Effective Verification of Systems
with a Dynamic Number of Components

* ~ * *
Pavlina Varekova , Pavel MoravecJr , Ivana Cernda , Barbora Zimmerova
Faculty of Informatics
Masaryk University
602 00 Brno, Czech Republic
{xvarekol, xmoravec, cerna, zimmerova}@fi.muni.cz

ABSTRACT

In the paper, we present a novel approach to verification
of dynamic component-based systems, the systems that can
have a changing number of components over their life-time.
We focus our attention on systems with a stable part (called
provider) and a number of dynamic components of one type
(called clients) because dynamic systems can be often de-
composed into segments like this. Our method for verifica-
tion of such systems is based on determining a number & of
dynamic components, such that if a system is proved correct
for any number lower than k, it is consequently correct for
an arbitrarily large number of dynamic components. The
paper aims not only in proving the propositions that state
this, it concentrates also on bounding the set of dynamic
systems and verifiable properties in a way, that k is rela-
tively small and thus practically interesting. In addition to
this, we present an algorithm for computing k.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation

General Terms
Component-based systems, software verification

Keywords
Component-based systems, dynamic number of components,
finite-state systems, formal verification

1. INTRODUCTION

The difficulty of formal verification of dynamic component-
based systems, the systems that can have changing number of

*The authors have been supported by the grant No.
1ET400300504.

e author has been partially supporte y the Grant
"The author has b iall d by the G
Agency of Czech Republic grant No. 102/05/H050.

Permission to make digital or hard copies of &l or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

Sizth International Workshop on Specification and Verifica-
tion of Component-Based Systems (SAVCBS 2007), September
3-4, 2007, Cavtat near Dubrovnik, Croatia

Copyright 2007 ACM ISBN 978-1-59593-721-6/07/0009 ...$5.00.

components over their life-time, is one of the most discussed
issues these days in CBSE. It simply follows from the fact
that if the number of components in a dynamic system is not
bounded (it can grow over all bounds), the system model is
infinite in general.

Our approach to the dynamic systems verification is based
on two simple observations. First, the dynamic components’
use to respect a common type, including a common tem-
plate of their behaviour. Second, dynamic systems are often
not infinite by nature. If we interpreted a dynamic system
as a collection of its instances, each with a fixed number
of dynamic components of each type, the instances would
be finite-state, or at least have natural finite-state models.
However their number would be infinite, which is the core
of the problem.

In this paper, we focus on dynamic systems with a stable
part (called provider) and a number of dynamic components
of one type (called clients) because dynamic systems can be
often decomposed into parts with this structure. The crucial
idea of our approach to verification of a set of properties on
such systems can be presented as follows. As the dynamic
components share a common behaviour, there exists a num-
ber k € Ny such that: if the properties hold on the system
with m dynamic components for any m < k, they also hold
on the system with more then k dynamic components. In
the paper, we define such k, prove this statement true for it,
and design an algorithm for computing it.

In particular, the value k for a dynamic system and a set of
properties can be estimated as a sum of two measures. The
first one is a measure of complexity of a dynamic system re-
flecting the maximal number of clients that are regarded by
the provider. The second one is a similar measure on prop-
erties that reflects the minimal number of clients necessary
to exhibit a path violating studied properties. In the pa-
per, we focus on LTL-like properties, and we are interested
only in those properties whose violation involves a limited
number of components.

As an underlying formalism for this work, we use the Compo-
nent-interaction automata language [11]. However the basic
idea of this contribution is very general and the reasoning
presented here is also applicable to other formalisms that

!The components that are dynamically added and removed
at run-time; analogy to instances of a type.

model systems as finite-state LTS or regular-like expressions.

The paper is structured as follows. First, we briefly discuss
related work in Section 2. Then, Section 3 outlines the ba-
sic definitions of the Component-interaction automata lan-
guage, and Section 4 formally defines dynamic systems that
are of our interest. Section 5 designates the set of properties
that are appropriate for verification using our approach, and
it proves several propositions that are crucial for verification
of dynamic systems. Section 6 is dedicated to the algorithm
for finding the value k discussed above, and the text is closed
with a conclusion and discussion of future work in Section 7.

2. RELATED WORK

As far as we are concerned, the idea presented above has not
been elaborated yet. However there are other approaches
that end up with finite models of potentially infinite dy-
namic systems. In [1], the author presents his solution to
creating a finite model of a component that may communi-
cate to arbitrary number of clients. It is assumed that even if
generally the number of dynamic components connected to
the component can be arbitrary, during the assembly phase,
concrete number of the components is known. The author
does not consider dynamic creation and removal of compo-
nents at run-time. Another approach is studied in [10] where
systems are first modelled as infinite-state and then reduced
to finite-state by adjusted verification technique. In [7], the
authors also use the technique of state-space reduction, in
this case for verification of Java programs.

An alternative to state-space reduction is the verification of
infinite-state models. This is discussed for instance in [2].
However these techniques are very time consuming and often
do not guarantee to finish.

3. COMPONENT-INTERACTION
AUTOMATA LANGUAGE

Component-interaction automata [5] are a specification lan-
guage for modelling of component interactions in hierarchi-
cal component-based software systems. They capture each
component as a labelled transition system with structured
labels and a hierarchy of component names. The basic defi-
nitions are briefly reminded in this section. For more details,
see [11].

Definition 3.1. A hierarchy of component names® is a tu-
ple H = (Hi,...,Hpy) of one of the following forms, where
Su denotes the set of component names corresponding to H.
The first case is that Hi, ..., H,, are pairwise different nat-
ural numbers or strings over the Greek alphabet (denoted A
within the text); then Sy = (JI", {H;}. The second case is
that Hi, ..., H,, are hierarchies of component names where
SHys---,SH,, are pairwise disjoint; then Sy = U~ Su,.

A component-interaction automaton (or a CT automaton for
short) is a 5-tuple C = (Q, Act,d, I, H) where @ is a finite set
of states, Act is a finite set of actions, ¥ = ((Sg U {-}) x
Act x (Sg U{=}) \ ({=} x Act x {=}) is a set of labels,
0 CQ x X xQ is a finite set of labelled transitions, I C Q

2 As distinct to the original definition, the component names
do not need to be natural numbers, they can also be strings
over Greek alphabet. This technicality does not influence
any other definitions.

is a nonempty set of initial states, and H is a hierarchy of
component names.

The labels are triplets of a form (—,a,0'),(0,a,—), OT (0,a,0)
and accordingly are of the type input, output, or internal
respectively.

e The input label (—,a,0') represents that the component o
receives the action a as an input.

e The output label (o,a,—) represents that the component o
sends the action a as an output.

e The internal label (0,a,0’') represents that the component
o sends the action a as an output and synchronously the
component o' receives the action a as an input.

Examples of CI automata and their hierarchies of component
names are in Figure 2 and Figure 4.

Definition 3.2. A path of a CI automaton C = (Q, Act, 4,1, H)

is an alternating sequence of states and labels given by ¢
that is either infinite, or is finite in case that it ends with
a deadlock state. Path(C) is the set of all paths of the CI
automaton C, Path'™"(C) is its subset containing all paths
starting in an initial state and Path(C) is the set of all
infinite paths from Path™"(C).

