
A Concept for Dynamic Wiring of Components

Correctness in Dynamic Adaptive Systems

Dirk Niebuhr
Clausthal University of Technology

P.O. Box 1253
38670 Clausthal-Zellerfeld, Germany
dirk.niebuhr@tu-clausthal.de

Andreas Rausch
Clausthal University of Technology

P.O. Box 1253
38670 Clausthal-Zellerfeld, Germany

andreas.rausch@tu-clausthal.de

ABSTRACT
Component-based Systems in our days tend to be more and
more dynamic. Due to the increased mobility of devices
hosting components, components have to be attached or de-
tached to respectively from a system at runtime. This dy-
namic adaptation of the system configuration imposes sev-
eral correctness issues. In general it is not possible to de-
termine a correct system configuration without wiring and
executing the system in advance. We will discuss approaches
how to improve this situation. Finally we will focus on our
favorite approach based on runtime testing.

Categories and Subject Descriptors
D.2.4 [Software]: Software Engineering—Soft-
ware/Program Verification; D.2.11 [Software]: Software
Engineering—Software Architectures; F.3.1 [Theory of
Computation]: Logics and Meanings of Programs—
Specifying and Verifying and Reasoning about Programs

General Terms
Design, Reliability, Verification

Keywords
Dynamic Adaptive Systems, Reconfiguration, Runtime
Testing, Correctness, Component, Adaptation

1. INTRODUCTION
To produce systems out of IT components component-

based development approaches have been developed and suc-
cessfully applied over the past years changing the predom-
inant development paradigm: Systems are no longer rede-
veloped from scratch, but composed of existing components
[4, 1]. Nowadays, these IT components are being more and
more used within an organically grown, heterogeneous, and
dynamic IT environment. Users expect these IT compo-
nents to collaborate autonomously with each other and pro-
vide a real added value to the user. On the other hand,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Specification and Verification
of Component-Based Systems (SAVCBS 2007), September 3-4,
2007, Cavtat near Dubrovnik, Croatia.
Copyright 2007 ACM ISBN 978-1-59593-721-6/07/0009 ...$5.00.

we depend more and more on these organically grown IT
systems. Hence their correctness has to be guaranteed even
though these systems are never developed and tested in ad-
vance. These dependable adaptive IT systems need to have
the ability to dynamically attach and detach dynamic adap-
tive IT components during runtime. Moreover they need to
detect and avoid possible resulting incorrect system config-
urations during runtime.

In this paper we present our approach of achieving run-
time dependability of these systems by runtime testing. We
will sketch the proposed runtime testing approach illustrated
by a small example in Section 3.

2. DYNAMIC WIRING OF COMPONENTS
Imagine a very simple system containing three compo-

nents ComponentA, ComponentB, and ComponentC. Com-
ponentA requires a component providing InterfaceA whereas
ComponentB respectively ComponentC provide InterfaceB
respectively InterfaceC. Moreover each of the interfaces
comes along with it’s own specification (tA, tB , tC) of
required respectively assured properties. This component
landscape is depicted in Figure 1.

Figure 1: The Artifacts of the Example System

During configuration we have to decide at runtime,
whether holds(prov, req) is valid for a specific configuration
in general, which is depicted in number 3 of Figure 1. This
predicate is valid, if the specification of the provided inter-
face implies the specification of the required interface which
means proving the refinement relation or showing the equiv-
alence of two Turing machines. This requires the evaluation
of implications using second-order logic which refers to the



decision problem. This has been proven to be not decidable
by Turing and Church in 1936 [5, 2]. Therefore proving the
correctness of a component wiring at runtime in general is
not possible. There are several approaches to provide (lim-
ited) statements regarding the correctness of the wiring:

1. Using a specification language like regular expressions
or finite state machines, which is more restricted and not
as powerful in order to get a calculable holds-predicate. In
this case you will have to answer the question, whether this
specification language is still capable of specifying the de-
sired dynamic adaptive systems respectively you get a less
valuable proof in case of an incomplete specification.

2. Checking the correct wiring of components by bisimu-
lation [3]. In this case you would need to compare the states
of two simulated system executions for every system execu-
tion step: one system is containing the requiring component
and performs changes to its system state as specified in the
required interface specification, the other one is containing
the providing component and performs changes to its sys-
tem state as specified in the provided interface specification.
In this case you need to argue, whether the performance of
a system using this approach would still be sufficient due to
the massive simulation. In addition you only get a proof of
correctness for the following execution step.

