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ABSTRACT
We develop a new technique for generating small-complexity ab-
stractions of timed automata that provide an approximation of their
timed input-output behavior. This abstraction is obtained by first
augmenting the automaton with additional input clocks, comput-
ing the “reachable” timed automaton that corresponds to the aug-
mented model and finally “hiding” the internal variables and clocks
of the system. As a result we obtain a timed automaton that does
not allow any qualitative behavior which is infeasible due to tim-
ing constraints, and which maintains a relaxed form of the timing
constraints associated with the feasible behaviors. We have im-
plemented this technique and applied it to several examples from
different application domains.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—Reuse mod-
els

General Terms
Verification

Keywords
components, timed automata, abstraction

1. INTRODUCTION
The basic premise of a component-based design methodology

is that a component (a hardware IP block, a software module, a
network router) can be used during the construction of a system
without deep knowledge of its intimate internal structure but rather
using a more abstract (and conservative) description of its observ-
able input-output behavior. This description should be sufficiently
detailed to prove the correct interaction of the component with the
entire system, and sufficiently small to avoid state explosion. In this
work we extend this methodology to timed systems models that re-
flect also quantitative performance information. Phenomena such
as delays in circuits and communication networks, as well as ex-
ecution and response times of software are the natural application
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domains for such models. Using the new abstraction technique pre-
sented in the paper, we can automatically build a conservative ap-
proximation of the timed input-output behavior of the component
such that any performance guarantees obtained using the abstract
model, hold also for the concrete model.

This technique, which has been implemented into a tool, trans-
forms a high-level description of the timed systems1 into a prod-
uct of timed automata that captures all the possible behaviors of
the system under all admissible inputs and choices of delay pa-
rameters. From this automaton which has one state variable and
one clock variablefor every timed element2 we generate an ab-
stract model with fewer states and clocks which provides an over-
approximation of the time-dependent input-output behavior of the
system. This simplified model can replace the original model within
a hierarchical/compositional reasoning methodology. Our technique
allows the user to select the appropriate level of aggressiveness in
the abstraction, that is, the level of relaxation of the timing and or-
dering constraints in the abstract model, to achieve a good trade
off between the complexity of the model and its faithfulness to the
concrete behavior of the system. The major steps in our procedure
are:

1. Introduction of additional input clocks, each of which mea-
sures the time elapsed since the occurrence of a particular in-
put event. When the effect of this event is propagated through
the system, its associated clock is deactivated and can be
reused by future events.3 These “dynamic clocks” consti-
tute a novel and non-trivial feature in the theory and practice
of timed automata and their number is always bounded, de-
pending on the variability of the input and the structure of the
system.

2. Full-fledged reachability analysis of the automaton, result-
ing in a modified automaton from which all behaviors that
violate timing constraints are eliminated.

3. Generation of an abstract model by hiding all internal clocks
and variables and projecting the timing constraints on the in-
put clocks.

1For circuits this description consists of a network of logical gates
with bi-bounded delay elements, for embedded software it consists
of descriptions of tasks, resources, durations and scheduling poli-
cies.
2A timed element is something that measures the time since the
occurrence of some event and uses this value to guard a transition.
3We restrict ourselves to systems with an acyclic structure, sys-
tems in which every cycle in the transition graph has at least one
transition labelled with an input event. Such systems do not gen-
erate “autonomous” cycles and hence every input event generates
a “wave” of reactions that propagate through the system within a
finite time.



4. Minimization of the automaton by merging states which are
equivalent (or approximately-equivalent) with respect to ob-
servable input-output behavior.

The rest of the paper is organized as follows. Section 2 gives
some background on abstraction in general while Section 3 offers
a quick survey of timed automata and the computational difficulty
inherent in their analysis. Section 4 illustrates our modeling ap-
proach and describes the various stages of our abstraction proce-
dure. Preliminary experimental results are described and discussed
in Section 5 followed by suggestions for future work.

2. ABSTRACTION IN GENERAL
In verification and other system design activities we have often

to deal with a system model S which is too complex to analyze due
to its large or even infinite state space. In this case we can try to
replace S with a more abstract model S′ with the following prop-
erties: 1) The complexity of S′ is smaller than that of S, where
complexity is viewed operationally, that is, S′ is easier to analyze
than S using some verification tool; 2) Every observable behav-
ior of S is also a behavior of S′, but not vice versa (conservative
approximation).