If 7 = qo,lo,q1,l1,... is a (finite or infinite) path of the CI
automaton C, then

e L(m,1) is the i-th label of 7 (starting from ¢ = 0) if there
is any; here L(m,i) =I5,

e 7(i) is the i-th state of 7 if it exists; here 7 (i) = ¢; and

e 7' is the i-th suffix of m; here ©° = ¢4, 1;,

Notation. For a given CI automaton C we denote Lc the set
of all labels reachable from an initial state in C, Lint,c the set
of all internal labels reachable in C.

Definition 3.3. We say that a set of component-interaction
automata {(Qi, Act;, §i, Ii, H;) }icz is composable if Z C N
is finite and (H;)iez is a hierarchy of component names.

Let § = {(Qy, Acti, 0i, I;, H;) }iez,zcn be a finite composable
set of component-interaction automata. Then the complete
transition space for S, written Ag, is a set of transitions
among product states from IT;cz@; such that each transition
reflects that either one of the automata from S follows its
original transition and the others wait, or two automata syn-
chronise on complementary labels (o,a,—) and (—,a,0"), where
0,0 € NUA, and it forms a new label (0,a,0’). For precise
definition see the appendix.

Let & = {(Qi, Act;, d:,I;, Hi) }icz be a composable set of
CI automata and F D |J;cz Lint,c; be a set of (feasible)
labels. Then ®7 is a composition operator with respect to
feasible labels which for the set S determines the CI automa-
ton 7S = (HieIQi, UiezActi, 6, ez, (Hi)iel) such that
d={(¢,2,q) € As |z € F}.

We say that the automaton ®” {C;}iez is defined iff {C;}ict
is a composable set of CI automata and F 2 (J;c1 Lint.c;-

Definition 3.4. Let £ be a set of labels, S a set of com-
ponent names. Then Comm(L,S) is a set of the labels £
together with the internal labels that follow from £ after
communication with components whose names are in the
set S.

C'omm([,,S) =L U {(o,a,o’) | (0,a,—) € L A 0, € S} U
{(sa0) | (ma0) €L A 0 € S}

Example 3.1. For L = {(—,actl,a),(B,actg,—),(a,actg,ﬁ)} holds:
Comm([, {1,2}) :E U {(l,actl,a),(ﬁ,actz,l),(Z,actl,a),(ﬁ,actQ,Z)}.

3.1 Thelogic for specifying properties

In formal verification techniques, like model checking [6], the
properties for verification are specified in temporal logics. In
our approach, we use the logic CI-LTL [12]. CL-LTL is an
extension of the action-based LTL [9], which is in addition
able to express that a given action is enabled in a state of a
path (one-step branching).

Definition 3.5. Let £ be a set of labels of CI automata,
then CI-LTL formulas over £ are defined inductively:

1) If I € £, then P(I) and £(I) are formulas.

2) If ¢ and ¢ are formulas, then ¢ A ¢, = ¢, X ¢ and ¢ U ¢
are formulas.

3) Every formula can be obtained by a finite number of ap-
plications of previous two steps.

Let C = (Q, Act,0,1,H) be a CI automaton, then CI-LTL
formulas are interpreted over the paths m € Pathfﬁ}t(C)

where the satisfaction relation |= is defined inductively:

T £() — JgeQ:m(0)Sq

m = P() = L(m,0)=1
TEPAY <~ rlEpandnr vy
TEo = mlEe

TEXy = ke

TEeUY = JjeNy : = and

VEeNy,k<j:n"[=¢

Other operators can be defined as shortcuts:
(e ADY), e P =a(pAny),
g Y=~ F = @Y.

eV =
F ¢ = true U o,

Notation. Let ¢ be a CI-LTL formula then L, is a set of
labels that occur in the formula.

4. DYNAMIC SYSTEM MODEL

To simplify the explication of our approach, we narrow our
attention to the dynamic systems consisting of a number of
dynamic clients which are connected to one provider that
represents the stable part of the system. We assume that
the clients have the same behaviour, and that they do not
communicate with each other (illustrated in Figure 1). This
is natural in any system where the clients may be added and
removed dynamically.

Additionally, we focus only on the systems that fulfil that:
(1) the system has only one type of clients, and (2) each
client is modelled as an automaton with the hierarchy of
component names (7). Note that the previous conditions do
not significantly restrict the number of systems we can deal
with. Renaming and system partitioning usually helps to
transform a system into the permissible one.

In the definition below, the description is reflected as fol-
lows. The first bullet states that the components constitut-
ing the provider are named with strings over Greek alphabet.

Client 1 Client 2

g g

Provider

Figure 1: A dynamic system with j clients.

The second bullet reflects that all the clients have the same
models up to the names of modelled components, where ¢-th
client models a component with a numerical name . The
third, fourth and fifth bullet restrict the transitions allowed
in the composition of the automata. The third bullet states
that no two clients may communicate with each other, the
fourth assures that all clients are handled equally by the
provider, and the fifth care for the composition to be de-
fined.

Definition 4.1. Let Co = (Qo, Acto, 0o, Io, Ho) and C; =
(Q, Act,0;,1,(i)), where ¢ € N, be CI automata and F be a
set of labels. The tuple (Co, {Ci}ien, F) is a CI model of a
dynamic system (or a dynamic system model for short) iff:
° SH() c A73
e for all i € N the CI automaton, which results from C;
after renaming of all component names with r : {i} — {1},
is equal to the CI automaton Ci,
o FN{tacti)|i,j ENi#j} =0,
e each permutation p of the set NU A U {—}, which is the
identity on the set A U {—} fulfils:

F = {w(o1),a,p(02)) | (01,a,00) € F},
o F 2 ['int,Cg u UiGN Eint,Ci-

Notation. For a dynamic system model D = (Co, {Ci}ien, F)
the automaton Co is called provider, CI automata C1,Ca,. ..
are called clients.

For the rest of the paper let us fix that if D is a dynamic
system, then it denotes the tuple:
(CO = (Q07 ACth 607 -[07 H0)7 {CZ = (Qv ACta 6i7 I7 (i))}iGNa -7:)

Definition 4.2. Let D be a dynamic system and n € Ny,
then D, = ®T'{Ci}0§i§n is the CI automaton modelling
system D with n clients and Lp = {J;cy, Lo, is the set of
all labels reachable in any of the automata {D; }icn,-

Example 4.1. Let us consider a simple example of a dy-
namic system model depicted in Figure 2 capturing a simple
system consisting of a database and its clients.

The database (modelled by the component Cp) provides three
types of services: readl, read2 and save2 which correspond
to standard reading or saving of data in a database. Each
of the services is modelled by a tuple of actions, the first
of them, e.g. (—,readl,a), represents a receiving of a request
of the service and the second, e.g. (a,read1’,—), models the
response, which indicates that the service was finished. Ser-
vices readl and read2 can be executed in parallel, but save2

3A is the set of strings over Greek alphabet

can not. Because of space reasons, services readl and read2
are modelled without implementation details. Service save2
is modelled as a service that can be provided only after a
connection of a component that implements the service.

Clients (modelled by components C;, i € N) can use three
previously mentioned types of services. They first initialise
their system and after that they choose one of two versions
of the software. If they choose version 1.0, they can only
read data from the database or upgrade their software, else
they can read data, edit them and save the changes.

