Playing with Time
in Publish-Subscribe using a
Domain-Specific Model Checker

presented by Luca Mottola (mottola@elet.polimi.it)
joint work with Luciano Baresi, Giorgio Gerosa, and Carlo Ghezzi

Dipartimento di Elettronica ed Informazione
Politecnico di Milano, Italy

6th Int. Workshop on
Specification and Verification of Component-Based Systems (SAVCBSO07)
Dubrovnik, (Croatia) - September 3rd, 2007

Publish-Subscribe Architectures

PubSub Paradygm -
Application components
Asynchronous communication g g g
mediated by a dispatcher 1% 1% Fit
o anonymous and multipoint D f =y
o implicit addressing =
(e.g., content-based PubSub) < Disﬁher <

Application components
o Subscribe to relevant message patterns
o publish messages

The dispatcher matches published messages against
previously issued subscriptions

Allows dynamic addition and removal of components
o suited to distributed applications in dynamic environments

Luca Mottola
September 3rd, 2007 Playing with Time in Publish-Subscribe

Publish-Subscribe Architectures

Different Flavors. ..

PubSub is a model with many
different implementations

o from enterprise systems...
0 ...to wireless sensor networks
Different guarantees provided

Difficult to verify the application
behavior

Enterprise
Systems

<<interfaces:s
PublishSubscribe
+ subscribe (Subscription)
+ publish (Message)
+ unsubscribe (Subscription)
L i A

~
-

Guarantee

Choices

Message Reliability

Absent, Present

Message Ordering

Random, Pair-wise FIFO,
System-wide FIFO,
Causal Order, Total Order

Filtering Precise, Approximate
Real-time Absent, Present
Guarantees

Subscrlpt_lon Absent, Present
Propagation Delay

Repliable Absent, Present
Messages

Message Priorities

Absent, Present,
Present w/ Scrunching

Queue Drop Policy

None, Tail Drop, Priority Drop

JMS-compliant HEIDS

DSWare

+ subscribe (Subscription)
+ publish (Message)
+ unsubscribe (Subscription)

+ subscribe (Subscription)
+ publish (Message)
+ unsubscribe (Subscription)

+ subscribe (Subscription)
+ publish (Message)
+ unsubscribe (Subscription)

September 3rd, 2007 P2P systems

Sensor
Networks

Tuca Mottola

Playing with Time in Publish-Subscribe

Domain Specific Model Checker
A Change of Perspective

Model checking proposed to address the verification issue

o standard tools (e.g., SPIN) used to model both the application and the
PubSub infrastructure

o fine-grained models unfeasible due to state space explosion

o parametric models difficult due to little support for parameterization

A change of perspective:
embed the PubSub communication paradigm within the model-checker

L. Baresi, C. Ghezzi, and L. Mottola. On Accurate Automatic Verification of Publish-Subscribe
Architectures. In Proc. Of the 29th Int. Conf. on Software Engineering (ICSE), 2007.

Input Models inputModels _______________________

Application | i Application Components |
Components |t : -
' { Model Checker Input Language + PubSub API }“;

i \lll; !

! . . PubSub |

] R [Checking Engine [Infrastructure] '

Model Checker T Model Checker

Luca Mottola
September 3rd, 2007 Playing with Time in Publish-Subscribe

Domain-Specific Model Checker
PubSub APls in Bogor

Extend the Bogor model checker with a PubSub module
Additional constructs used in developing BIR models

PubSub operations are used in BIR to issue subscriptions,
publish messages, ...

PubSub
extension API

typealias MessagePriority int (0,9);
enum DropPolicy {TAIL DROP, PRIORITY DROP }

extension PubSubConnection for polimi.bogor.bogorps.PubSubModule {
typedef type<'a>;

expdef PubSubConnection.type<'a> register<'a> () ;

expdef PubSubConnection.type<'a> registerWithDropping<'a> (int, DropPolicy) ;
actiondef subscribe<'a> (PubSubConnection.type<'a>, 'a -> boolean);
actiondef publish<'a> (PubSubConnection.type<'a>, 'a);

actiondef publishWithPriority<'a> (PubSubConnection.type<'a>, 'a,

MessagePriority) ;
expdef boolean waitingMessage<'a> (PubSubConnection.type<'a>);
actiondef getNextMessage<'a> (PubSubConnection.type<'a>, lazy 'a); }