Analyzing S′ is computationally easier than the verification of
S but due to over approximation, it may happen that the verifica-
tion of S′ may fail although S is correct. The navigation in the
space of possible abstractions of S in order to find one which is
sufficiently simple to avoid explosion yet sufficiently detailed to
prove the property in question, is a major research topic, especially
for infinite-state systems such as those used to model software. The
current paper is concerned with adapting this methodology to timed
systems defined using the timed automaton formalism, but before
moving to those, let us contemplate briefly on the nature of abstrac-
tion.

A discrete component S, such as a digital circuit or a reactive
program, is a device that maintains some relationship between the
sequence of inputs it observes and the sequence of outputs it emits.
Mathematically speaking, it can be viewed as a transducer, an
input-output transition system S = (X, Y, Z, δ, γ) that reads in-
puts ranging over X, makes transitions in its state space Y , accord-
ing to the transition relation δ, and outputs elements of Z accord-
ing to the output function γ. If we view S as a “white box” and
observe also the sequence of states visited while producing the out-
put (see Figure 1-(a)), we can view S as realizing some sequential
function f from X∗ to Y ∗ × Z∗ However, we do not really care
about the internal states of S, it is only the input-output function
(or relation) from X∗ to Z∗ which determines whether S interacts
correctly with its environment and meets its specification. So the
most natural simplification is to hide Y and consider the sequential
function f : X∗ → Z∗ as the essence of S.

However, contrary to what one may prematurely think, hiding
Y and projecting onto the output does not imply that we gain any-
thing in complexity neither lose anything in accuracy. The reason
is that every sequential function has its inherent state space struc-
ture (minimal realization, Myhill-Nerode congruence relation), re-
gardless of whether the states themselves are observable. In other
words, hiding internal states from outside observation does not change
the state space nor the transition function, which remains of the
form y′ = δ(y, x). The only thing it does is to “remove” the states
from the output function (see Figure 1-(a)).

Real abstractions, do reduce complexity and lose information by
simplifying the transition relation. The most common way to do
so is to define an equivalence relation ∼ on Y and replace S =
(X, Y, Z, δ, γ) with S′ = (X, Y ′, Z, δ′, γ′) where Y ′ = Y/ ∼,

the set of partition blocks of ∼. In other words we merge to-
gether states that are ∼-equivalent (see Figure 1-(b)). A transition
(y′

1, x, z, y′
2) exists in S′ if a transition (y1, x, z, y2) exists for some

y1 ∈ y′
1 and y2 ∈ y′

2. Such an abstraction may lose information
and generate more behaviors then are really possible in S. For ex-
ample, the behavior x1/z1z4 is possible in S′ while in S we have
either x1/z1z3 or x2/z2z4.

Our goal is to export these ideas to timed automata by hiding
some clocks variables, but the explanation is more complicated be-
cause in timed automata, like in any other automata with auxiliary
variables, the visible transition graph does not convey all the infor-
mation on the system dynamics but rather a projection of it.

3. TIMED MODELS
Timed extensions of discrete transition systems, such as timed

automata or Petri nets, allow one to reason about systems in an ex-
tremely important level of abstraction. At this level, the process
of switching between two discrete states is refined into two tran-
sitions, initiation and conclusion, separated by some real-valued
delay, which is often not known exactly but bounded. Among the
numerous phenomena that can benefit from this style of modeling
we mention the execution time of a block of code in a real-time pro-
gram, communication delays in a network, and the time it takes for
a digital electronic gate (or a more complex block) to stabilize to a
new value after its input has changed. In this paper we demonstrate
our approach using models based on networks of Boolean gates due
to their notational economy and because it is easy to generate large
examples in a uniform way, but the techniques developed can be
adapted to other description levels and application domains.

Timed automata model duration of actions using auxiliary clock
variables. To express a timing constraint between two transitions
(such as the initiation and termination of a process) a clock is re-
set to zero while taking the first transition, and its value is tested
to satisfy the constraint as a pre-condition (“guard”) for the sec-
ond transition. Between transitions, when the automaton stays in a
state, the value of all active clocks progress in the same pace, rep-
resenting at each moment the time elapsed since the occurrence of
their respective events.