OC()Z

a,readl’,—)

(a,read?2’,—) || (—,read2,a)

(—,readl,a) || (a,readl’,—)

(—,read2,a)
A hierarchy of component names: ()

e C;, where i € N:

(i,init,i)

0
(i,v2.0,i/
©)

(i,read2,—)
(i,discard,i)

(i,v1.0,7)

@

- i (i,readl,—)
(2,v2.0,7)

(i,close,i)
(—,readl’ ,1)
(i,new,i)

(—,save2’,i)

(i,read2,—)

B ——
(—,read?2’ i) @

(i,read2,—

(i,save2,—) (i,edit,i)

A hierarchy of component names: ()

(] f:UiEN['i”taci U {(a,impl,f),(f,impl’,a)} U
{(i,read2,a),(a,read2’,i),(i,saveQ,a),

(a,saveZ’,i),(i,readl,a),(a,readl’,i) | xS N}

Figure 2: A CI model of dynamic system DB =
(Co, {Ci}ien, F).

5. VERIFICATION

In this section, we study verification of the properties whose
violation involves at most a finite number of clients. We de-
note m the minimal number of clients that are necessary
for the violation. For an arbitrary integer m and a dy-
namic system model D the set of such properties is denoted
Property(D,m). A property for m = 2 can for example
state that whenever a dynamic component outputs a request
for service a, no other dynamic component gets the response
for a before the previous component does. If the dynamic
components behave the same and do not communicate with
each other, it really suffices to observe only two of them to
check this property.

In this section, we first discuss when we can say that a
provider regards at most n clients. After definition of this
term, we show that if a provider in D regards at most n
clients, then given a set of properties Property(D,m) it
holds that if we verify all of these on the dynamic system
with 0,1,...,n + m clients, then the properties hold on the
dynamic system with any finite number of clients.

5.1 Essential definitionsand lemmas

For each dynamic system model D and each set of labels
X C L¢, we define the value n from the previous paragraph.
Then we prove some basic properties that the value n fulfils.

The sub-section starts with the definition of wa x, which is
in fact an abstraction of the path 7 pointing up important
parts of the path given by the set of labels X. It is followed
by the essential definition stating when we can say that a
provider regards at most n clients.

Definition 5.1. Let D be a dynamic system model, X C

['C07 .] € Nand m = q07l07q1al17q2a"' € Path}zz"t(pj)
Then ma, x = h(qo,l0.91), h(a1,l1,92), - - ., such that h is de-

fined as:
ro,(f(0)a,f(0")),rg *
(o,a,o’) € C’omm(X,N)
€: otherwise,
O) o g N’
*, o€eN

h((ro rj),(o,a,o'),(r(’),...,7‘;-)) =

where ¢ is an empty string and f(o0) = {

Example 5.1. For the dynamic system model DB described
in Figure 2, X = {(_J‘EtldQ,a),(a,readQ’,_)}7 ,] —4 and

7 = (000,0,0,0) "% (000,0,0,1) "5
— (000,0,0,3) "5 (010,0,0,6) 5"

— (010,1,0,6) """ (010,2,0,6) "

— (011, 4,0,6) "% (001, 4,0,7) - - -

it holds: (x,read2,a) (av,read2’ %)
it holds: TA,X :—>7 —>7

Definition 5.2. Let D be a dynamic system model, X C
Lc, contains all observable labels, and n € N. We say that
the provider at any time regards at most n clients iff for any
¢ > n it holds that: _

{max | m€ Path%}t(Di)} ={max | 7€ Pathfﬁ}t (Dn)}-

Notation. Let D be a dynamic system model and X C L¢,
again contains all observable labels. Then |D|x is a mini-
mal n such that the provider at any time regards at most n
clients, if there is any. If there is no such n then |D|x = co.

Example 5.2. For the dynamic system model DB described
in Figure 2 and
X= {(7,save2,a),(a,impl,7),(f,impl',a),(a,save2',7)}
it holds that:
e {max |mE€E Pathfﬁ?(DBo)} =0,
o {ma.x | m € Pathi}¥(DB1)} contains exactly one in-
finite sequence o of the shape:

(*,8ave2,a) (e,impl,—) (—,impl’,a)

(a,save2’,*) (*,8ave2,a)

The set moreover contains all finite prefixes of o ending

(a,save2’ %)

with ” = ” and the empty sequence e.

® {ﬂ'A,X | m™ e Pathﬁg?(DBQ)} =

{ra.x | m € Pathy} (DB1)}.
Hence the database regards at most one client.

The following lemma shows, that if in a dynamic system
model D we delete the transitions over any subset of ob-
servable labels Comm(X,N), such that the result D’ is a
dynamic system model, then it fulfils |[D'|x < |D|x.

Lemma 5.1. Let D be a dynamic system model, X C L¢,.
If a dynamic system model D' = (Co,{Ci}ien, F \ S) fulfils
S C Comm(X,N), then |D'|x <|D|x.

Proof. The statement follows immediately from the fact that
all deleted transitions, which occur in automata {D;}ien,
and do not occur in automata {D;};cn,, have labels in the
set Comm(X,N). |

The next lemma involves dynamic system models, in which
providers are composite components such that one of their
sub-components contains all actions that are used for com-
munication with clients. This lemma can be used for finding
an over-approximation of the value |D|x for these systems.
In addition to these, it has a corollary useful for verification
of properties which we are interested in.

Client 1 Clent 2 & Client j
I 1 1
= ~, A
B '-"-—~—-§‘9|4L——-" -
-
=] 2]
(04 Co
Provider

Figure 3: A dynamic system with composed compo-
nent according to Lemma 5.2 and j clients.

Lemma 5.2. Let D be a dynamic system model and X C
Lc,- Provided that C' = (Q', Act’,d',I', H') is a CI automa-
ton and F' is a set of labels such that @ {Co,C'} is defined,
Sy C A, then D' = (®}'I{C0,C'},{Ci}ieN,f) is o dynamic
system model. Further, let the following holds:
1) (o',a,0) € .7'-1701 € SHI = 0 € {—} U SHO U SH!,
(0,a,0") € .7‘—’,0’ €Sy = o€ {—} U SHO U SHr,
2) (0,a,0") € .7"’,0’ € SHI,O € SHO = (o,a,—) € X 0.7:,
(o',a,0) € .7'—’,0’ € SHI,O € SHO = (—,a,0) € X ﬂ]:,

3) Vi > |D|x: Path'"*(D;) = Pathy7 (D;).
Then for X' C Comm(X,Sy) U Ler is | D' |xr < |Dx.

Proof. See appendix.

Example 5.3. This example illustrates a usage of previ-
ous two lemmas. Let us consider the dynamic system model
DB from Figure 2. In Figure 4 there is a CI automaton
C' which implements service save, thus the CI automaton
Cim?t = % {Cy,C'} models the database where all the ser-
vices are implemented, and DB™?! = (CJ™' {Ci}ien, F''),
where F', F""" are described in Figure 4, models a dynamic

(B,checkData,B3)

B,checkData’,
(B,checkData’,B>

®

(B,errSave,B3)

@

©®

(B,errData,f

(B,saveData,

(8,impl’,~)

® @

(v,saveData’,B)

(v,saveData’,B)
A hierarchy of component names: (3,7)

° _7:, = ﬁco U Ecl U {(a,impl,ﬂ),(ﬁ,impl’,a)}
e F'=FU Eint cimpl
0

L4 .7'—”, = .7'—” \ {(a,impl,—),(—,impl’,a)}.

