
Compositional Failure-based Semantic Equivalences for
Reo Specifications

Mohammad Izadi
Department of Computer Engineering

sharif University of Technology
Tehran, Iran

izadi@ce.sharif.edu

Ali Movaghar
Department of Computer Engineering

sharif University of Technology
Tehran, Iran

movaghar@sharif.edu

ABSTRACT
Reo is a coordination language for modeling component con-
nectors of component-based computing systems. We show
that the failure-based equivalences NDFD and CFFD are
congruences with respect to composition operators of Reo.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Languages; F.4.3 [Mathematical Logic and For-
mal Languages]: Formal Languages—Verification; D.3.1
[Programming Languages]: Formal Definitions and The-
ory—Semantics

General Terms
Languages, Semantics, Verification.

Keywords
Reo Specification Language, Constraint Automata, Failure-
based Equivalences, Coordination, Component-based Sys-
tems, Semantics.

1. EXTENDED ABSTRACT
The concept of component based systems, especially com-

ponent based software, is a philosophy or way of thinking
to deal with the complexity in designing large scale com-
puting systems. One of the main goals of this approach is
to compose reusable components by some glue codes. The
model or the way in which these components are composed
is called coordination model. Sometimes there are some for-
mal or programming languages which are used for specifica-
tion of coordination models. Such languages are called as
coordination languages. Reo, as one of the most recently
proposed coordination languages, is a channel based exoge-
nous coordination language in which complex coordinators
are compositionally built out of simpler ones [1, 2, 3]. By
using Reo specifications, complex component connectors can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2007), September 3-4, 2007, Cavtat
near Dubrovnik, Croatia.
Copyright 2007 ACM ISBN 978-1-59593-721-6/07/0009 ...$5.00.

be organized in a network of channels and build in a com-
positional manner. Reo relies on a very liberal and simple
notion of channels and can model any kind of peer-to-peer
communication. The channels used in Reo networks can be
considered as simple communicating processes and the only
requirements for them are that channels should have two
ends (or I/O interfaces), declared to be sink or source ends,
and a user-defined semantics. At source ends data items
enter the channel by performing corresponding write opera-
tions. Data items are received from a channel at sink ends
by performing corresponding read operations. Reo allows
for an open ended set of channel types with user defined
semantics.

If we want to be able to reason about properties of spec-
ifications or verify their correctness, Reo, as well as any
other process specification languages, should be given ab-
stract semantics. The key question in giving a semantic
model to a specification language is: ”Whenever can we say
that two specifications or two models are equivalent?” Nu-
merous definitions of different equivalence-relations for tran-
sition system based models have been presented in the liter-
ature. Trace equivalence (automata-theoretic equivalence),
weak bisimilarity presented by Milner [9] and failure-based
equivalences (CSP-like equivalences) such as the equivalence
presented by Hoare [7] are examples of these equivalences.

Constraint automaton, as an extension of finite or Büchi
automaton, is a formalism proposed to capture the oper-
ational semantics of Reo [4]. In a constraint automaton,
contrary to finite automata and labeled transition systems,
the label of a transition is not a simple character or action
name. A transition label contains a set of names and a (con-
straint) proposition. The set of names indicates the names
of ports which are participant in doing the transition and
the proposition expresses some constraint about the data of
the ports.

In this presentation, we are interested to investigate failure-
based equivalences for constraint automata as the abstract
semantics of Reo and their congruency with respect to com-
position operators which are useful in composing Reo spec-
ifications. The ultimate goal is to prepare an environment
for compositional model checking of Reo specifications us-
ing equivalence based reduction method. In this method, the
models of components and connectors of a component-based
system are reduced with respect to an equivalence relation
before building the model of the complete system [5, 6]. An
equivalence relation should have two properties in order to
be useful in the equivalence based compositional reduction
method: it should preserve the class of properties to be ver-

ified and also, it should be a congruence with respect to the
syntactic operators which are used for composing of the com-
ponents of the model. By congruence relation we mean that
the replacement of a component of a model by an equivalent
one should always yield a model which is equivalent with the
original one. Fortunately, in the context of compositional
failure based semantic models of process description lan-
guages such as CCS and LOTOS, there are two equivalence
relations, called CFFD and NDFD, which have the preser-
vation property: CFFD-equivalence preserves that fragment
of linear time temporal logic which has no next-time opera-
tor and has an extra operator distinguishing deadlocks [10,
11] and NDFD-equivalence preserves linear time temporal
logic without next-time operator [8]. It was also shown that
CFFD and NDFD are the minimal equivalences preserving
the above mentioned fragments of linear time temporal logic.

Now, we introduce an extended definition of constraint
automaton by which not only the connectors but also the
components can be modeled.

Definition 1. Let N be a set of port names and Data
be a set of data. A data constraint g over names set N and
data set Data is a proposition, which can be constructed by
using the following grammar:
g ::= true | dA = d | g1 ∨ g2 | ¬g d ∈ Data, A ∈ N
We use DC(N, Data) as the set of all data constraints over
names set N and data set Data.
A Constraint automaton over data set Data is a quadruple
C = (Q,Nam, T, q0) where, Q is a finite set of states,
Nam is a finite set of names, such that, τ �∈ Nam,
T ⊆ Q × ((2Nam × DC(Nam, Data)) ∪ {τ}) × Q , and
q0 ∈ Q is the initial state.
For each (p,N, g, q) ∈ T , it is required that, N �= ∅ and
g ∈ DC(N, Data).