At each moment along the real-time axis, the state of the automa-
ton is characterized by a configuration (q, v) with q being a discrete
state and v a vector of clock valuations ranging over some bounded
subset of R

n. Albeit the infinite state space, the basic verification
questions for timed automata are decidable [1]. Existing decision
techniques suffer, however, from the usual state-explosion prob-
lem, aggravated by the clock-explosion problem: during reachabil-
ity analysis we need to store “symbolic states” of the form (q, P )
where q is a discrete state and P is a set of clock valuations. These
sets are expressed by a conjunction of constraints of forms like
x < d or x − y < d, and constitute a special class of convex
polyhedra that we call timed polyhedra. In a state where n clocks
are active, timed polyhedra can be n-dimensional and admit up to
two constraints for each pair of variables. Consequently the anal-
ysis of a system consisting of n timed components may generate
in the worst case O(2n · n!) symbolic states, each with an O(n2)
representation size. Although a lot of effort has been invested dur-
ing the last decade in finding more efficient ways to analyze timed
automata, scalability toward the size requirements of circuit anal-
ysis has not been achieved. In this work we start exploring com-
positional reasoning via abstraction as an alternative road toward
scaling-up timed automata technology.

4. TIMED ABSTRACTION
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Figure 1: (a) Hiding internal states from the outside does not necessarily reduce complexity; (b) An abstraction S ′ of S obtained by
merging y1 and y2 into y12.

Timed automata are quite intuitive but their formal definition can
be rather irritating outside formal verification circles. To address
potential users of the proposed technology we avoid formalization
and illustrate our technique using a running example.

4.1 Modeling
Figure 2 shows a timed Boolean circuit and one of its possible

behaviors. The circuit has an input signal x which may switch arbi-
trarily, but with bounded variability, that is, it has to wait at least 5
time units between subsequent switchings. Changes in x are prop-
agated through a bi-bounded delay element whose output y follows
the value of x within some t ∈ [1, 2] time units and is fed into a
similar delay element with output z. Mathematically speaking the
relation between signals maintained by the circuit can be expressed
by the delay inclusions y ∈ D[1,2](x) and z ∈ D[1,2](y)

Following the principles laid out in [7] we model the input and
the components using the automata Ax, Ay and Az of Figure 3.
We label transitions by input events, guards, clock resets and output
events, for instance, a transition labeled by x+, cy < 2/{cz}, y−

can be taken upon the rising of x, provided that cy < 2, and its ef-
fect is to reset cz and lower y. The input automaton Ax guarantees
bounded variability by guarding its transitions with the condition
cx > 5 and by resetting clock cx to zero at every transition.

The modeling of delay elements by timed automata is a crucial
ingredient of our methodology. The automaton Ay starts at a stable
state 0 where its value coincides with the value of its input x. Upon
a change in x it moves to an excited state 0′ while resetting its clock
cy . The “stabilize” transition from 0′ to 1 through which y “catches
up” with x, may happen when cy ∈ [1, 2], that is, inside the time
window [t + 1, t + 2] with t being the time when x has changed.4

Note that the “excite” transition from 0 to 0′ is always triggered by
an external input but is not visible from the outside, while the stabi-
lization transition from 0′ to 1 is generated autonomously without
an input event (unless one considers the passage of time as such)
and is visible to the outside world. Composing the three automata
we get the global automaton A of Figure 4. Note also that each
clock is active only in global states in which its corresponding gate
is excited.

There are different approaches for treating the case where x changes
its value again before propagating to y. For the purpose of this
work, we assume that the automaton returns from 0′ to 0 (a “re-
gret” transition) and thus it “forgets” the whole episode. Other
approaches may treat this phenomenon as an error (“glitch”), or
model it in a manner more faithful to the physical realization of
logical gates. Either way, this guarantees that the number of events

4The fact that the automaton must leave state 0′ when cx reaches 2
can be expressed either using staying conditions (“invariants”) as-
sociated with states, or “deadlines” and “urgencies” associated with
transitions, [9]. Using the latter terminology, stabilization transi-
tions are delayable.

that may be “alive” in the systems is bounded, regardless of the
input frequency. In other domains this effect can be achieved by
admission controllers or bounded buffers.

