
Playing with Time
in Publish-Subscribe using a
Domain-Specific Model Checker

presented by Luca Mottola (mottola@elet.polimi.it)
joint work with Luciano Baresi, Giorgio Gerosa, and Carlo Ghezzi

Dipartimento di Elettronica ed Informazione
Politecnico di Milano, Italy

6th Int. Workshop on
Specification and Verification of Component-Based Systems (SAVCBS07)

Dubrovnik, (Croatia) - September 3rd, 2007

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Publish-Subscribe Architectures
PubSub Paradigm
 Asynchronous communication

mediated by a dispatcher
 anonymous and multipoint
 implicit addressing

(e.g., content-based PubSub)
 Application components

 subscribe to relevant message patterns
 publish messages

 The dispatcher matches published messages against
previously issued subscriptions

 Allows dynamic addition and removal of components
 suited to distributed applications in dynamic environments

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Enterprise
Systems

P2P systems

Sensor
Networks

Publish-Subscribe Architectures
Different Flavors…
 PubSub is a model with many

different implementations
 from enterprise systems…
 …to wireless sensor networks

 Different guarantees provided
 Difficult to verify the application

behavior

None, Tail Drop, Priority DropQueue Drop Policy

……

Absent, Present,
Present w/ ScrunchingMessage Priorities

Absent, PresentRepliable
Messages

Absent, PresentSubscription
Propagation Delay

Absent, PresentReal-time
Guarantees

Precise, ApproximateFiltering

Random, Pair-wise FIFO,
System-wide FIFO,
Causal Order, Total Order

Message Ordering

Absent, PresentMessage Reliability

ChoicesGuarantee

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Domain Specific Model Checker
A Change of Perspective
 Model checking proposed to address the verification issue

 standard tools (e.g., SPIN) used to model both the application and the
PubSub infrastructure

 fine-grained models unfeasible due to state space explosion
 parametric models difficult due to little support for parameterization

A change of perspective:
embed the PubSub communication paradigm within the model-checker

L. Baresi, C. Ghezzi, and L. Mottola. On Accurate Automatic Verification of Publish-Subscribe
Architectures. In Proc. Of the 29th Int. Conf. on Software Engineering (ICSE), 2007.

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Domain-Specific Model Checker
PubSub APIs in Bogor
 Extend the Bogor model checker with a PubSub module
 Additional constructs used in developing BIR models
 PubSub operations are used in BIR to issue subscriptions,

publish messages, …

typealias MessagePriority int (0,9);
enum DropPolicy {TAIL_DROP, PRIORITY_DROP }

extension PubSubConnection for polimi.bogor.bogorps.PubSubModule {
 typedef type<'a>;

 expdef PubSubConnection.type<'a> register<'a>();
 expdef PubSubConnection.type<'a> registerWithDropping<'a>(int, DropPolicy);
 actiondef subscribe<'a>(PubSubConnection.type<'a>, 'a -> boolean);
 actiondef publish<'a>(PubSubConnection.type<'a>, 'a);
 actiondef publishWithPriority<'a>(PubSubConnection.type<'a>, 'a,
 MessagePriority);
 expdef boolean waitingMessage<'a>(PubSubConnection.type<'a>);
 actiondef getNextMessage<'a>(PubSubConnection.type<'a>, lazy 'a); }

PubSub
extension API

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Time Extension
Time Model
 No generic notion of time, rather:

 suited to the dynamics of PubSub
applications

 enabling its interplay with other
PubSub guarantees

 System evolution determined by:
 component execution rate w.r.t. the PubSub dispatcher
 (random) message delays

 Time alters the exploration of the state space, not the individual states

 Inspired by X. Deng, M. B. Dwyer, J. Hatcliff, and G. Jung. Model-
checking middleware-based event-driven real-time embedded
software. In Proc. of the 1st Int. Symposium on Formal Methods for
Components and Objects, 2002

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Time Extension
Time Model - Example
 C1 running at twice the execution rate of C2

Correct ! Invalid

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Time Extension
Example Use

record MyMessage {int value;}
active thread Publisher() {
 MyMessage event = new MyMessage;
 PubSubConnection.type<MyMessage> ps;
 loc loc0:
 do { ps := PubSubConnection.register();
 PubSubConnection.configureTimeParams(ps,2,1,0); }
 goto loc1;
 loc loc1:
 when (PubSubConnection.canProceed())
 do { event.value := 1;
 PubSubConnection.publish<MyMessage>(ps,event); }
 return; }