Figure 4: A CI automaton C' and sets F', 7', F'".

system whose provider is a database with all services im-
plemented. Its clients are the same as in database DB and
the clients can use the services of the provider similarly as in
DB. Lemma 5.2 says that for all X D {(a,impl,—),(—,impl’ ,a)}
and X' C Comm(X,N):

|(Co™" {Ci}ien, F")|x+ < |DBlx,
where F" is described in Figure 4, and Lemma 5.1 then
claims that for those X it in addition holds that:
|DB™! | x =|(C5" B {Ci}ien, F')|xr <|(Co™% {CiYien,)| x-

5.2 Properties Property(D,m)

Above, for each dynamic system D and a set of observable
labels X, we have defined the value |D|x. In this part, we
show the employment of the value in verification of dynamic
systems.

Assume a dynamic system D. The properties that we aim to
verify, can be specified with a sequence of formulas {¢; }ien,
over Lp such that a property is satisfied iff for each i € Ny
it holds that ¢; = D;. Note that not every sequence of
formulas {¢;}ien, represents a meaningful property of the
system. Thus we concentrate on the formulas satisfying:

e the property makes no distinctions among clients,

e if the property is violated by a path in a system D;4;
where j components do not perform any steps, the property
is violated by the same sequence of labels also in the system
with ¢ clients only.

Definition 5.3. Let D be a dynamic system model. A
sequence {y;}icn of formulas over the set of labels Lp is
harmonised with the dynamic system D iff for all i € N:

e formula ¢; and formula ¢; with permutated numerical
names of components have the same set of models,

e let .

= (q87Qé7 - '7q6)7l07 (q?7q%7 s
and for j €N, 7't =

(qg, crt 7q67q6+17 et 7q6+J)7l07 (q?’ et 7q1i7q6+17 et 7q6+J)7 et

in Pathin¥(Diy;) then w17 [~ ¢,y implies ©* [~ ¢;.

7qi)7l17' - € Pathm?(Dz)

As we have discussed before, we are not interested in all
formula sequences implied by the definition above. We fo-
cus only on the formula sequences that represent properties
whose violation involves only a finite number of observed
components. Moreover, we consider only the properties that

are invariant under stuttering according to CI-LTL. The first
restriction is requisite, but the second one is not. If we did
not apply the second restriction, we would in many cases
end up with |D|x = oo.

Definition 5.4. Two paths w and o are stuttering equivalent
wrt. a set of labels £ iff there are two finite or infinite
sequences 0 = iy < i} < --- and 0 = 43 < i} < --- such that
for each index j7 > 1 and each [€ L, the following holds:

1 1 i1
erii-t=E() & nitTE=L() & - o i TH=E()

2 2 <1:> i2_1

di-tEE() e i EE() & - e o'i T TEE()

o i L EP(l) <= o' L P(D)
eVieL,i' eN: ' EP() =it
eVieL,i?eN: o EP() =i

ij—1 (j EN)
i;—1 (j EN).

Observe that if 7 and o are stuttering equivalent paths,

then for each j > 0, all the paths 7riJ1',...,7riJ1'+1_1 and
2

i ;2 —
o'i,...,0'i+17! are also pairwise stuttering equivalent.

Definition 5.5. A CI-LTL formula ¢ is called invariant
under stuttering iff for each two paths 7 and o stuttering
equivalent wrt. £, the equivalence 7 = ¢ < o = ¢ holds.

Lemma 5.3. Let ¢ be a CI-LTL formula which does not
contain operator X and any occurrence of an atomic propo-
sition P(l) in ¢ is of the form either Gp1U(P(I) A p2) or
(¢1A‘l’P(l))U¢2 or (¢1 /\‘!’P(ll))u(’P(b)/\(ﬁz) Then 2] iS
invariant under stuttering.

Proof. See appendix.

Definition 5.6. Let D be a dynamic system model and
{¢i}ien be a sequence of formulas harmonised with D. Then
we define |{yi}ien|p as the minimal m € Ny such that
for each j € N and each path 7= € Pathfﬁ?(l)j) satisfy-
ing ™ [~ p; there is an invariant under stuttering subfor-
mula ¢; -~ of formula ¢; and there are names of components
i1,...,4m € N that fulfil
e T bé ()0.]',7’7
e formula —pj ~ = —yp; is satisfied on each automaton,
whose set of labels is a superset of L, ULy,
e Ly, CLpand Ly, . does not contain the labels that
involve names of dynamic components that are differ-
ent from 41, ...,0m.

Definition 5.7. For a dynamic system model D and m €
No, Property(D,m) is the set of all sequences harmonised
with the dynamic system D such that

{¢i}tien € Property(D,m) iff [{pi}ien|p < m.

Example 5.4. In this example, the previous definition is
illustrated by three properties of dynamic system model DB
from Figure 2 described by a sequence of CI-LTL formulas.

1) Consider the sequence of formulas

o = p1 = true

P2 = ¢(17 2)

Y3 = ¢(17 2) A ¢(17 3) A ¢(27 3)7

R

where

¢(l,]) =-F (5(i,sav32’,a) A 5(j,sav52’,a))

capturing that a state, in which the provider can respond
that the action ’save’ was done to two clients, is unreachable.
This sequence is in Property(DB,2) because for arbitrary

n €Ny and 7 € Pathﬁ}t(DBn) satisfying 7 [~ ¢n, there
exists ¢ € Ny such that for different numbers ji, jo» € N the
actions (jy,save2’,a), (ja,save2’,a) are enabled in the state ().
Thus 7 ¥ ¢(j1,72) = ¢n,» and it is obvious that the formula
¢n,~ fulfils all conditions in Definition 5.6.

2) The set Property(DB,0) contains all temporal properties
described by a sequence of identical formulas {¢; = ¢}ien,,
where ¢ is invariant under stuttering and £, does not con-
tain labels that involve any clients.

For example:

Y = g (P(a,impl,f) =]:,P(f,impl’,a)).

This sequence of formulas is in Property(DB,0) because
for an arbitrary n € Ny and 7w € Pathf%f(DBn) satisfy-
ing ™ £ ¢n the formula ¢n - = ¢, fulfils all conditions in
Definition 5.6.

3) The set Property(DB,1) contains the sequence of formu-
las

o = true

p1=¢(1),

2 = (1) A p(2),

3 = @(1) A p(2) A B(3),

where

¢(1) = g (P(i,edit,i) = fg(i,sa'ue,a)),

capturing that globally after some component edits an en-
try in the database, it will be eventually enabled to save the
changes.

Similarly as in the case 1) it can be shown that this sequence
of formulas is in the set Property(DB,1).

Finally, the following lemma claims that for verification of
the properties from the set Property(D,0) it suffices to ver-
ify the models Do,...,Djp|,. The theorem below formu-
lates an analogical result for the properties Property(D,m),
m € N, stating that we only need to verify the models
Do, ..., Dip|x+m- The idea of this theorem is based on the
modification of the dynamic system D and the corresponding
modification of verified temporal property. To these modi-
fied system and property, we can apply Lemma 5.2 and get
the statement from the theorem. *

Client m-15] fentj B
Client 1 Client m 1er.1 " .- Chfmtj .
=Client' 1 = Client' j-m
= - ~ =
'""“"*-———p_‘:‘_‘;g cmmmT o
Provider’ -
Provider

Figure 5: A dynamic system D with j clients and
dynamic system D’ with j —m clients.

“The modified model D’ is created from D by modification
of its provider, modelling the provider of D composed with
m clients. The remaining items of the dynamic system are
identical to D (see Figure 5). The modification of property
is more complex and it is described in detail in the proof of
the theorem.