The semantics of this automaton consists of all xyz signals it can
generate, that is, the signals carried by all runs of the automaton.
These runs are sequences of configurations separated by transitions
or by time-passage periods. The behavior where x rises at 6, y
follows after 1 time unit and z follows 1.9 time units after y, is
captured by the following run where configurations are presented
as tuples of the form 0

@
x, cx

y, cy

z, cz

1
A

where ⊥ denotes inactive clocks:

0
@

0′, 0
0,⊥
0,⊥

1
A 6−→

0
@

0′, 6
0,⊥
0,⊥

1
A x+

−→
0
@

1′, 0
0′, 0
0,⊥

1
A 1−→

0
@

1′, 1
0′, 1
0,⊥

1
A

y+
−→

0
@

1′, 1
1,⊥
0′, 0

1
A 1.9−→

0
@

1′, 2.9
1,⊥
0′, 1.9

1
A z+

−→
0
@

1′, 2.9
1,⊥
1,⊥

1
A

The circuit behavior carried by this run can be represented either
in a state-based manner (as a signal) or in an event-based manner
(as a time-event sequence, see [2]) as follows:

0
@

0
0
0

1
A

6 0
@

1
0
0

1
A

1 0
@

1
1
0

1
A

1.9 0
@

1
1
1

1
A 6 · x+ · 1 · y+ · 1.9 · z+

We use the term qualitative behavior to denote the sequence of
signal values without reference to timing. For this example the
qualitative behavior is x+y+z+ and can be viewed as an equiva-
lence class of all signals of the form t1 · x+ · t2 · y+ · t3 · z+ · t4
for any t1, t2, t3, t4 ≥ 0.

If we ignore timing constraints, remove all references to clocks
from transition guards and leave only the rising and falling labels,
we obtain a timed automaton which is practically equivalent to an
untimed automaton. This can be viewed as a very aggressive form
of abstraction whose set of qualitative behaviors is the set of all
sequences of labels carried by all paths in the transition graph, for
example x+y+z+x−y−z− or x+y+x−y−. However, taking tim-
ing into account one can see that given the variability constraint on
x, the second behavior is impossible because state 110′ is never
reached with a combination of clock values that satisfies the guard
cx > 5 ∧ cz < 2.

4.2 Reachability Analysis
The analysis of the timed automaton itself, rather than its un-

timed abstraction, is typically performed by constructing the reach-
ability graph, also known as the simulation graph [6], which gives
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Figure 2: A simple timed circuit and a typical behavior.
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Figure 3: Modeling the circuit of Figure 2 with timed automata.
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Figure 4: The global automaton A = Ax ◦ Ax ◦ Az for the circuit.



a (somewhat non-intuitive) representation of that part of the timed
automaton which is reachable from some initial state or set of states.
To illustrate the idea let us compute the reachability graph for A
starting from an initial configuration (0′00, cx = 0). In this state
we can let time progress indefinitely and can reach all clock valu-
ations satisfying cx ≥ 0. This is represented as a “symbolic state”
(0′00, cx ≥ 0). The next step is to intersect this set with the tran-
sition guard cx > 5 to obtain all the configurations from which the
transition labeled by x+ can be taken, represented by the symbolic
state (000, cx ≥ 5). Finally, by applying to this set the resetting of
cx and cy, we obtain the symbolic state (10′0, cx = cy = 0).

The process is then repeated from the new symbolic state where
time passage is limited by 2 which is the upper bound on the rising
of y, hence the symbolic state is (10′0, cx = cy ≤ 2). The tran-
sition back to 0′00 cannot be taken due to empty intersection with
the guard cx > 5 and this transition is eliminated. The intersection
with the guard cy ∈ [1, 2] gives (10′0, 1 ≤ cx = cy ≤ 2) and the
result of the transition after resetting cz is (1′10′, cx ≤ 2∧cz = 0).
In this state time can progress until cz = 2 resulting in the symbolic
state (1′10′, 1 ≤ cx − cz ≤ 2 ∧ cz ≤ 2) and so on and so forth
until we obtain the reachability graph of Figure 5. The procedure is
guaranteed to terminate due to the finite number of bounded timed
polyhedra [1, 6].

