Game-Based Safety Checking with Mage

Adam Bakewell
University of Birmingham, UK
a.bakewell@cs.bham.ac.uk

ABSTRACT

Mage is a new experimental model checker based on game
semantics. It adapts several techniques including lazy (on-
the-fly) modelling, symbolic modelling, C.E.G.A.R.. and ap-
proximated counterexample certification to game models. It
demonstrates the potential for truly compositional verifica-
tion of real software.

Categories and Subject Descriptors

D.3.1 [Programming Languages|: Formal Definitions and
Theory—Semantics

General Terms

Verification

Keywords

Software model checking, game models, symbolic automata,
compositional verification, data approximation, refinement

1. GAME-BASED SAFETY CHECKING...

Game Models Intuitively, the game model of a program
can be generated by calling the program with every possible
combination of arguments; and when the program calls on
one of its free identifiers returning every possible result. The
game model is then the set of sequences of values passed in
and out. Game models have the following key advantages.

1. Compositionality The model of a composite program
f(a) is obtained by applying a simple ’compose’ rule
to the models of f and a. Thus components can be
modelled and checked independently.

2. Full abstraction That is, both soundness (presence of
an error-action in the model implies a fault in the pro-
gram) and completeness (all program faults are present
as error-actions in the model).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

Sxth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2007), September 3-4, 2007, Cavtat
near Dubrovnik, Croatia

Copyright 2007 ACM ISBN 978-1-59593-721-6/07/0009 ...$5.00.

Dan R. Ghica
University of Birmingham, UK
d.r.ghica@cs.bham.ac.uk

3. Black-box The game model only reports observable ac-
tions. This inherent abstraction provides the usual
benefits: code privacy, model concision, separate anal-
ysis of components.

Safety Checking In game models, program safety reduces
to event reachability (i.e. the program passing out an error
value or calling an exception). Building an automaton rep-
resentating the model and searching the transition space of
the automaton for error actions implements safety checking.
For simple languages like Idealized Algol (IA) [1], which
have regular language game models, a finite-state automaton
is constructed and a sound and complete safety check by
exhaustive search can be realized, as in the first game-based
model checker which was presented at SAVCBS 2003. The
caveat is that for realistic types (e.g. 32-bit integers) the
models are often too big, despite the black-box property.
More powerful features like recursive types and higher-
order functions need infinite-state automata so state approx-
imation and loss of soundness must be incorporated as usual.

Data Approximation The second games-based model checker,

GameChecker [5] used data approzimation and adapted the
CEGAR (that is, “counterexample-guided approximation re-
finement”) technique [4] to game models. This allows check-
ing to begin with a very small model and gradually increase
the precision of the data types in parts of the program that
generate potential counterexamples. The results [6] show
another success-in-principle: programs with realistic type
signatures can be modelled and checked. But literal inter-
pretation of the game-theoretic approach — build models
from component models and pass the final product to a
checker — makes analysis of large programs impracticable.

2. .WITH MAGE

Mage Our new safety checker, Mage', makes several ad-
vances over the previous state-of-the-art that overcome some
of the problems inherent to compositional black box models.
These ideas, outlined below, give asymptotic improvements
in the complexity of many safety checking problems. These
big performance gains have been won by bending and break-
ing the game approach in various ways.

Lazy Safety Checking Models are big. But this should
not be the barrier in safety checking because the result of
safety checking is a verdict (and perhaps a counterexample);
not a model. Thus, actually building a model then checking

"http://www.cs.bham.ac.uk/~axb/games/mage/.

it is very space inefficient. It is also very time inefficient if
the model contains errors that show up early in the check.
Mage generates parts of the model as they are demanded by
the checker. And it stops as soon as it detects unsafety.

Symbolic Game Models The game models are regular
languages represented as automata. To fit with lazy check-
ing it is much better to implement models in an implicit —
rather than constructed — form: an initial state and the
next-state function suffice and we call this representation a
symbolic model (cf. [2]). Symbolic composition is especially
useful as it only considers parts of the model that are de-
manded by the checker: an integer function f model might
have a different behaviour for each of its 232 arguments but
only those behaviours demanded by the possible values of
the argument a are considered when generating the model
of f(a). Thus symbolic models are still defined composi-
tionally but the checker can use information about the sur-
rounding context to make a significant efficiency gain when
searching the symbolic transitions.

Data Approximation We replaced integers with finite ranges.

This breaks the soundness direction of full abstraction so in
general only produces possible-counterexamples but can be
very effective in eliminating error-free sub programs from
the search and quickly detecting data-independent errors.