Message
publish

Message
definition

Connection
open

Configure time
extension with exec rate

2, and random msg
delay between 1 and 0

Guards control
the components’

interleavings

fun isGreaterThan(MyMessage event)
 returns boolean = event.value > 0;
active thread Subscriber() {
 PubSubConnection.type<MyMessage> ps;
 loc loc0:
 do { ps := PubSubConnection.register();
 PubSubConnection.subscribe<MyMessage>(ps,isGreaterThan);
 PubSubConnection.configureTimeParams(ps,2,1,0); }
 goto loc1;
 loc loc1: // Message receive
 when (PubSubConnection.timedWaitingMessage(ps)==CAN_PROCEED) do {
 PubSubConnection.getNextMessage<MyMessage>(ps, receivedEvent); }
 when (PubSubConnection.timedWaitingMessage(ps)==QUEUE_EMPTY) do {
 // Do something else… }
 return; }

Subscription
definition

Issues a
(matching)

subscription

The component
can proceed to

receive a
message

The component can
proceed, but the queue

is empty

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Time Extension
Implementation
 Time divided in frames

 equivalent to single operations in lowest priority component

 Generate all possible interleavings within a frame
 Take advantage of domain-specific semantics, e.g.,

 with causal order delivery, check message ordering first and then
run the time extension

 not every single value in the message delay
interval generates a different schedule

 do not run the time extension if the component
is already scheduled but the queue is empty

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Case Study
Performing the Verification
 Specify the application model

using the PubSub API
 Specify time settings
 Specify the properties to be checked (LTL)
 Select PubSub guarantees
 Depending on the verification outcome:

 change time settings
 modify the application model
 change the guarantees selected

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Case Study
A Telemedicine Scenario
 Remote monitoring of patients
 Several components involved:

 variable number of patients
 medical lab
 flying squad
 hospital

 Interactions expressed as PubSub operations:
 sensors monitor a patient’s status, and report to the medical lab
 under moderate danger, the lab sends back corrective actions
 in emergency, the lab informs the flying squad and notifies the hospital

about an incoming patient
 on the way to the hospital, the flying squad sends periodic reports to the

hospital until the patient is handed over

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Case Study
Requirements and Verification Outcome
 R1: under moderate danger, any corrective action must be

communicated within T1 time units
 fails due to dropped messages when

 finite queues are assumed
 the medical lab is not assigned an execution rate sufficient to handle

multiple reports from different patients

 R2: in emergency, the hospital must receive request for
hospitalization within T2 time units
 fails for the same reason as above when the lab sends notifications to the

hospital

 R3: when a patient arrives, the hospital must have received
the corresponding request for hospitalization
 requires causal ordering in general
 verified also with different delivery orderings and constant message delays

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Case Study
Performance
 10 or 20 patients each publishing 10 messages
 Performances not affected by different combinations of PubSub

guarantees

≈35 min

≈30 min

≈26 min

≈22 min

≈20 min

≈16 min

Time

289124

232123

209123

113213

123122

70234

States

591.1R3 - 20 patients

498.1R3 - 10 patients

502.75R2 - 20 patients

412.21R2 - 10 patients

312.31R1 - 20 patients

278.38R1 - 10 patients

MemoryRequirement

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Verifying the Time Extension
Problem and Approach
 Imperative to substantiate the correctness of the results obtained with our

extension(s)
 Formal verification of our implementation
 Use Bandera, in turn based on Bogor !!

 Unfortunately Bogor and PubSub extension as input to Bandera generate
intractable models, however…
 the time extension alters the state space exploration, not the single states
 we only need to check the values returned by the guards in all possible cases

 Manual slicing of Bogor to minimize the code input to Bandera
 no Bogor parsers
 no extension points
 no reflection
 …

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Verifying the Time Extension
Generating all Possible Interleavings
 Only 2 components and 4 scenarios needed

 Discovered a bug in timedWaitingMessage due to uninitialized boolean
variable !!

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Conclusion and Future Work

 Embed domain specific mechanisms within a
model checker

 Offer this functionality as primitive constructs of
the modeling language

 Time adds the missing tile

 Better assessment through several cases studies
 Extend the formal verification to the whole

PubSub extension

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Bogor
An Extensible Model Checker
 Bandera Intermediate Language (BIR) as input

 provides basic constructs similar to, e.g., Promela
 function pointers, generic types, and dynamic threads

 Example: adding a non-deterministic choice requires
 adding a new construct to BIR
 implementing the required semantics

extension GenericRandom for polimi.genericRandom.GenericRandomModule {
 typedef type<‘a>;
 expedef GenericRandom.type<‘a>
 choose (GenericRandom.type<‘a>, GenericRandom.type<‘a>);}

Indicates the Java
class implementing

the choose semantics

BIR

package polimi.genericRandom;
public class GenericRandom implements IModule {
 public IMessageStore connect (IBogorConfiguration bc) {
 // Retrieve Bogor hooks }
 public IValue choose (IExtArguments args) {
 // Implements the semantics for choose… }}

Java

E.g., a reference to
the state generation
component in use

Generates two “next states“ to be explored
corresponding to the two possible choices