We interpret the reachability graph as a timed automaton A′ as
follows: for each symbolic state (q, P ) we define a copy of state
q whose staying condition (and its outgoing transition guards) are
restricted to their intersections with P . Transitions whose guards
become empty in the process, as well as states that become un-
reachable, are removed. On the other hand it may happen that the
reachability graph contains two or more symbolic states (q, P ) and
(q, P ′) that correspond to alternative paths to q, and hence the state
will be split in the resulting timed automaton. For example state
0′00 as an initial state can have all clock valuations with cx ≥ 0,
but when reached again through the path x+y+z+x−y−z−, the
value of cx must always exceed 2. Such state splitting will occur
very often in systems such as circuits where there are many “dia-
monds”, that is, two competing events e1 and e2 that may happen
in both e1 ≺ e2 and e2 ≺ e1 orders and converge to the same state
q. If these events reset clocks c1 and c2, respectively, the reach-
ability graph will contain two symbolic states, (q, c1 ≤ c2) and
(q, c2 ≤ c1).

It is not hard to see that the new timed automaton A′ admits
exactly the same set of behaviors as the original automaton A, to-
gether with an additional evident property that any configurations
that satisfies the staying condition of a state is indeed reachable.
Every finite or infinite path (a qualitative behavior) in the transition
graph of A′ is an untimed abstraction of a feasible behavior of A, a
behavior that satisfies the timing constraints. If our goal is to verify
some untimed property of the system, we can remove the clocks
from A′ (after having used them to eliminate infeasible paths) and
apply standard untimed verification algorithms. However if we
want to compose the system with other components it might not
be a good idea to get rid of all timing information. The untimed
abstraction does not constrain in any way the time between x+, y+

and z+, which can be arbitrarily small or large, and will make it dif-
ficult (if not impossible) to prove the correctness of the interaction
of the circuit with its environment. An abstraction which maintains
some of the timing constraints but which has less states and clocks,
would be very useful in this context.

4.3 Abstraction by Clock Projection
We want the abstract model to approximate the timed input-output

relationship maintained by the system. Clock cx measures the time

since the last change in the external input x while clocks cy and cz

measure time elapsed since the occurrence of internal events, the
excitation of the two gates, events that are of no interest to the gen-
eral public. We can thus “hide” these clocks and project the guards
and staying conditions on clock cx to obtain the automaton A′′ of
Figure 6. Note that a projection of a polyhedron P into a lower
dimensional polyhedron P ′ makes some of the constraints which
are implicit (redundant) in P , explicit in P ′. For example the poly-
hedron defined by 1 ≤ cz ≤ 2∧1 ≤ cx − cz ≤ 2 is projected onto
2 ≤ cx ≤ 4.

When y is not observable outside the system, the set of all xz
behaviors of A′′ is exactly that of A and A′ and no information
is lost. Unfortunately, in the general case, the projection of clocks
does lose information. Consider the same circuit but with y visible
to the external world. In this case A′′ is an over approximation
because it allows a behavior like 5 · x+ · 1 · y+ · 3 · z+, where y
“chooses” to change in the earliest time t ∈ [1, 2] after x while z
is allowed to chooses the largest element in [2, 4] = [1 + 1, 2 + 2]
while in A and A′ its choices were restricted to the interval [t +
1, t + 2]. This is the type of accuracy we are ready to sacrifice for
the purpose of complexity reduction.

The outcome of our abstraction technique is a timed automaton
over the inputs and outputs of the system, where output transition
guards involve clocks that measure the time elapsed since the oc-
currence of input events. In the previous example we used input
clock cx which was reset at every change in x. This construction
was correct because the variability constraint prevented the arrival
of an x-event while the circuit is still busy “digesting” the previous
event. When this constraint is relaxed, an x-labeled transition may
be taken in a state where one or more gates excited by the previous
x-transition have not yet stabilized. In our example, if we change
the variability constraint from cx ≥ 5 to cx ≥ 3, x may change at
state 1′10′ where y has already stabilized but z is still excited by
the previous change. If we reset cx we lose the time of that pre-
vious event, and when we project transitions guards on cx we do
not express the temporal distance between the rising of z and its
triggering event.5

