
Faithful mapping of model classes 
to mathematical structures

Ádám Darvas
ETH Zürich
Switzerland

Peter Müller
Microsoft Research
Redmond, WA, USA

SAVCBS 2007, Dubrovnik, Croatia



2

Abstraction in OO specification languages

Abstraction is indispensable
- to specify types with no implementation
- to support subtyping and information hiding

Two-tiered specification languages (e.g. Larch) 
directly provide mathematical structures for 
abstraction

One-tiered specification languages (e.g. JML) 
provide model classes for abstraction 
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Model classes

Provide OO interface for mathematical concepts
Used as immutable types
Equipped with contracts (not shown)

package org.jmlspecs.models;

public final /*@ pure @*/ class JMLObjectSet {
public JMLObjectSet();
public JMLObjectSet(Object e);

public boolean has(Object elem);
public boolean isEmpty();
public boolean isSubset(JMLObjectSet s2);

public JMLObjectSet insert(Object elem); 
public JMLObjectSet remove(Object elem);
…

}
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Use of model classes

package java.util;
//@ import org.jmlspecs.models.JMLObjectSet;

public interface Set extends Collection {
//@ public model instance JMLObjectSet _set;

/*@   public normal_behavior
@      ensures contains(o);
@*/

public boolean add(Object o);

/*@   public normal_behavior
@      ensures \result ==  _set.has(o);
@*/

/*@ pure @*/ public boolean contains(Object o);
…

}
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Handling of model classes – pure methods

For verification, model classes need to be encoded in  
underlying theorem prover

By encoding pure methods  [DarvasMüller06,JacobsPiessen06]

- pure methods encoded as uninterpreted functions
- functions axiomatized based on pure-method contracts

Problems
- theorem provers optimized for their own theories, rather 

than encodings of pure methods
- difficult to ensure consistency of resulting axiom system
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Handling of model classes – direct mappings

For verification, model classes need to be encoded in  
underlying theorem prover

By direct mappings [LeavensEA05,Charles06,LeavensEA07]

- map model classes directly to theories of provers
- map pure methods to functions of selected theories
- mapping based on signature

Problems
- mapping ignores contracts
- possible mismatch between contract and semantic 

meaning of selected function
- leads to unexpected results during verification and 

runtime assertion checking
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Faithful mapping of model classes to structures

Our contribution is an approach that
- follows idea of direct mappings
- takes contracts into account
- formally proves that mappings are semantically correct
- allows identification and checking of redundant specs

Approach 
- leads to better quality of model class specifications
- eliminates semantic mismatches
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Specifying and proving faithfulness of mappings

Approach consists of 3 stages:

1. Specifying mapping

2. Proving consistency: what can be 
proven using contracts can also be proven 
using theory of theorem prover

3. Proving completeness: what can be 
proven using the theory of theorem prover
can also be proven using contracts

Correctness of 
mapping
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Specifying mappings

Introducing new JML clause: mapped_to
Clause attached to a class
- specifies theorem prover, theory, and type to which class 

is mapped

Clause attached to a method
- specifies prover and term to which a call of the method is 

mapped

//@ mapped_to(“Isabelle”, “HOL/Set”, “ ’a set”);
public final /*@ pure @*/ class JMLObjectSet

//@ mapped_to(“Isabelle”, “this Un s2”);
public JMLObjectSet union(JMLObjectSet s2);
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Proving consistency
1. Turn each invariant and method specification into a 

lemma in language of selected theory
2. Prove lemmas using selected theory

/*@ public normal_behavior
@   ensures
@      (\forall Object e; ;
@        \result.has(e) <==> 
@           this.has(e) || (e == elem));
@*/  

//@ mapped_to("Isabelle","insert elem this");
public JMLObjectSet insert(Object elem);

∀ e. \result.has(e) = (this.has(e) ∨ e = elem)∀ this, elem. ∀ e. \result.has(e) = (this.has(e) ∨ e = elem)∀ this, elem. ∀ e.     e : \result = (     e : this ∨ e = elem)∀ this, elem. ∀ e. e : (insert elem this) = (e : this  ∨ e = elem)

theory consistent imports Set:
lemma
∀ this, elem. ∀ e. e : (insert elem this) = (e : this  ∨ e = elem)
apply(auto)
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Proving completeness
Create theory file as follows
1. Turn each pure method 

into a function symbol

2. Turn each invariant and 
method specification into 
axiom

3. Turn each axiom and 
definition from theory into 
lemma

4. Prove each lemma using 
axioms created in step 2.

theory complete: 

consts
isProperSubset: ‘a set x ‘a set => bool
…

axiom
ax_isPropSub:
∀s,s2,e1,e2. isProperSubset(s,s2) =

(isSubset(s,s2) ∧ ¬equals(s,s2))
…

lemma
∀A,B. isProperSubset(A,B) =

(isSubset(A,B) ∧ ¬equals(A,B))
apply(simp add: ax_isPropSub)
…

public boolean
isProperSubset(JMLObjectSet s2);

s.isProperSubset(s2) == 
(s.isSubset(s2) && !s.equals(s2)) 

