
Playing with Time
in Publish-Subscribe using a
Domain-Specific Model Checker

presented by Luca Mottola (mottola@elet.polimi.it)
joint work with Luciano Baresi, Giorgio Gerosa, and Carlo Ghezzi

Dipartimento di Elettronica ed Informazione
Politecnico di Milano, Italy

6th Int. Workshop on
Specification and Verification of Component-Based Systems (SAVCBS07)

Dubrovnik, (Croatia) - September 3rd, 2007

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Publish-Subscribe Architectures
PubSub Paradigm
 Asynchronous communication

mediated by a dispatcher
 anonymous and multipoint
 implicit addressing

(e.g., content-based PubSub)
 Application components

 subscribe to relevant message patterns
 publish messages

 The dispatcher matches published messages against
previously issued subscriptions

 Allows dynamic addition and removal of components
 suited to distributed applications in dynamic environments

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Enterprise
Systems

P2P systems

Sensor
Networks

Publish-Subscribe Architectures
Different Flavors…
 PubSub is a model with many

different implementations
 from enterprise systems…
 …to wireless sensor networks

 Different guarantees provided
 Difficult to verify the application

behavior

None, Tail Drop, Priority DropQueue Drop Policy

……

Absent, Present,
Present w/ ScrunchingMessage Priorities

Absent, PresentRepliable
Messages

Absent, PresentSubscription
Propagation Delay

Absent, PresentReal-time
Guarantees

Precise, ApproximateFiltering

Random, Pair-wise FIFO,
System-wide FIFO,
Causal Order, Total Order

Message Ordering

Absent, PresentMessage Reliability

ChoicesGuarantee

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Domain Specific Model Checker
A Change of Perspective
 Model checking proposed to address the verification issue

 standard tools (e.g., SPIN) used to model both the application and the
PubSub infrastructure

 fine-grained models unfeasible due to state space explosion
 parametric models difficult due to little support for parameterization

A change of perspective:
embed the PubSub communication paradigm within the model-checker

L. Baresi, C. Ghezzi, and L. Mottola. On Accurate Automatic Verification of Publish-Subscribe
Architectures. In Proc. Of the 29th Int. Conf. on Software Engineering (ICSE), 2007.

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Domain-Specific Model Checker
PubSub APIs in Bogor
 Extend the Bogor model checker with a PubSub module
 Additional constructs used in developing BIR models
 PubSub operations are used in BIR to issue subscriptions,

publish messages, …

typealias MessagePriority int (0,9);
enum DropPolicy {TAIL_DROP, PRIORITY_DROP }

extension PubSubConnection for polimi.bogor.bogorps.PubSubModule {
 typedef type<'a>;

 expdef PubSubConnection.type<'a> register<'a>();
 expdef PubSubConnection.type<'a> registerWithDropping<'a>(int, DropPolicy);
 actiondef subscribe<'a>(PubSubConnection.type<'a>, 'a -> boolean);
 actiondef publish<'a>(PubSubConnection.type<'a>, 'a);
 actiondef publishWithPriority<'a>(PubSubConnection.type<'a>, 'a,
 MessagePriority);
 expdef boolean waitingMessage<'a>(PubSubConnection.type<'a>);
 actiondef getNextMessage<'a>(PubSubConnection.type<'a>, lazy 'a); }

PubSub
extension API

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Time Extension
Time Model
 No generic notion of time, rather:

 suited to the dynamics of PubSub
applications

 enabling its interplay with other
PubSub guarantees

 System evolution determined by:
 component execution rate w.r.t. the PubSub dispatcher
 (random) message delays

 Time alters the exploration of the state space, not the individual states

 Inspired by X. Deng, M. B. Dwyer, J. Hatcliff, and G. Jung. Model-
checking middleware-based event-driven real-time embedded
software. In Proc. of the 1st Int. Symposium on Formal Methods for
Components and Objects, 2002

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Time Extension
Time Model - Example
 C1 running at twice the execution rate of C2

Correct ! Invalid

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Time Extension
Example Use

record MyMessage {int value;}
active thread Publisher() {
 MyMessage event = new MyMessage;
 PubSubConnection.type<MyMessage> ps;
 loc loc0:
 do { ps := PubSubConnection.register();
 PubSubConnection.configureTimeParams(ps,2,1,0); }
 goto loc1;
 loc loc1:
 when (PubSubConnection.canProceed())
 do { event.value := 1;
 PubSubConnection.publish<MyMessage>(ps,event); }
 return; }