Definition 5.8. Let D be a dynamic system model and
{pi}ien then a set of labels X contains all labels necessary
for verification of {p;}ien on D iff
e P(l) is a subformula of ¢; for some i € Ny =
[€ Comm(X,N)
e £(l) is a subformula of ¢; for some i € Ny =
V transition (q,l’,¢') in D; iff ¢ E £(1) and ¢ [~ E(1)
or vice versa, then [€ Comm/(X,N).

Lemma 5.4. Let D be a dynamic system model and {p; }ien €
Property(D,0) and X contains all necessary labels for ver-
ification of it. Then for every j € N it holds that:

Dipjx F#pix = Pipix+i F ¢pix+i-
Proof. See appendix.

Theorem 5.1. Let D be a dynamic system model, {p;}ien €
Property(D,m), X contains all necessary labels for verifi-
cation of it and
e Vi > |D|x: Path'™*(D;) = Path}} (D),
e ((a,act,n) € F for some n € N) = (a,act,—) € X NF,
L] ((n,act,a) eF fO’I" some n € N) = (—,act,a) € XNnF.

Then for every j € N it holds that:
Dip|x+m [1Dix+m = Dipix+m+i F PIDIx+m+j-
Proof. See appendix.

6. ALGORITHM

In the previous section, we have shown that if for a dynamic
system model D, a property {¢;}ieny and a set X that con-
tains all labels necessary for verification of {¢; }ien on D, we
know the value m such that {¢;}ien € Property(D,m) and
an over-approximation n of the value |D|x, then we can ver-
ify the property via verification of the models Dy, ..., Dpmin.
We did not discuss how we can find appropriate X, m and
n, which we are going to do now. The set X can be con-
structed automatically based on Definition 5.8. The value
m such that {p; }ien € Property(D, m) can be derived from
the structure of the formulas, and hence we can suppose
that this value is known already at the time when the for-
mulas for a given property are constructed. The computa-
tion of a reasonable over-approximation of the value |D|x
does not need to be so straightforward. Hence in this sec-
tion, we discuss the technique that allows us to compute the
over-approximation of |D|x for most of the dynamic system
models D such that |D|x # oo.

For this purpose, we employ the value ||D||x, which reflects
the number of clients that the provider can serve concur-
rently at any moment. The value ||D||x can be computed
automatically and it always holds that ||D||x < |D|x. For
the most common type of dynamic systems where |D|x <
0o, there exists a computable value z such that |D|x <
14 [Dllx -2

6.1 Algorithm for computing ||D||x
We first define the value ||D||x and then prove that ||D||x <
|D|x always holds.

Definition 6.1. Let D be a dynamic system model, X C Co.
Then a state ¢ € Q is not in a cycle of service X iff it is in
a set Np x C @ defined inductively:

o] g N’D,Xa

e (g€ Np,x A A ZComm(X,N): (¢.1,¢)EH) = ¢ € Np x,
o (qEND,X A 3l¢00mm(X,N): (q’,l,q)€61) = q' € N'D,X.

/ﬁ,(@

// ; 2(—,readl’,1)
H
e 5(1 read2,— @
(—,save2’,1))/ 2
{
; \& (1,read2,—)
§ IEI —,read?2’,1)
|§E|w -~
(1,save2,—)

U

Figure 6: Sets NDB,Ecoa ,ng',ﬂco and L‘ggﬁ%.

Notation. Let D be a dynamic system model and X C L, .
Then ||D||x denotes the minimal i € Ny such that for each
j € Ny and each reachable state q of the automaton Dj, the
number of clients that are in the state q in a cycle of service
X is less or equal to i, if there is any. If there is no such j
then ||D||x = oo

Example 6.1. In the model DB from Figure 2 at any
time, the clients can access either reading or writing on the
database. If the database serves the reading, there can be
at most two clients that are using it, and if the writing is
served, there can be at most one client using the service.
Hence it holds that:

- ||DB||{(l,readl,—),(—,readl’,1),(1,7‘ead2,—),(—,read2’,1)} = 27
- ||DB||{(1,80/1}82,7),(7,80/1}82’,1)} =1 and
- IPBllz, = 2.

Notation. Let D be a dynamic system model, X C L¢,.
As the sets of states of automata {C;}ien are identical, we
denote:

° N’;,X = {q € Np,x | E‘q, € Np,x : (al,d") € (51}

— the states of the automaton Cy that are not in a cycle of
service, and from which there is a transition to a state in a
cycle of service X.

e Npx ={¢g€Np,x|3¢ € Np,x: (a1q) €}

— the states of the automaton Ci that are not in a cycle of
service, and to which there is a transition from a state in a
cycle of service X.

° Eg} — labels, over which a transition from a state in Np x
to a state in Q \ Np,x ezxists in the automaton Ci.

° [,g:} — labels, over which a transition from a state in
Q \ Np,x to a state in Np x ezists in the automaton Ci.

Example 6.2. For the dynamic system model DB from
Figure 2, it holds that

IPBllzc, =2,

Nop.c., =10,1,2,3,5,7,8},

N;B,LCO = {27 3,7, 8}7

NgB,ﬁc =1{3,5,7},

[”DB Leg — {(1,TEadl,—),(l,readQ,—),(l,saueQ,_)},

LY e, = {(=readt’ 1), (=read2’ 1), (= save2’ . 1)}

Figure 6 illustrates these terms graphically — the states from

Nopp,c., are depicted as @, the transitions with labels from
£$§,£CO and ﬁggﬁ% are depicted as ~~—s.

As the value ||D||x is algorithmically computable, the fol-
lowing lemma helps in finding the under-approximation of
|D|x and it implies that if ||D||x = oo, then also |D|x = co.
In the next sub-section, we more demonstrate possible usage
of the value ||D||x for computing the over-approximation of
ID|x.

Lemma 6.1. Let D be a dynamic system model and X C
Ly If LY NLY S =0 then | D]|x < |D|x.

Proof. See appendix.

Example 6.3. The previous lemma together with Exam-
ple 6.1 for the model DB (Figure 2) claims that

- |DB|{(1,readl,—),(—,7‘eadl’,1),(1,7‘ead2,—),(—,readQ’,1)} 2 2’
B |DB|{(1,sav82,—),(—,save2’,1)} Z 1 and
- |DB|1;C0 > 2.

6.2 Over-approximation of D,

Here we focus on finding an over-approximation of |D|x us-
ing the value ||D||x. This task is very complicated and for
space reasons, we are not going to present here a general
algorithm for computing this value. On the other hand, the
computation of the over-approximation is relatively straight-
forward in many specific cases, and if X is very small (two
to four items), it usually suffices to employ the observation
that:

"If for a dynamic system D the automaton D, generates all
possible runs with respect to the observable labels X, then for
every ¢ € N the automaton D,4; generates again the same
runs. Hence it holds that |D|x < mn.”

This implies the next observation that the most difficult case
of getting the over-approximation of |D|x is for X = L¢,
(when all labels are observable). Hence we concentrate on
this case only. And again for space reasons, not on the
general algorithm for computing an over-approximation of
ID|cc, , but on an algorithm that can be employed for most
practically used dynamic systems. More, this algorithm
presents the core idea that can drive construction of the
general algorithm.

From now on, we suppose that

e every dynamic system D fulfils £3 % N Ly =0,

e in the model, any transition that can synchronise with the
provider has at least one of its states in a cycle of service.

These conditions are very weak and common models (which
model requests and responses separately) most likely satisfy
it.