The main difference of our definition of constraint automa-
ton and its original definition (defined in [4]) is that in our
definition, τ -transitions are permitted, while in its original
definition it is not. We use τ -transitions because τ can be
used as a symbol for each kind of internal action which is
occurred in an actual system but its real type is not impor-
tant in the modeling process. Thus, by using this kind of
constraint automaton, not only the observational behavior
of connectors, but also all internal and observable behavior
of components can be modeled. Also note that, in principle,
a hiding operator can hide all port-names of a transition. In
such cases, we replace the transition label by τ . Our defini-
tion of Constraint automaton is departed from the original
one by dropping the requirement that all runs have to be
infinite. We also deal with finite runs, which are necessary
to argue about deadlock configurations.

Now, we introduce two new composition operators for con-
straint automata: join (production) of two automata with
respect to their common port names and hiding of a port
name in all transition labels of an automaton.

Definition 2. Let C1 = (Q1, Nam1, T1, q01) and C2 =
(Q2, Nam2, T2, q02) be two Constraint automata. The prod-
uct (join) Constraint automaton of C1 and C2 is:
C1 �� C2 = (Q1 ×Q2, Nam1 ∪Nam2, T, q01 × q02) in which,
1) If (q1, N1, g1, p1) ∈ T1 and (q2, N2, g2, p2) ∈ T2 and
N1 ∩ Nam2 = N2 ∩ Nam1, then,
(< q1, q2 >,N1 ∪ N2, g1 ∧ g2, < p1, p2 >) ∈ T ,
2) If (q, N, g, p) ∈ T1 and N ∩ Nam2 = ∅, then,
(< q, q′ >, N, g, < p, q′ >) ∈ T ,

3) If (q, N, g, p) ∈ T2 and N ∩ Nam1 = ∅, then,
(< q′, q >, N, g,< q′, p >) ∈ T ,
4) If (q, τ, p) ∈ T1 then, (< q, q′ >, τ, < p, q′ >) ∈ T ,
5) If (q, τ, p) ∈ T2 then, (< q′, q >, τ, < q′, p >) ∈ T .
Let C = (Q,Nam, T, q0) be a Constraint automaton and B
be a name, B ∈ Nam. The Constraint automaton resulted
by hiding of B in A is ∃B[C] = (Q,Nam\{B}, T∃B , q0)
where,
(1) If (q, {B}, g, p) ∈ T then, (q, τ, p) ∈ T∃B.
(2) If (q, N, g, p) ∈ T and N\{B} �= ∅ then
(q, N\{B}, ∃B[g], p) ∈ T∃B, where ∃B[g] = ∨d∈Datag[dB/d].
(3) If (q, τ, p) ∈ T then, (q, τ, p) ∈ T∃B.

Now, we can show that failure-based equivalences CFFD
and NDFD are congruence with respect to join and hiding
operators of constraint automata.

Theorem 1. NDFD and CFFD-equivalences are congru-
ences with respect to the product (join) and hiding operators
defined for finite constraint automata.

Based on these congruency results and because of the lin-
ear time temporal logic preservation properties of CFFD and
NDFD equivalences and their minimality properties (proved
in [8]), they will be useful candidates for compositional re-
duction of models in the process of verifying the properties of
component based systems, which their connectors are spec-
ified by Reo.

2. REFERENCES
[1] Arbab F., Reo: A Channel-based Coordination Model

for Component Composition, Math. Struc. in
Computer Science, 14(3), (2004), 329-366.

[2] Arbab F., Abstract Behaiviour Types: A foundation
model for components and their composition, science
of Computer Programming, 55, (2005), 3-52.

[3] Arbab F., Mavadat F., Coordination Through Channel
Composition, Proceedings of Coordination Languages
and Models 2002, LNCS, 2315, Springer-Verlag,
(2002).

[4] Baier C., Sirjani M., Arbab F., Rutten J., Modelling
Component connectors in Reo by Constraint
Automata, Science of Computer Programming, 61,
(2006), 75-113.

[5] Clarke E., Long D., McMillan K., Compositional
Model Checking, Proc. of 4th IEEE Symp. on Logic in
Computer Science, (1989), 353-362.

[6] Graf S., Steffen B., Compositional Minimization of
Finite-State Systems, Proc. of CAV’90, Springer,
(1991), 186-196.

[7] Hoare C.A.R., ”Communicating Sequential Processes”,
Prentice-hall, (1985).

[8] Kaivola R., Valmari, A., The Weakest Semantic
Equivalence Preserving Nexttime-less Linear Temporal
Logic, LNCS 630, Springer-Verlag, (1992), 207-221.

[9] Milner R., ”Communication and Concurrency”,
Prentice-Hall, (1989).

[10] Valmari A., Tienari M., An Improved Failure
Equivalence for Finite State Systems with a Reduction
Algorithm, ”Protocol Specification, Testing and
Verification”, XI, (1991), 3-18.

[11] Valmari A., Tienari M., Compositional Failure Based
Semantic Models for Basic LOTOS, Formal Aspects of
Computing 7, (1995), 440-468.