Message
publish

Message
definition

Connection
open

Configure time
extension with exec rate

2, and random msg
delay between 1 and 0

Guards control
the components’

interleavings

fun isGreaterThan(MyMessage event)
 returns boolean = event.value > 0;
active thread Subscriber() {
 PubSubConnection.type<MyMessage> ps;
 loc loc0:
 do { ps := PubSubConnection.register();
 PubSubConnection.subscribe<MyMessage>(ps,isGreaterThan);
 PubSubConnection.configureTimeParams(ps,2,1,0); }
 goto loc1;
 loc loc1: // Message receive
 when (PubSubConnection.timedWaitingMessage(ps)==CAN_PROCEED) do {
 PubSubConnection.getNextMessage<MyMessage>(ps, receivedEvent); }
 when (PubSubConnection.timedWaitingMessage(ps)==QUEUE_EMPTY) do {
 // Do something else… }
 return; }

Subscription
definition

Issues a
(matching)

subscription

The component
can proceed to

receive a
message

The component can
proceed, but the queue

is empty

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Time Extension
Implementation
 Time divided in frames

 equivalent to single operations in lowest priority component

 Generate all possible interleavings within a frame
 Take advantage of domain-specific semantics, e.g.,

 with causal order delivery, check message ordering first and then
run the time extension

 not every single value in the message delay
interval generates a different schedule

 do not run the time extension if the component
is already scheduled but the queue is empty

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Case Study
Performing the Verification
 Specify the application model

using the PubSub API
 Specify time settings
 Specify the properties to be checked (LTL)
 Select PubSub guarantees
 Depending on the verification outcome:

 change time settings
 modify the application model
 change the guarantees selected

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Case Study
A Telemedicine Scenario
 Remote monitoring of patients
 Several components involved:

 variable number of patients
 medical lab
 flying squad
 hospital

 Interactions expressed as PubSub operations:
 sensors monitor a patient’s status, and report to the medical lab
 under moderate danger, the lab sends back corrective actions
 in emergency, the lab informs the flying squad and notifies the hospital

about an incoming patient
 on the way to the hospital, the flying squad sends periodic reports to the

hospital until the patient is handed over

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Case Study
Requirements and Verification Outcome
 R1: under moderate danger, any corrective action must be

communicated within T1 time units
 fails due to dropped messages when

 finite queues are assumed
 the medical lab is not assigned an execution rate sufficient to handle

multiple reports from different patients

 R2: in emergency, the hospital must receive request for
hospitalization within T2 time units
 fails for the same reason as above when the lab sends notifications to the

hospital

 R3: when a patient arrives, the hospital must have received
the corresponding request for hospitalization
 requires causal ordering in general
 verified also with different delivery orderings and constant message delays

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Case Study
Performance
 10 or 20 patients each publishing 10 messages
 Performances not affected by different combinations of PubSub

guarantees

≈35 min

≈30 min

≈26 min

≈22 min

≈20 min

≈16 min

Time

289124

232123

209123

113213

123122

70234

States

591.1R3 - 20 patients

498.1R3 - 10 patients

502.75R2 - 20 patients

412.21R2 - 10 patients

312.31R1 - 20 patients

278.38R1 - 10 patients

MemoryRequirement

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Verifying the Time Extension
Problem and Approach
 Imperative to substantiate the correctness of the results obtained with our

extension(s)
 Formal verification of our implementation
 Use Bandera, in turn based on Bogor !!

 Unfortunately Bogor and PubSub extension as input to Bandera generate
intractable models, however…
 the time extension alters the state space exploration, not the single states
 we only need to check the values returned by the guards in all possible cases

 Manual slicing of Bogor to minimize the code input to Bandera
 no Bogor parsers
 no extension points
 no reflection
 …

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Verifying the Time Extension
Generating all Possible Interleavings
 Only 2 components and 4 scenarios needed

 Discovered a bug in timedWaitingMessage due to uninitialized boolean
variable !!

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Conclusion and Future Work

 Embed domain specific mechanisms within a
model checker

 Offer this functionality as primitive constructs of
the modeling language

 Time adds the missing tile

 Better assessment through several cases studies
 Extend the formal verification to the whole

PubSub extension

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

September 3rd, 2007
Luca Mottola

Playing with Time in Publish-Subscribe

Bogor
An Extensible Model Checker
 Bandera Intermediate Language (BIR) as input

 provides basic constructs similar to, e.g., Promela
 function pointers, generic types, and dynamic threads

 Example: adding a non-deterministic choice requires
 adding a new construct to BIR
 implementing the required semantics

extension GenericRandom for polimi.genericRandom.GenericRandomModule {
 typedef type<‘a>;
 expedef GenericRandom.type<‘a>
 choose (GenericRandom.type<‘a>, GenericRandom.type<‘a>);}

Indicates the Java
class implementing

the choose semantics

BIR

package polimi.genericRandom;
public class GenericRandom implements IModule {
 public IMessageStore connect (IBogorConfiguration bc) {
 // Retrieve Bogor hooks }
 public IValue choose (IExtArguments args) {
 // Implements the semantics for choose… }}

Java

E.g., a reference to
the state generation
component in use

Generates two “next states“ to be explored
corresponding to the two possible choices