Notation. Let D be a dynamic system model, X a set of
labels and ¢ € Np,x. Then a set of paths of service starting
in g is the set ServicePathp x(q) of paths of the automaton
C1 that start in the state q, finish in a state ¢’ € Np.x, and
none of their internal states is in Np x .

For m € ServicePathp x(q) we denote Tobservabie the se-
quence that results from m after removing the states and la-
bels that can not be used for synchronisation with the provider
and ServiceOPathp x(q) denotes the set {Topservavie | ™ €
ServicePathp x(q)}.

10

Example 6.4. For the dynamic system model DB from
Figure 2 the following holds:

N;B,LCO = {27 37 77 8}

ServicePathpp,cc,(2) = {2, (1,read1,-),4, (= readl’ 1), 5},
ServicePathpp,cc (3) = {3, (1,read2,-), 6, (= read2’,1), T},
ServicePathpp,cc (7) = {7, (1,read2,-), 6, (—,read2’,1), T},
@) ={
(

ServicePathpp cc, (8) = {8, (1,save2,-), 9, (—,save2’,1), 3}.

ServiceOPathpp,c. (3) = ServicecOPathpp,cc, (7) =
{(1,Tead2,7),(7,read2’,l)},
ServiceOPathDB,LcO (8) = {(1,5ave2,-),(—,save2’,1)}.

Notation. For a dynamic system model D and the set X,
the automaton Ci restricted to the states that are in Np x s
denoted C;.

Example 6.5. For the dynamic system model DB from Fig-
ure 2 and X = L¢,, the automaton C; contains all states de-
picted in Figure 6 but it contains only the transitions which
are depicted as ——.

Notation. The subset of Np x reachable from the initial
state of Cy is denoted Ninitp x .

Example 6.6. For DB as the dynamic system model from
the Figure 2, Nim'tBB,ECO = {2,3}. Figure 6 shows, that
those states are the only states in N’E)B,Lco reachable from

the initial state only via transitions denoted ——.

Definition 6.2. Let D be a dynamic system model and X
be a set and ¢ ¢ N5 x. The set of maximal paths in a cycle
of service starting in ¢, denoted SC Pathp, x(q), is the set of
all maximal paths from ¢ which do not contain a state from
Np' x and which do not contain any state twice.

Let m € SCPathp,x(g) for some g ¢ Ny x, then mrqce cor-
responds to the path 7, from which there have been removed
all the labels and states that either belong to the set Np x
or do not belong to Np x and are succeeded by a state not
belonging to Np x. Thus mirace is a sequence of states not
belonging to Np x whose successor in 7 belongs to Np x.
For q € Q, let MaxSCTracep,x(q) denotes a subset of the
set {7irace | # € SCPathp,x(q)}, which contains only the
maximal sequences.

Let MaxCSTracep x = . MazSCTracep,x(q)-

qENinitZ
Example 6.7. For the dynamic system model DB depicted
in Figure 2 it holds:

{mtrace | ™ € SCPathpp,c. (2) {4},
{Ttrace | ™ € SCPathps,c., (3) {6; 6,9},
MaxSCTraceps,c.,(2) = {4},
MazSCTraceps,cc,(3) = {6,9},
MazSCTraceps,c., = {4; 6,9}

}
}

The following lemma contains two preconditions. The first
one requires that anytime after serving a client, the client
must be able to launch the same serving again. This pre-
condition is requisite. However if it is not fulfilled, |D| = oo
very likely occurs. The second precondition simplifies the
notation and it could be weakened if necessary.

Lemma 6.2. Let D be a dynamic system model such that:

eVge NE),LC()’ T = 4o,losnlnsan 41 € ServicePathp,c. (q)

g € ND_tﬁCo reachable in Ci from the state qni1 and 7' €
Service Pathp(q)) : Tobservable = Topservable
® Vg € Np ., , m,m € ServicePathp(q): last state of m
is equal to last state of mwa.
Then

|D|Ec0 <1+ ”D”Eco ’ ZweMazSCTmcen,cco |7l

where || denotes the number of states in .
Proof. See appendix.

Example 6.8. For the dynamic system model |DB|c,,
from Figure 2 it holds || DBllz,, = 2, MazTracepp =
{4; 6,9} (see Example 6.3, 6.7) and this system fulfils pre-
conditions of Lemma 6.2. Thus Lemma 6.1 and Lemma 6.2
claim

2 <|DBlee, <1+2:(1+2)=T.

Therefore for the dynamic system model |DB™P!| Le, from
Example 5.3 it holds

impl
|DB P |Lc0 <T7.

7. CONCLUSIONSAND FUTURE WORK

The paper introduces our approach to the verification of dy-
namic systems. It is based on getting a value n, which guar-
antees that if the examined property is not violated on the
system with less then n dynamic components, it will always
hold on the system, no matter how many dynamic compo-
nents are going to be used during its execution. This result
is possible thanks to the assumption, that dynamic compo-
nents share a common type, which makes their behaviour
predictable. Besides the proofs of the propositions consti-
tuting this result, we also present the intuition for designing
algorithms for getting the approximation of n.

Our technique is applicable not only to the verification of
dynamic systems. It can be very helpful also during mod-
elling of a dynamic system, because it can be used to check
that the model does not have any unpredictable behaviour
comparing to the real system (see [12] for discussion of this).
In this case, also verification of simple properties, or infor-
mation about the number of clients that can be served by a
provider, can be interesting.

In future, we aim to finish implementation of the algorithms
and extend them also to more general types of dynamic mod-
els. We also aim at broadening the set of properties and
evaluating the approach thoroughly on realistic case stud-
ies.

8. REFERENCES

[1] J. Addmek. Addressing Unbounded Parallelism in
Verification of Software Components. In SNPD, pages
49-56, 2006.

[2] T. Ball and S. K. Rajamani. Automatically Validating
Temporal Safety Properties of Interfaces. Lecture
Notes in Computer Science, 2057:103+, 2001.

[3] J. Barnat, L. Brim, I. Cern4, P. Moravec, P. Rockai,
and P. Simecek. Divine - A Tool for Distributed
Verification. In Proc. of the 18th International
Conference CAV’06, volume 4144 of LNCS, pages
278-281. Springer, 2006.

[4] T. Barros, L. Henrio, and E. Madelaine. Behavioural
models for hierarchical components. In Proceedings of
the SPIN 2005 Workshop, pages 154-180, San
Francisco, USA, August 2005. LNCS Springer-Verlag.

[5] L. Brim, I. Cernd, P. Vafekové, and B. Zimmerova.
Component-Interaction Automata as a
Verification-Oriented Component-Based System
Specification. In Proceedings of SAVCBS’05, pages
31-38, Lisbon, Portugal, September 2005.

[6] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, USA, January 2000.

[7] J. Corbett, M. Dwyer, and J. Hatcliff. Expressing
checkable properties of dynamic systems: The
Bandera Specification language, 2000.

[8] F. Plasil and S. Visnovsky. Behavior protocols for
software components. IEEE Transactions on Software
Engineering, 28(11):1056-1076, November 2002.

[9] A. Pnueli. The temporal logic of programs. In
Proceedings of the 18th IEEE Symposium on the
Foundations of Computer Science, pages 46-57. IEEE
Computer Society Press, 1977.

[10] A. Rensink, A. Schmidt, and D. Varré. Model
Checking Graph Transformations: A Comparison of
Two Approaches. In H. Ehrig, G. Engels,

F. Parisi-Presicce, and G. Rozenberg, editors,
International Conference on Graph Transformations
(ICGT), volume 3256 of Lecture Notes in Computer
Science, pages 226—241. Springer-Verlag, 2004.