3. Performing runtime testing during the reconfigura-
tion process: whenever two components should be wired to-
gether, test cases are executed within a testbed which check,
whether they fit together. In this case you need to show,
that the test cases executed during reconfiguration are good
enough to expose mismatches of components. Moreover you
have to argue, that the testbed is a sufficient representation
of the real system environment.

3. RUNTIME TESTING APPROACH
Since we don’t want to restrict the specification language

and want to retain a good system performance, our approach
is using runtime testing in a testbed during the reconfigura-
tion of a system. This reconfiguration may occur, whenever
a component appears within a system or a component disap-
pears or fails. In general we use a three-step process. First
of all we derive an ordered set of valid system configurations
from the set of available components. Then we wire these
system configurations within a testbed and check whether
all test cases pass. Finally, we transfer this configuration to
the production system. We will describe these steps shortly
based on an example system.

As you can see, InterfaceA and InterfaceB respectively
InterfaceA and InterfaceC match syntactically, since they
provide syntactically identical methods1. This is checked by
the syntax match depicted in number 1 of Figure 1. Based
on this, two valid system configurations are identified: C1

wiring ComponentA and ComponentB and C2 wiring Com-
ponentA and ComponentC. The subsets of involved compo-
nents in these configurations are depicted in number 2 of
Figure 1 and are ordered in a way preferring C1.

We need to test each of these configurations in a testbed.
Therefore we duplicate the components, wire the duplicates
together and execute test cases. These test cases can be
brought by the component user (here: ComponentA) since
he knows the usage scenarios for the used interface (here: In-

1If components should be wired though their interface meth-
ods are not syntactically equal, one could use ontologies.

terfaceA) best. They could be provided by the used compo-
nent as well. A third option would be to generate test cases
from the interface specifications (here: tA, tB , tC) of one (or
both) of the components. For simplicity we assume, that
ComponentA provides a test case containing three method
calls: square(0) : 0, square(3) : 9, and square(−3) : 9.
Within the testbed this test case is executed.

First of all, a duplicate of ComponentB is wired together
with a duplicate of ComponentA. When executing the sec-
ond method call, the test case fails, since square(3) = 6
which contradicts the expected result of 9. Therefore this
configuration is marked as invalid. When executing the test
cases on the second system configuration, which wires a du-
plicate of ComponentA and a duplicate of ComponentC, all
test cases pass and therefore this configuration is established
in the following. If we want to assure, that the used com-
ponent behaves as required during execution, we can en-
sure this as well by additionally checking this after each
method call during the system execution in the following.
This would cause a large overhead during system execution
and therefore may not be applicable for all types of systems.
This would correspond to the bisimulation approach.

4. CONCLUSIONS AND FURTHER WORK
Reconfiguration, which means changing the component

wiring, is necessary for dynamic adaptive systems since com-
ponents may enter or leave a system at runtime. However
proving the correctness of a component wiring at runtime is
not possible in general. Our approach is based on runtime
testing component duplicates in a testbed during reconfigu-
ration. This enables us to recognize semantical mismatches
of provided and required interfaces at runtime. Therefore we
can mark system configurations, wiring these incompatible
interfaces, as invalid and chose a valid configuration instead.
However we did not take care about cyclic dependencies of
components, where an interface provided by ComponentA is
required by ComponentB and vice versa. Moreover we need
to investigate test case generation, to enable component de-
velopers to provide a single specification of their components
and assure good test cases. Moreover we need to check,
whether it is sufficient, to execute only test cases involving
newly introduced components during reconfiguration.

5. REFERENCES
[1] K. Bergner, A. Rausch, M. Sihling, and A. Vilbig.

Putting the parts together – concepts, description
techniques, and development process for
componentware. In HICSS 33, Proceedings of the
Thirty-Third Annual Hawaii International Conference
on System Sciences. IEEE Computer Society, Jan 2000.

[2] A. Church. An unsolvable problem of elementary
number theory. American Journal of Mathematics,
58:345–363, 1936.

[3] E. Estévez and P. R. Fillottrani. Bisimulation for
component-based development. Journal of Computer
Science & Technology, 1(6), May 2002.

[4] C. Szyperski. Component Software. Addison Wesley
Publishing Company, 2002.

[5] A. M. Turing. On computable numbers, with an
application to the entscheidungsproblem. In
Proceedings of the London Mathematical Society, pages
230–265, 1936.