Luca Mottola
September 3rd, 2007 Playing with Time in Publish-Subscribe

Time Extension
Time Model/ @ N

plication components

No generic notion of time, rather: 3 3 3
o suited to the dynamics of PubSub 2 2 2
applications e A 252, s
o enabling its interplay with other o yeimeenbe | 2y
PubSub guarantees Y=y = V=
Dispatcher

System evolution determined by:

o component execution rate w.r.t. the PubSub dispatcher

o (random) message delays

Time alters the exploration of the state space, not the individual states

Inspired by X. Deng, M. B. Dwyer, J. Hatcliff, and G. Jung. Model-
checking middleware-based event-driven real-time embedded
software. In Proc. of the 1st Int. Symposium on Formal Methods for
Components and Objects, 2002

Luca Mottola
September 3rd, 2007 Playing with Time in Publish-Subscribe

Time Extension
T7me Model - Example

C1 running at twice the execution rate of C2

Publishc:z
(msg4)
_________________ o c2

o o

September 3rd, 2007

Component 1 Component 2

ysygnd | ysygnd |—

Component 1 Component 2
| |
= E =
= =
;] 0 - - --- =4
& &
=3 =3

ysiignd

ysignd

T

Luca Mottola
Playing with Time in Publish-Subscribe

‘ Time Extension
Example Use

record MyMessage {int wvalue;}

active thread Publisher () {
MyMessage event = new MyMessage;

PubSubConnection. type<MyMessage> ps;

locO:

ps := PubSubConnection. reglster

IDEEN NQETN NaAF NN NN | o onoanfiamivraTimaDarames (o D 1

fun isGreaterThan (MyMessage event)
returns boolean = event.value > 0;
active thread Subscriber () {

PubSubConnection. type<MyMessage> ps;

loc locO:

do { ps := PubSubConnection.register();
PubSubConnection.subscribe<MyMessage> (ps, isGreaterThan)
PubSubConnection.configureTimeParams (ps,2,1,0); }

goto locl;

loc locl: // Message receive

when (PubSubConnection.timedWaitingMessage (ps)==CAN_PROCEED)

PubSubConnection.getNextMessage<MyMessage> (ps, receivedEvent); }

when (PubSubConnection.timedWaitingMessage (ps)==QUEUE EMPTY)

// Do something else.. }
return; }

do {

do {

September 3rd, 2007

Luca Mottola

Playing with Time in Publish-Subscribe

Time Extension

Implementation

Time divided in frames
o equivalent to single operations in lowest priority component

Generate all possible interleavings within a frame

Take advantage of domain-specific semantics, e.g.,

o with causal order delivery, check message ordering first and then
run the time extension

o not every single value in the message delay
interval generates a different schedule

o do not run the time extension if the component
is already scheduled but the queue is empty

Luca Mottola
September 3rd, 2007 Playing with Time in Publish-Subscribe

Case Study
Performing the |V erification

Specify the application model
using the PubSub API

Specify time settings
Specify the properties to be checked (LTL)

Select PubSub guarantees

Depending on the verification outcome: Specity
o change time settings
o modify the application model

o change the guarantees selected

&

\

e

I Application

Infrastructure

[Publish-Subscribe |

September 3rd, 2007

Application

&
J

Publish-Subscribe
Infrastructure

.

Define
Application |= Yes Modify app?
Model
Specify Time No
Settings
9 =" Yes Modify
\l(exec rates / msg
delays?
Properties No
Select PubSub Modify comm
Guarantees [< Yes infrastructure?
v X
Run
Verification

!