[11] 1. Cernd, P. Vafekova, and B. Zimmerova.
Component-Interaction Automata Modelling
Language. Technical Report FIMU-RS-2006-08,
Masaryk University, Faculty of Informatics, Brno,
Czech Republic, October 2006.

[12] B. Zimmerova, P. Vafekové, N. Benes, I. Cerna,

L. Brim, and J. Sochor. The Common Component
Modeling Example: Comparing Software Component
Models, chapter Component-Interaction Automata
Approach (Coln). To appear in LNCS, 2007.

APPENDI X
A. DEFINITIONS

In the following, you may find the formal definition of the
complete transition space As defined informally in Defini-
tion 3.3.

Notation. Let Z = {i1,i2,...,in} be a nonempty set of in-
tegers with i1 <---<in, and let Q; be a set for each i € T.
Then Il;ezQ; denotes the set

{(qi17qi27"'7qin) |v.7 € {17
For any j € T, pr; denotes a function pr; :
such that pr;((gi)iez) = g;-

Definition A.1. Let § = {(Qi,ACti,5i,Ii,Hi)}igz,ng be

a finite composable set of component-interaction automata.

Then the complete transition space for S is As = Ag o1qa U

AS new, where

Asotd = {(a,(0,a,0'),4') | 4,4’ €M;e1Qi, 0,0’ ENUAU{ -}, FET:
((pr(a),(0,a,0"),p7; (a'))E€8; A Vie(T\{j}) pri(a)=pri(a'))}

As new = {(a,(0,0,0),0") | 4,0’ €MiczQi, 0,0' ENUAT},j €T,j 45"
((prj(a),(0,a,=),prj(a")€8; A (prjr(a),(=a,0"),prii(a")€8; A
Vie(I\{5.i'D) pri(@)=pri(@' N}

yn}: qi; € Ql]}
LiezQi — Qj

B. PROOFS

This appendix provides the reader with the proofs for the
lemmas presented in the text.

Proof. Lemma 5.2 Because @7 {Co,C’} is defined and Sy C
A, it can be simply proved that D’ is a dynamic system
model by a checking of conditions in the definition of dy-
namic system model.
To proof that 1), 2) and 3) implies |D'|x < |D|x it suffice
to show that
{oa x|oePath] ¥ (Di)}={oa x| €Path] ¥ (D{p)}
We prove that for each k > |D|x it is fulfilled
{oa,xlo€Path{} ¥ (DI)}C{oa, x| €Path i (D]p))}

the inverse follows immediately from precondition 3). For
k > |D|x let % = ((a9:a0) @b -sal)s tos ((afsa))sad s ad), ta,s oo
be a sequence from {c x|rePath?it(D})}. Then 7% denotes
a sequence created from 7'% by

a) skipping actions involving only the automaton C’,

b) replacing internal actions over labels in Comm(X, Sy)
by external actions of the automaton C which model the
part of communication involving the automaton C,

c) skipping of parts of the states which model states of
the automaton C'.

Formally 7" = 7((aQ.q....a8)10).F (¥ a} .na¥)l1),... where the
function f is defined:

€, 0€S s, 0 €Sy,
(o,a,o’)GComm(X,SH/),OIESHr,
(o,a,o’)€Comm(X,SH/),OESHI,

a,(0,a,—-),
q,(—,a,0"),
q,(0,a,0'), otherwise.

From the precondition (3) it follows that there has to exist
a path 7 € {oa xloePatninit(p,)} satisfying either 7% =
7% or @* is a prefix of 7*. Because k > |D|x, Defini-
tion 5.2 claims that a path #/Px € Pathi¥(Dp|y) such

that 7h x = W‘Al)?{ must exist. Preconditions 1) and 2)

|D|

f(g,(0,a,0")) =

imply that it is possible to construct from the path =
(inversely to the steps a), b) and c)) a sequence 7' PIx €

'|D|x
{oa xloePathin* (D p),)} such that 7TA X =TAx - O

Proof. Lemma 5.8 By induction to structure of the formula.

¢ = &(1): Follows directly from Definition 5.4.

e o = 1 Ay2: According to IH, 1 and g2 are invariant
under stuttering. Let p and o be stuttering equivalent
paths wrt. L,. Then plEF o S plE i Ap E o2 &

0|=<P1/\0|=<P2©0|=<p
@ = —¢': According to IH, ¢ is invariant under stut-

tering. Let p and o be stuttering equivalent paths wrt.

Ly, . ThenpEopeplEp ool eoEyp
o= (1 A=P(l1)) U (P(I2) Ap2): This covers all three

cases enumerated in Lemma 5.3. According to IH, ¢
and > are invariant under stuttering. Let p and o be
stuttering equivalent paths wrt. L,. Then p E ¢ &
(1): ImeNy: p™ = P(l2) A p™ = @2 and (2): (Yn<
m: p" E o1 Ap" | —=P(l1)). According to stuttering
equivalence of p and o and stuttering invariance of ¢
and 2, the condition (1) is equivalent to the condition
(1): 3m' eNp: o™ = P(l2) Ao™ = @s. Moreover,
the condition (2) is equivalent to the condition (2'):
vn' <m': o™ = o1 Ao = —P(l1)) (this follows from
the third requirement of Definition 5.4). Putting those
two equivalencies together, we conclude that p = ¢ <
MHA2)e (1A E2)eoE e

e o = p1Ups: According to IH, 1 and @2 are invariant
under stuttering. Let p and o be stuttering equivalent
paths wrt. L,. Then p EF ¢ & Im e Ny: p™
w2 AVn<m: p" |= ¢1. According to Definition 5.4,
let k£ be the maximal index such that ¢x < m. Then
it also holds: p = ¢ < Fip € No: P = o AV < iy
p" = 1. Since p'* and o’* are stuttering equivalent,
p* = p2 & 0% |= ps. By a similar argument we can
prove that Vn <ix: p" E 1 & Vn' <ji: 0" E 1.
Putting the results together we obtain that p = ¢ <

AreN: 07 E o AV <jr: o™ Epi ok O

Proof. Lemma 5.4 For space reasons let shortcut d means
|D|x. Assume that Dgy; = @pqyj. Let for any j € N,
o™ € Pathi}(Day;) be a path such that o™ £ @uy;.
Then according to Definition 5.2, there exists a sequence
from Pathiy¥ (Da)

c?=(g0.q8,-ad) lo. (Y sat s gl
d+j _ d rd4j _
such that o\'y = oA x. A path o =

dai
gt -aqO+J)alla---a

d d+1 d+j
(@9 ad ™ ag) 00, (0

(where qd+1,...,qg+j are initial states of automata Cg41,

, Ca+;) is obviously in the set Pathfﬁ}» (Da+;)- From the
fact that oA x = UZ,X it follows that there are two finite
or infinite sequences 0 =i < i} < --- and 0 =43 < i < - -~
such that for each index n > 0:

o for each | € ;o Ly, all states of the automaton Co

pri(o Zj{(’g))wn,ml(;ri(ntt 1)) and
pri(@" (i), . pri(o" (i1 — 1)) satisty = E(I)
or none of them satisfy it,

o labels £(0%,iL),.. .,ﬁ(ad ini1 —2) and
z(a'd,ii),...,z(rd zn+1 —2) & Uien, Lo

e labels (o1,a.0))=£(c%il ;~1) and (os,a,05)=L(c'i2,~1)
model a communication which involves the provider
and (f(o1),a,£(0}))=(f(02),a,f (0})), where

o, o¢N,

flo)= { o€N.

