Faithful mapping of model classes
to mathematical structures

Adam Darvas Peter Miller
ETH Zirich Microsoft Research
Switzerland Redmond, WA, USA

SAVCBS 2007, Dubrovnik, Croatia

Abstraction in OO specification languages

= Abstraction is indispensable

- to specify types with no implementation
- to support subtyping and information hiding

= Two-tiered specification languages (e.g. Larch)
directly provide mathematical structures for
abstraction

= One-tiered specification languages (e.g. JML)
provide model classes for abstraction

Model classes

= Provide OO interface for mathematical concepts
» Used as immutable types
= Equipped with contracts (not shown)

package org.jmlspecs.models;

public final *@ pure @*/ class JMLObjectSet {
public IMLObjectSet();
public IMLObjectSet(Object e);

public boolean has(Object elem);
public boolean isEmpty();
public boolean isSubset(JMLObjectSet s2);

public IMLODbjectSet insert(Object elem);
public IMLObjectSet remove(Object elem);

Use of model classes

package java.util;
//@ import org.mlspecs.models.JMLObjectSet;

public interface Set extends Collection {
//@ public model instance JMLObjectSet _set;

[*@ public normal _behavior
@) ensures contains(o);
@*/

public boolean add(Object 0);

[*@ public normal_behavior

@ ensures \result == set.has(o);

@*/

[*@ pure @*/ public boolean contains(Object 0);

Handling of model classes — pure methods

For verification, model classes need to be encoded In
underlying theorem prover

By encoding pure methods [DarvasMiiller06,JacobsPiessen06]
- pure methods encoded as uninterpreted functions
- functions axiomatized based on pure-method contracts

Problems

- theorem provers optimized for their own theories, rather
than encodings of pure methods

- difficult to ensure consistency of resulting axiom system

Handling of model classes — direct mappings

For verification, model classes need to be encoded In
underlying theorem prover

By direct mappings [LeavensEA05,Charles06,LeavensEAQ7]
- map model classes directly to theories of provers
- map pure methods to functions of selected theories
- mapping based on signature

Problems
- mapping ignores contracts

- possible mismatch between contract and semantic
meaning of selected function

- leads to unexpected results during verification and
runtime assertion checking

Faithful mapping of model classes to structures

= Qur contribution Is an approach that

follows idea of direct mappings

takes contracts into account

formally proves that mappings are semantically correct
allows identification and checking of redundant specs

= Approach
- leads to better quality of model class specifications
- eliminates semantic mismatches

Specifying and proving faithfulness of mappings

Approach consists of 3 stages:

1. Specifying mapping

. .)
2. Proving consistency: what can be

proven using contracts can also be proven
using theory of theorem prover [
> C

orrectness of
mapping

3. Proving completeness: what can be

proven using the theory of theorem prover
can also be proven using contracts

J

Specifying mappings

* Introducing new JML clause: mapped to

= Clause attached to a class

- specifies theorem prover, theory, and type to which class
IS mapped

[/@ mapped_to(“Isabelle”, “HOL/Set”, “ 'a set”);
public final @ pure @*/ class JMLObjectSet

= Clause attached to a method

- specifies prover and term to which a call of the method is
mapped

//@ mapped_to(“Isabelle”, “this Un s27);
public IMLObjectSet union(JMLODbjectSet s2);

Proving consistency

1. Turn each invariant and method specification into a
lemma in language of selected theory

2. Prove lemmas using selected theory

[*@ public normal_behavior

@ ensures

@ (\forall Objecte; ;

@ \result.has(e) <==>

@ this.has(e) || (e == elem));
@*/

[/@ mapped_to("Isabelle","insert elem this");
public IMLODbjectSet insert(Object elem);

theory consistent imports Set:
lemma

V this, elem. V e. e : (insert elem this) = (e : this v e = elem)
apply(auto)

10

Proving completeness

Create theory file as follows

1. Turn each pure method
Into a function symbol

public boolean
ISProperSubset(JMLObjectSet s2);

Imicuiuuy prLIIILdLIUI I 110
axiom

s.isProperSubset(s2) ==
(s.isSubset(s2) && !s.equals(s2))

lemma

A<B==A<=B & —A=B

axioms created in step 2.

theory complete:

consts
ISProperSubset: ‘a set x ‘a set => bool

axiom

ax_isPropSub:

Vvs,s2,el,e2. isProperSubset(s,s2) =
(isSubset(s,s2) A —equals(s,s2))

lemma

VA,B. isProperSubset(A,B) =
(isSubset(A,B) A —equals(A,B))

apply(simp add: ax_isPropSub)

11

Guarantees

Consistency
- selected theory is model for model class

- model-class specification is free of contradictions
provided that theory is free of contradictions

- can show consistency of recursive specifications

= Completeness
- extracted axiom system is complete relative to theory

12

Case study

* Mapped JMLODbjectSet to Isabelle’s HOL/Set theory

= Considered 17 members:

- 2 constructors, 9 guery methods, and
6 methods that return new JMLObjectSet objects

- made several simplifications

= Total of 380 lines of Isabelle code

- 100 for consistency, 110 for completeness, and
170 for equivalence proof (see later)

- all code written manually
13

Case study — Division of specifications

Specification of IMLODbjectSet expressed by equational theory

and method specifications

[*@ public invariant
@ (Mforall IMLODbjectSet s2; s2 = null;
@ (\forall Object el, e2; ;
@ equational_theory(this, s2, el, e2)));
@
@ public normal_behavior
@ ensures \result <==>
@ s.insert(el).has(e2) ==
@ (el ==e2 || s.has(e2));
@ also .~

@ static public pure model boolean
@ equational theory(JMLODbjectSet s,

@/

@ JMLODbjectSet s2, Object el, Object e2);

14

Case study — Division of specifications

Specification of IMLODbjectSet expressed by equational theory
and method specifications

JMLODbjectSet

Equational theory
Method specs

~

JMLODbjectSet

Equational theory ﬁ

N

?

JMLODbjectSet

Method specs

15

Case study — Specifying the mapping

= Mapping of model-class methods to function
symbols of HOL/Set mostly straightforward

* Some Iinteresting cases

[/@ mapped_to("Isabelle","this - {elem}");
public IMLObjectSet remove(Object elem);

[I@ mapped_to("Isabelle","SOME x. x : this");
public Object choose();

public int int_size();

16

Case study — Consistency

» Performed both for equational theory and method
specifications

» Revealed one unsound eguation in equational
theory

s.insert(el).remove(e2).
equals(el == e2 ? s : s.remove(e2).insert(el))

Not true if el==e2 and s contains el!

= Possibility for high degree of automation
- generation of lemmas based on few simple syntactic
substitutions
- lemmas proved automatically by Isabelle’s tactics

17

Case study — Equivalence of specifications

» Inspected relation of equational theory and method
specifications: equivalent? one stronger than the other?

= Answer: not equivalent and none stronger!
- needed to add new specifications or strengthen some

From equations over ISEmpty
new JMLODbjectSet().isEmpty() and !s.insert(el).iIsEmpty()

could not derive

[*@ public normal_behavior
@ ensures \result == (\forall Object e; ; !this.has(e));
@*/

public boolean isEmpty();

18

Case study — Completeness

» Performed both for equational theory and method
specifications

= Most Isabelle definitions expressed by set
comprehension

- JML supports construct on syntax level

- axiomatized construct based on Isabelle’s definition
(correct and provides connection to model class)

= Most definitions easily mapped back and proved
- could not map back some function symbols

= | ower degree of automation

- lemma and proof generation only partially possible .

Mismatching classes and structures

= Pure method cannot be mapped to semantically
equivalent term of selected theory

- no guarantee that specification is consistent and method
corresponds to some mathematical operation

- for instance, method int_size
- need to pick other theory (e.g. HOL/Finite Set)

= Function symbol of selected theory cannot be
mapped to expression of model class
- no isomorphism but observational faithfulness:
mapping of all client-accessible pure methods faithful
- for instance, function image

- sufficient result for sound use of mapped to clauses
20

Conclusions

= |mprovements over previous work

- formally proving semantic correspondence between
mapped entities

- better specifications for model classes:
consistent and complete, redundancy identifiable and checkable

- ensuring consistency of specifications even in the
presence of recursion

= Case study
- revealed incorrect specification
- identified missing specifications

- Identifiled relation between equational theory and method
specifications
21

Future work

= Tool support
- typechecking of mapped_to clauses

- (partial) generation of proof scripts
- use of mappings in program verification system

= More case studies
- with more complex structures (e.g. sequence)

- with structures that have no directly corresponding theory
(e.g. stack)

22