@é Yes \feriél:itlnn No ——==| Design Choice

Tuca Mottola

Playing with Time in Publish-Subscribe

Case Study

A Telemedicine Scenario

Remote monitoring of patients

Several components involved:
o variable number of patients

o medical lab

o flying squad

o hospital

Interactions expressed as PubSub operations:

0 sensors monitor a patient’s status, and report to the medical lab
o under moderate danger, the lab sends back corrective actions

o in emergency, the lab informs the flying squad and notifies the hospital
about an incoming patient

o on the way to the hospital, the flying squad sends periodic reports to the
hospital until the patient is handed over

Luca Mottola
September 3rd, 2007 Playing with Time in Publish-Subscribe

Case Study

Reguirements and 1V erification Outcome

R1: under moderate danger, any corrective action must be
communicated within T1 time units

o fails due to dropped messages when
finite queues are assumed

the medical lab is not assigned an execution rate sufficient to handle
multiple reports from different patients

R2: in emergency, the hospital must receive request for

hospitalization within T2 time units

o fails for the same reason as above when the lab sends naotifications to the
hospital

R3: when a patient arrives, the hospital must have received

the corresponding request for hospitalization

0 requires causal ordering in general

o verified also with different delivery orderings and constant message delays

Luca Mottola
September 3rd, 2007 Playing with Time in Publish-Subscribe

Case Study

Performance

10 or 20 patients each publishing 10 messages

Performances not affected by different combinations of PubSub
guarantees

Requirement Memory States Time
R1 - 10 patients 278.38 70234 =16 min
R1 - 20 patients 312.31 123122 ~20 min
R2 - 10 patients 412.21 113213 ~22 min
R2 - 20 patients 502.75 209123 =26 min
R3 - 10 patients 498.1 232123 ~30 min
R3 - 20 patients 591.1 289124 =35 min

Luca Mottola
September 3rd, 2007 Playing with Time in Publish-Subscribe

Verifying the Time Extension
Problem and Approach

Imperative to substantiate the correctness of the results obtained with our
extension(s)

Formal verification of our implementation

Use Bandera, in turn based on Bogor ! (22

Unfortunately Bogor and PubSub extension as input to Bandera generate
intractable models, however... -

o the time extension alters the state space exploration, not the single states

o we only need to check the values returned by the guards in all possible cases
Manual slicing of Bogor to minimize the code input to Bandera

o no Bogor parsers

0 no extension points

o no reflection
a

Luca Mottola
September 3rd, 2007 Playing with Time in Publish-Subscribe

Verifying the Time Extension
Generating all Possible Interleavings

Only 2 components and 4 scenarios needed

Component 1 Component 2 Component 1 Component 2
=2 =
& 3 &
5 E 2 &
> = - = s
= & -
S T 5 2| |5 F
3. = =
° 2 g =
B B I S o __canProceed
5 ~ returns TRUE
o timedWaitingMessage
s I returns CAN_PROCEED | |¥
e getNextMessage
u’ -
- = delivers msgl
E 0
o =
=
=
canProceed | | | | canProceed
returns TRUE I I returns TRUE + +

Discovered a bug in timedWaitingMessage due to uninitialized boolean
variable !!

Luca Mottola
September 3rd, 2007 Playing with Time in Publish-Subscribe

Conclusion and Future Work

Embed domain specific mechanisms within a
model checker

Offer this functionality as primitive constructs of
the modeling language

Time adds the missing tile

Better assessment through several cases studies

Extend the formal verification to the whole
PubSub extension

Luca Mottola
September 3rd, 2007 Playing with Time in Publish-Subscribe

Luca Mottola
September 3rd, 2007 Playing with Time in Publish-Subscribe

Bogor
An Extensible Model Checker

Bandera Intermediate Language (BIR) as input

0 provides basic constructs similar to, e.g., Promela

o function pointers, generic types, and dynamic threads

Example: adding a non-deterministic choice requires (* Indicates the Java
o adding a new construct to BIR thcéajl‘:' O'g;pe'ir:ﬁ::;:gs
o implementing the required semantics

extension GenericRandom for polimi.genericRandom.Generigg;ndomModule {
typedef type<‘a>; w
expedef GenericRandom.type<‘a> Py,
choose (GenericRandom.type<‘'a>, GenericRandom.type<‘a>);}

+ @g a reference to
package polimi.genericRandom; the state generation
public class GenericRandom implements IModule { component in use

public IMessageStore connect (IBogorConfiguration bc) { L_
// Retrieve Bogor hooks } 2

public IValue choose (IExtArguments args) { o
// Implements the semantics for choose.. }}

Tuca Mottola

Generates two “next states“ to be explored L : .
Playing with Time in Publish-Subscribe

corresponding to the two possible choices