Approximated Counterexamples Data approximation
adds behaviours to the model. Therefore counterexamples
must be certified — i.e. is the image, under approximation,
of an error in the unapproximated model. Model checkers
usually analyse counterexamples with a SAT solver. Mage
uses domain-specific knowledge to implement a simpler and
more efficient solution: non-determinism on the path through
the approximated model to the error indicates a possibly-
false counterexample.

CEGAR Finding a possibly-false counterexample causes
Mage to refine the re-check the model. Refinement means
increasing the precision of the data approximations for those
values that led to the counterexample. The symbolic model
is refined simply by modifying the type annotation on af-
fected variables. The model-check-certify-refine loop repeats
until a true counterexample is found or every possibly-false
counterexample is eliminated. Termination is guaranteed
because each refinement makes a model strictly less approx-
imate and ultimately the unapproximated models are finite.

Individuated Refinement It is a disadvantage to force
different uses of the same variable to share the same approx-
imation: approximate values needed at one site to generate
unsafety are then considered at other sites, typically leading
to more false counterexamples and more backtracking in the
search and more refinement iterations than would otherwise
happen. Mage identifies which variable site generated (or
consumed) each value in a possible-counterexample. and re-
fines the approximation used at each site individually.

Grey-box models To support the refinement and certifi-
cation techniques we have to leak some information about
internal actions. For certification this creates a constant
overhead; for refinement the cost can be larger. So our mod-
els are not strictly black-box; merely as black as possible.

stack size Mage GameChecker Blast
2 0.1 10.1 1.6

4 0.1 27.5 3.3

8 0.2 112.6 4.6

16 0.4 780.7 7.8

32 1.2 12,268.1 17.3

64 3.9 over 7 hours 43.7

128 13.9 - 145.3

256 54.8 - space exhausted

Table 1: Stack overflow detection tests.

3. RESULTS

Stack Verification We compare Mage with the earlier CE-
GAR game-based checker GameChecker on the same verifi-
cation problem. We also compare it with the powerful non-
game-based model checker, Blast [7] (translating the prob-
lem from IA into C makes no semantic difference). Blast
is a suitable non-game comparison because it also uses lazy
modelling and refinement techniques and it represents the
state of the art in verification based on predicate abstrac-
tion and it can verify significant applications such as device
drivers. The problem is to discover contexts that lead to
underflows and overflows in a stack of integers where the
stack is represented by a finite array and the stack interface
presents a push and a pop method that call exceptions when
the empty stack is popped or a full stack is pushed.

Overflow Table 1 shows the time taken (on the same ma-
chine, in seconds) for the three tools to detect a context
leading to an overflow for stacks of different sizes. The
Mage times are roughly linear; GameChecker is exponen-
tial because it is dominated by model building; Blast is
also roughly linear but suffers resource problems with larger
stacks. Mage can handle stacks of thousands of elements.

Underflow For the underflow search problem the laziness of
both Mage and Blast allow the counterexample “pop empty”
to be discovered in a fraction of a second for stacks of bil-
lions of elementss. For GameChecker the need to build the
model before checking causes similar (slightly faster) results
to the overflow problem.

Future Prospects Results such as these suggest that the
compositional games approach should be scalable to handle
much larger software projects. Our research agenda is to
extend the framework to a practical language such as C and
then to combine the pure model checking with support from
program analysis.

4. REFERENCES

[1] Abramsky, S., Ghica, D.R., Murawski, A.S., Ong,
C.H.L.: Applying game semantics to compositional
software modeling and verification. In: TACAS.
(2004) 421-435

[2] Ball, T., Rajamani, S.K.: BEBOP: A symbolic model
checker for boolean programs. In: SPIN. (2000)
113-130

[3] Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM
and static driver verifier: Technology transfer of
formal methods inside Microsoft. In: IFM. (2004) 1-20

[4] Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith,
H.: Counterexample-guided abstraction refinement.
In: CAV. (2000) 154-169

[5] Dimovski, A., Ghica, D.R., Lazic, R.:
Data-abstraction refinement: A game semantic
approach. In: SAS. (2005) 102-117

[6] Dimovski, A., Ghica, D.R., Lazic, R.: A
counterexample-guided refinement tool for open
procedural programs. In: SPIN. (2006) 288—292

[7] Henzinger, T.A., Jhala, R., Majumdar, R.: The BLAST
software verification system. In: SPIN. (2005) 25-26