To guarantee correct abstraction each input event should reset its
proper clock which will stay active as long as the “wave” of reac-
tions it triggered has not propagated through the system. Within
our modeling methodology, the number of input events that may be
active simultaneously in an acyclic system is bounded and hence a
finite number of clocks will suffice to retain the information nec-
essary for relating the timing of input and output events. To im-
plement these input clocks we modify the timed automaton model
to include a pool of dynamic clocks which are activated by input
events and killed when the effect of these events propagates to the
output. The attachment of these clocks to input events is not fixed
and the same clock can, for example, denote at some point the time
elapsed since the oldest x1 event still in the system, and at some
other point, the time since the most recent x2 event. Technically
speaking, we replace the input generator by one which creates a
new clock at every transition, and keeps track of the input events
that are still alive in the system and the clocks that represent them.
It is worth mentioning that such dynamic clocks are useful in other,
more theoretical, contexts [8].

4.4 Minimization
By hiding internal clocks we obtain an abstract model whose

number of clocks need not be equal to the number of timed ele-

5In our previous work [3] we have applied this abstraction tech-
nique to systems whose inputs changes only once at time zero, so
that one additional clock was sufficient to project on.
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Figure 5: The reachability graph of the automaton in Figure 4, interpreted as a timed automaton A′.
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Figure 6: The automaton A′′ obtained from A′ by hiding clocks cy and cz . The dotted boxes group together states that differ only
by the value if the internal variable y.



ments but rather depends on the maximal number of input events
that may be “alive” simultaneously in the system. The number of
such events depends, of course, on the size of the system as well as
on other properties such as the number of inputs, their variability as
well as structural properties such as width vs. depth (sequentiality
vs. parallelism). Under reasonable assumptions concerning these
parameters, the reduction in the number of clocks is significant.

The final step in our procedure aims at reducing the number of
discrete states by merging states that are equivalent or approxi-
mately equivalent in terms of the observable behaviors they admit.
Candidates for merging are states that differ from each other only
by values of internal variables and of clocks, for example states
such as 1′0′0 and 1′10′ in automaton A′′ of Figure 6, after hiding
y. A commonly-used minimization rule (also for untimed systems)
is the following.

Let q be a source state for several paths, each consisting of a se-
quence of unobservable transitions, except the last transition which
changes one observable variable and goes to state q′. In this case q
and all the intermediate states can be collapsed into one state whose
staying condition is the union of those of all states, and which has
a transition to q′ guarded by the union of all transition guards to
q′ from the intermediate states. Applying this rule we obtain the
automaton of Figure 7 which is nothing but a demonstration of
the following equivalence on delay operators: D[1,2](D[1,2](x)) =
D[2,4](x). A similar transformation was presented in [11] for timed
Petri nets.

The situation gets more complicated when the system admits
more parallelism and input events may appear more frequently. We
have developed a variety of minimization algorithms that are simi-
lar in spirit to those described in [5]. We employ a variety of pro-
gressively more “liberal” criteria that merge states which: 1) Admit
exactly the same sequences of observable transitions and guards; 2)
Differ in guards but the guards are included in each other; 3) Differ
in guards and the guard of the new state is the convex hull of the
guards of the original states; 4) Differ in the order of some sequence
of events that admit.

We have implemented all the abovementioned features into a
new experimental version of the verification tool IF [4], includ-
ing an automatic translation from a circuit description language to
timed automata, generation and maintenance of dynamic clocks,
projection and minimization. The software implementing this tech-
nique consists of more than 15000 lines of C++ code.

5. EXPERIMENTAL RESULTS
To assess our approach we applied it first on some classes of syn-

thetic circuits, the first of which is a family of k-long buffers like
the one described in the example, with delays in [3, 5]. We per-
formed the experiments with two versions of the buffer, one where
only the output of gate k is observable, and the other where the
output of gate k/2 is visible as well. Table 1 shows the results of
applying our technique while assuming input variability bounded
by 40. Column w shows the maximal number of input events that
may be alive in the buffer, which ranges from 1 to 3 depending on
the circuit depth. The first pair of columns shows the number of
symbolic states and transition in the computed reachability graph.
The rest of the table shows the size of the reduced graph using
three minimization criteria: Hidemin indicates merging only in the
case of identical guards, TimedMin merges states when guards are
included in each other while Temporal Min ignores guards and con-
siders equivalence with respect to transition labels.

