. The modifications still preserve

invariants, however. Thus after any method call in a program, we
can assume that any secret state still obeys its invariants, but is oth-
erwise undefined. This is acceptable for open methods that do not
access secret state anyway. However, it would be a complication for
query and secret methods that are manipulating secret state. Query
methods associated with the same secret state were already prohib-
ited in assertions in a method body. But now any method at all,
including for example Object.equals, may affect the secret state
at hand. This analysis is independent of whether the methods are
called in the program or in specifications.

It is sound to consider that any method may modify any secret
state. However, it may complicate writing and verifying methods
that manipulate secret state, since all secret fields are then essen-
tially volatile. Investigation is underway to determine whether this
approach is usable. The complications may be particularly com-
plex if secret state is nested and layered. For example, it may be
desirable to allow a particular piece of secret state to be declared
as either (a) part of the global secret state and thus allowed to be
implicitly part of every non-pure frame condition or (b) not part of
the global secret state and required to be explicitly listed in frame
conditions as needed.

6. FUTURE WORK
There remain a number of open theoretical issues for future work.

Chief among them are the usability of implicit assignable clauses
and how to handle nested or shared secret state. Furthermore, as
always when theoretical work is extended for practical application,
there is the task of formalizing and proving the extensions and es-
tablishing soundness of the design as actually used; this is partic-
ularly the case for our informally argued conclusions about the se-
mantics of opure methods in static analysis and the use of opure
methods in invariants and method specifications.

The discussion so far has treated information as strictly either se-
cret or open. In practice, however, it is the observation made of the
secret information that is of consequence. For example, the hash-
code method produces an int whose value depends on the state of
the heap. Thus hashcodes will change if weakly pure assertions are
executed. However, all that we use of a hashcode is its invariant
property: if two objects are equal then their hashcodes are equal.
Indeed it is this reasoning that is behind allowing location remap-
ping when comparing program states. Absolute location is unim-
portant; all that matters is location equality. We need a semantics of
secret information that allows for equivalence of program state in
terms of predicates over state rather than equivalence of open state.

From an external perspective all that is observed of a program is
its input and output. In many cases both are textual, including any-
thing displayed in a GUI. From this perspective, everything within
a program is unobserved state. Within any program with any de-
gree of abstraction there will be nested layers of hidden informa-
tion. The work described above needs to be extended to situations
in which various groupings of secret information occur in nested
layers. We leave for future work the handling of nested secret state,
but we expect it to have close relationships with other encapsula-
tion disciplines, such as the pack/unpack facility in Spec# or the
universe type system.

7. CONCLUSIONS
We have adapted and applied the previous theoretical work on

observational purity to a proposed practical design within JML. In
the process we have defined the encapsulation boundary to include
precisely the secret state and extended the theory to accommodate
multiple groups of secret state, secret helper methods, invariants,

method specifications and implicit frame conditions. We have also
introduced a semantics for static analysis of opure methods that
relaxes non-interference while maintaining correctness.

The design above is implemented in OpenJML, an experimental
version of JML at the level of Java 1.6, built on the OpenJDK code
base.

The lack of observational purity in specification languages has
been one roadblock to widespread use of source-level specifications
on substantial code bases. Providing a design and implementation
in JML will allow experimentation with such code bases.

Acknowledgments
The work of Leavens has been supported in part by grants from the
US National Science Foundation numbered CCF-0428078, CCF-
0429567, and CNS 08-08913. Thanks to David A. Naumann for
private communications clarifying some aspects of his paper on op-
urity [14].

8. REFERENCES
[1] Ádám Darvas and Peter Müller. Reasoning about method

calls in interface specifications. Journal of Object
Technology, 5(5):59–85, June 2006.

[2] Michael Barnett, David A. Naumann, Wolfram Schulte, and
Qi Sun. Allowing state changes in specifications. In Günter
Müller, editor, ETRICS, volume 3995 of Lecture Notes in
Computer Science, pages 321–336. Springer, 2006.

[3] Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte.
The Spec# programming system: An overview. In Gilles
Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis Lanet,
and Traian Muntean, editors, Construction and Analysis of
Safe, Secure, and Interoperable Smart devices (CASSIS
2004), volume 3362 of Lecture Notes in Computer Science,
pages 49–69. Springer-Verlag, 2005.

[4] Mike Barnett, David A. Naumann, Wolfram Schulte, and
Qi Sun. 99.44% pure: Useful abstractions in specification.
Obtained from the following URL:
http://guinness.cs.stevens-tech.edu/~naumann/
publications/purityJoT.pdf, January 2005.

[5] Patrice Chalin. A sound assertion semantics for the
dependable systems evoluation verifying compiler. In
International Conference on Software Engineering (ICSE),
pages 23–33. IEEE, May 2007.

[6] David R. Cok. Reasoning with specifications containing
method calls and model fields. Journal of Object Technology,
4(8):77–103, 2005.

[7] Gary T. Leavens. JML’s rich, inherited specifications for
behavioral subtypes. In Zhiming Liu and He Jifeng, editors,
Formal Methods and Software Engineering: 8th
International Conference on Formal Engineering Methods
(ICFEM), volume 4260 of Lecture Notes in Computer
Science, pages 2–34, New York, NY, November 2006.
Springer-Verlag.

[8] Gary T. Leavens, Albert L. Baker, and Clyde Ruby.
Preliminary design of JML: A behavioral interface
specification language for Java. ACM SIGSOFT Software
Engineering Notes, 31(3):1–38, March 2006.

[9] Gary T. Leavens, Yoonsik Cheon, Curtis Clifton, Clyde
Ruby, and David R. Cok. How the design of JML
accommodates both runtime assertion checking and formal
verification. In Frank S. de Boer, Marcello M. Bonsangue,
Susanne Graf, and Willem-Paul de Roever, editors, Formal

Methods for Components and Objects: First International
Symposium, FMCO 2002, Lieden, The Netherlands,
November 2002, Revised Lectures, volume 2852 of Lecture
Notes in Computer Science, pages 262–284. Springer-Verlag,
Berlin, 2003.

[10] Gary T. Leavens, Yoonsik Cheon, Curtis Clifton, Clyde
Ruby, and David R. Cok. How the design of JML
accommodates both runtime assertion checking and formal
verification. Science of Computer Programming,
55(1-3):185–208, March 2005.

[11] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon,
Clyde Ruby, David R. Cok, Peter Müller, Joseph Kiniry,
Patrice Chalin, and Daniel M. Zimmerman. JML Reference
Manual. Available from http://www.jmlspecs.org, May
2008.

[12] K. Rustan M. Leino. Data groups: Specifying the
modification of extended state. In OOPSLA ’98 Conference
Proceedings, volume 33(10) of ACM SIGPLAN Notices,
pages 144–153. ACM, October 1998.

[13] Bertrand Meyer. Object-oriented Software Construction.
Prentice Hall, New York, NY, second edition, 1997.

[14] David A. Naumann. Observational purity and encapsulation.
Theoretical Computer Science, 376(3):205–224, 2007.