Thus according to Definitions 5.6 and 5.7, o’ & @41 ;. So
the second condition of the Definition 5.3 implies ¢ ¥ va
and the implication is proved. O

Proof. Theorem 5.1 For space reasons let shortcut d means
|D|x. Suppose that

Datm+j E Pd+m+is
then it is sufficient to prove that there exists a path o €
Pathf%f (Da+m+j), which does not satisfy ¢q4m+; and whose
transitions do not involve clients with names larger than
d 4+ m. The fact Dgym FE Pit+m then follows immediately
from the second condition of the Definition 5.3.
Firstly we define new dynamic systems D', D". In this proof
Ci,Ch,...,Cl, are CI automata Cy,Ca,...,Cn with renamed
component names such that the triple

(Co® (®{C£}ie{1 m1), {Ci}ien, F)
is a dynamic system model. The injection from the set
{1,...,m} to the set A which corresponds to this renam-
ing will be denoted r.
Let D' be a dynamic system model

(Co @ (®{Ci}ieqr,....my), {Ci}ien, F),
where
F=FU{(a1,act,02)|a1 E{r(1),...r(m)},(01,act,00)EF,01 EN,00gN} U
{(o1,act,an)|as€{r(1),...r(m)},(o1,act,00)EF,01 ¢N,00€N} U
{(a1,act,a1)|la1 €{r(1),...r(m)},(01,act,01)EF,01 EN}.
Dynamic system models D' and D" = (Co, {C;}ien, F), the
set of labels X and the set X' = Comm(X, {r(i)}ici1,....m})
satisfy preconditions of Lemma 5.2 thus |D'|x: < |D"|x.
Because D; = D}’ for each i € Ny it holds d = |D|x = |D"|x
and thus |D'|x: < d.
Let Datm+; P Pd+m+j, then Definition 5.6 and the first
condition from Definition 5.3 imply that there exists a se-
uence . .
4 T=(q0,...,q") lo, ¢V, ..., 1,
in Pathfﬁﬁ.»t (Da+m+;) and a subformula ¢ of formula @ g4 m4;
such that 7 £ ¢ and —¢p = —p; and formula ¢ does not in-
volve automata modelling components with numerical names
larger than m.
Formulas {p;}ien and ¢ after renaming all names of com-
ponents by the function r will be denoted r(y;) and r(yp).
r(m) will denote a sequence

1 d] 1 d]
(a g ay g T (10), (0 a) g T g e (1),

in Pathf%f(D;H), where 7((0,a,0')) is a label (f(0),a,f(o'))

o o€AU{—},
such that f(o)={ r() oe{l,...m},
o—m otherwise.

It is clear that r(m) = r(p) and =r(p) = r(Patm+j) so it
holds Dy ; = r(p) and Dy ; F r(atmaj)-

The formula r(y) does not involve clients, is invariant under
stuttering. Moreover a sequence of formulas {¢; = r(¢)}ien
is in the set Property(D’,0) and X' contains all labels nec-
essary for verification of formulas {¢}}ien, Consequently
Lemma 5.2 claims D = r(py). So it exists a sequence
oy € Pathy)} (D}) such that o = @) = ().

Then for the path r~'(o’) € Pathﬁift(Dder), where ! is
defined inversely to the function = holds »~*(¢") ¥ Qatm
(for the same reasons as in previous proof of Lemma 5.4). O

Proof. Lemma 6.1Let j € Nand 7!P1x+7 ¢ Pathiy (Dip|x+4)

be arbitrary but fixed. From the prerequisite it is clear that

a sequence 771X € Pathi;f(Dip)) satisfying WZJ,L{ o=
WlAD,‘; must exist. For each ¢ € N transitions in D; be-

tween the sets Np x and @ \ Np x model a communica-
tion of a client which involves provider who performs an
action from X. So from the definition of 7/P1x 7 and 7!Plx
it follows that there exist two finite or infinite sequences

13

0=1ip <if <---and 0 =14} <i} <--- such that for each
index n > 0:

e labels £(o!P1x L), ..., L(c!P1x il 1 —2) and
L(o""P1x 32, ... L(o"P1x 2 |, —2) do not correspond
to a communication over a label in Comm(X,N),

® (01,a,0))=L(c!Plx il 1) and (o2,a,04)=£(c"1PIx ,i2 ~1) are
labels from Comm(X,N) U X and moreover
(f(o1),a,f(01))=(f(02),a,f(03)),
where f(0) = o for o ¢ N and f(0) = * otherwise.

Since L3 % N LP% = 0 and no more than |D|x clients can
be in Q \ Np,x for any state of the path 7/P1X, the same
property must hold for the path 7!/?!x*7. Thus for an arbi-
trary j € N and #/P1x+ ¢ Pathiy(Dip|y+;) the number
of components, which are in @ \ Np x during the run, is at
most |D|x. m|

Proof. Lemma 6.2 For a ¢ ¢ Np and Endp(q) = {g.},
let us define Suces(ge) (AllSuccs(ge)) as the set of states
qd € N5 (¢ € Q, respectively) such that there is a path
in the automaton C; not containing any state twice, con-
taining a state from Ninity as the very first state only,
passing g. and finishing in ¢'. Moreover, let rank(g.) be
a number of occurrences of the state g. in MaxTracep
and Suces-rank(ge) = -, csyces(q.) TaMk(q). Now we de-
scribe how to simulate a path 7 (with an arbitrary num-
ber of involved components) by a path 7' where at most
L+ [|DIl - 32 e MazTrace, |T| components are involved. Ob-
serve that for any state ¢c € Ninitp, Succs rank(qe) =
|MazxTracep(qe)|. The idea of the proof follows from the
fact that it suffices to deal with at most Succs_rank(qe)-
||D|| components to simulate any behaviour of any number
of components which change their local states among states
AllSuces(qe).-

Firstly let us suppose that m contains infinite many exe-
cutions of a cycle of service. 7' is then constructed iter-
atively according to the sequence of transitions in w. Let

t =q N ¢’ be the first not yet simulated transition in
w. If t is a part of a cycle of service, it is executed in
7w’ as well. Otherwise let ¢ € N5 be a state such that
AllSuccs(ge) is the minimal set AllSuccs(_) containing the
state g. If less than Succs rank(qe) local states of com-
ponents are in AllSuccs(qg.), then ¢t can be directly simu-
lated in 7’ since the component executing ¢ is below the
limit of Suces_rank(g.) components allowed to simulate a
transition among the states from AllSuccs(ge). Otherwise
(at least Succs_rank(qe) local states of components are in
AllSuccs(ge)), by an argument based on induction we can
mimic the transition by a transition of one of Succs_rank(ge)
components whose local state is within the set AllSuces(ge).
The correctness of this simulation follows from the fact that
the number Succs_rank(ge) covers all possible distinguish-
able paths within the states in AllSuccs(qe).

If © contains a finite number of executions of any cycle of
service, then it suffices to mimic in 7’ the finite sequence of
cycles of service as occurred in 7 and then to let a compo-
nent to execute a loop outside any cycle of service forever.
To mimic executions of cycles of services in m we can use at
most || D+ 32, c srawTrace, |7 cOmponents (see the previous
paragraph) and a never-ending execution of a loop outside
any cycle of service can be simulated by one extra compo-
nent. O