A < B == A <= B & ¬A=B
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Guarantees

Consistency
- selected theory is model for model class
- model-class specification is free of contradictions

provided that theory is free of contradictions
- can show consistency of recursive specifications

Completeness
- extracted axiom system is complete relative to theory
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Case study

Mapped JMLObjectSet to Isabelle’s HOL/Set theory

Considered 17 members:
- 2 constructors, 9 query methods, and 

6 methods that return new JMLObjectSet objects
- made several simplifications

Total of 380 lines of Isabelle code
- 100 for consistency, 110 for completeness, and 

170 for equivalence proof (see later)
- all code written manually
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Case study – Division of specifications
Specification of JMLObjectSet expressed by equational theory

and method specifications

/*@ public invariant
@   (\forall JMLObjectSet s2; s2 != null;
@     (\forall Object e1, e2; ;
@       equational_theory(this, s2, e1, e2) )); 
@
@ public normal_behavior
@     ensures \result <==> 
@       s.insert(e1).has(e2) == 
@         (e1 == e2 || s.has(e2));
@   also ...
@ static public pure model boolean
@   equational_theory(JMLObjectSet s, 
@     JMLObjectSet s2, Object e1, Object e2);
@*/
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Case study – Division of specifications
Specification of JMLObjectSet expressed by equational theory

and method specifications

JMLObjectSet

Equational theory

Method specs

JMLObjectSet

Equational theory

JMLObjectSet

Method specs
?
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Case study – Specifying the mapping

Mapping of model-class methods to function
symbols of HOL/Set mostly straightforward

Some interesting cases

//@ mapped_to("Isabelle","this - {elem}");
public JMLObjectSet remove(Object elem);

//@ mapped_to("Isabelle","SOME x. x : this");
public Object choose();

public int int_size();
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Case study – Consistency

Performed both for equational theory and method 
specifications
Revealed one unsound equation in equational 
theory

Not true if   e1 == e2   and   s contains e1!

Possibility for high degree of automation
- generation of lemmas based on few simple syntactic 

substitutions
- lemmas proved automatically by Isabelle’s tactics

s.insert(e1).remove(e2).
equals(e1 == e2 ? s : s.remove(e2).insert(e1))

s.insert(e1).remove(e2).
equals(e1 == e2 ? s : s.remove(e2).insert(e1))
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Case study – Equivalence of specifications

Inspected relation of equational theory and method 
specifications: equivalent? one stronger than the other?

Answer: not equivalent and none stronger!
- needed to add new specifications or strengthen some

From equations over isEmpty
new JMLObjectSet().isEmpty()   and   !s.insert(e1).isEmpty()

could not derive

/*@ public normal_behavior
@    ensures \result == (\forall Object e; ; !this.has(e));
@*/

public boolean isEmpty();
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Case study – Completeness

Performed both for equational theory and method 
specifications

Most Isabelle definitions expressed by set 
comprehension
- JML supports construct on syntax level
- axiomatized construct based on Isabelle’s definition

(correct and provides connection to model class)

Most definitions easily mapped back and proved
- could not map back some function symbols

Lower degree of automation
- lemma and proof generation only partially possible
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Mismatching classes and structures
Pure method cannot be mapped to semantically 
equivalent term of selected theory
- no guarantee that specification is consistent and method 

corresponds to some mathematical operation
- for instance, method int_size
- need to pick other theory (e.g. HOL/Finite_Set)

Function symbol of selected theory cannot be 
mapped to expression of model class
- no isomorphism but observational faithfulness:

mapping of all client-accessible pure methods faithful
- for instance, function image
- sufficient result for sound use of mapped_to clauses
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Conclusions

Improvements over previous work
- formally proving semantic correspondence between 

mapped entities
- better specifications for model classes: 

consistent and complete, redundancy identifiable and checkable

- ensuring consistency of specifications even in the 
presence of recursion

Case study
- revealed incorrect specification
- identified missing specifications
- identified relation between equational theory and method 

specifications
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Future work

Tool support
- typechecking of mapped_to clauses
- (partial) generation of proof scripts
- use of mappings in program verification system

More case studies
- with more complex structures (e.g. sequence)
- with structures that have no directly corresponding theory

(e.g. stack)