The other class of examples is inspired by recent research on per-
formance analysis of embedded software, e.g. [10]. We consider
systems that generate different types of tasks with some bounded

frequency. Each type of task has to go through a partially-ordered
set of treatments. Each type of treatment requires a specific re-
source (machine) for some duration with the possibility of resource
conflicts between tasks. These conflicts are resolved by a scheduler
applying a simple policy. Each task type has a dedicated bounded
buffer. We have applied our technique to an instance of this prob-
lem with 2 task types, 3 machines, a priority-based scheduler and
parameters that allow 3 events to be alive simultaneously in the sys-
tem. An unoptimized version of IF generates a reachability graph
with 1282 states and 1975 transitions. The version of IF that we
use, with dynamic clocks and various optimization that we do not
bother to detail, yields a graph with 127 states and 205 transition.
After minimization with zone inclusion we obtain the automaton
of Figure 8 with 18 states and 33 transitions. Transitions in the
reduced model correspond to arrivals of new tasks and their termi-
nation.

6. DISCUSSION
We have developed a new promising technique for automatic

generation of abstractions for open timed systems. Timed automata
with dynamic input clocks may turn out to be the appropriate for-
malism for characterizing the timed input-output behaviors of com-
plex systems, whose approximation by nice analytical expressions
is too coarse. Our technique can also be part of a divide-and-
conquer methodology where abstract models of sub-systems are
composed together in order to verify a system too large to be an-
alyzed as a whole. Much more experimentation and fine tuning
are needed, however, in order to assess the applicability of our ap-
proach.

Our original ambitious aim was to provide a “fully-open” ab-
straction without assuming any restriction on the inputs, and letting
this restrictions come from each particular environment with which
the abstract model is to be composed. However, we have learned
in the process that unrestricted inputs generate too many simulta-
neous waves that lead to explosion. One should be careful, though,
not to confuse what is assumed and what should be guaranteed.
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Figure 7: Hiding y and minimizing the automaton

Generated HideMin TimedMin Temporal Min
Buff Time w Graph 1 Out 2 Out 1 Out 2 Out 1 Out 2 Out

(mn) S T S T S T S T S T S T S T

2 00:00 1 6 6 4 4 6 6 4 4 6 6 4 4 6 6
3 00:00 1 8 8 4 4 6 6 4 4 6 6 4 4 6 6
4 00:00 1 10 10 4 4 6 6 4 4 6 6 4 4 6 6
5 00:00 1 12 12 4 4 6 6 4 4 6 6 4 4 6 6
6 00:00 1 14 14 4 4 6 6 4 4 6 6 4 4 6 6
7 00:00 1 16 16 4 4 6 6 4 4 6 6 4 4 6 6
8 00:00 2 20 22 6 8 8 10 8 10 8 10 8 10 8 10
9 00:00 2 26 32 6 12 8 14 6 8 8 12 6 8 8 12

10 00:00 2 44 62 8 24 10 26 8 12 10 14 6 8 8 10
11 00:01 2 86 132 10 50 12 52 10 18 12 20 6 8 8 12
12 00:03 2 166 266 12 92 18 98 12 26 16 32 6 8 12 18
13 00:20 2 382 624 16 172 26 188 14 36 18 42 6 8 12 18
14 00:34 2 584 966 22 280 44 322 20 84 30 110 6 8 22 48
15 00:54 2 804 1336 26 398 54 446 24 110 42 150 6 8 30 78
16 03:45 3 2208 3846 67 884 125 1109 52 270 96 445 29 85 68 254
17 09:28 3 4349 8284 333 5596 497 4884 235 2590 363 2591 114 881 221 1587
18 38:45 3 12425 25329 1051 39940 1387 28993 623 15375 879 14080 466 14805 756 12974

Table 1: The result of applying our technique to chains of buffers.
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Figure 8: The abstract model of the 2-task, 3-machines problem. Arrival and termination of tasks are denoted by Gi and Fi labels,
respectively, whike creation, removal and shifting of clocks by St, Rm and Sh. Zones appear in a separate file to facilitate readability.
A more detailed description of the input and the output can be found in www-verimag.imag.fr/∼maler/cav-appendix.html
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