
Proof-Transforming Compilation of
Programs with Abrupt Termination

Peter Müller
Microsoft Research, USA

mueller@microsoft.com

Martin Nordio
ETH Zurich, Switzerland
Martin.Nordio@inf.ethz.ch

ABSTRACT
The execution of untrusted bytecode programs can produce
undesired behavior. A proof on the bytecode programs can
be generated to ensure safe execution. Automatic techniques
to generate proofs, such as certifying compilation, can only
be used for a restricted set of properties such as type safety.
Interactive verification of bytecode is difficult due to its un-
structured control flow. Our approach is verify programs on
the source level and then translate the proof to the byte-
code level. This translation is non-trivial for programs with
abrupt termination. We present proof transforming compi-
lation from Java to Java Bytecode. This paper formalizes the
proof transformation and present a soundness result.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Program Verification—Cor-
rectness proofs; D.3.4 [Programming Languages]: Pro-
cessors—Compilers; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms
Verification, Languages

Keywords
Trusted Components, Proof-Carrying Code, Proof-Transforming
Compiler

1. INTRODUCTION
Proof-Carrying Code (PCC) [8, 9] has been developed with

the goal of solving the problems produced by the unsafe exe-
cution of mobile code. In PCC, the code producer provides a
proof, a certificate that the code does not violate the security
properties of the code consumer. Before the code execution,
the proof is checked by the code consumer. Only if the proof
is correct, the code is executed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2007), September 3-4, 2007, Cavtat
near Dubrovnik, Croatia.
Copyright 2007 ACM ISBN 978-1-59593-721-6/07/0009 ...$5.00.

The certificate proves the properties that are satisfied by
the bytecode program. With the goal of generating certifi-
cates automatically, Necula [9] has developed certifying com-
pilers. Certifying compilers are compilers that take a pro-
gram as input and produce bytecode and its proof. Unfortu-
nately, certifying compilers only work with a restricted set
of provable properties such as type safety.
Another approach to solve the problem caused by mobile

code is interactive verification of bytecode. This approach is
applicable to a wide range of properties, but is difficult due
to the bytecode’s unstructured control flow. Contrary, source
verification is simpler, but does not generate a certificate for
the bytecode program.
The approach we propose here is the use of a Proof - Trans-

forming Compiler (PTC). PTCs are similar to certifying com-
pilers in PCC, but take a source proof as input and produce
the bytecode proof. Figure 1 shows the architecture of this
approach. The code producer develops a program. A proof
of the source program is developed using a prover. Then,
the PTC translates the proof producing the bytecode and
its proof, which are sent to the code consumer. The proof
checker verifies the proof. If the source proof or the transla-
tion were incorrect, the checker would reject the code.
An important property of Proof-Transforming Compilers is

that they do not have to be trusted. If the compiler produces
a wrong specification or a wrong proof for a component, the
proof checker will reject the component. This approach has
the strengths of both above mentioned approaches.
If the source and target languages are close, the proof

translation is simple. However, if they are not close and
the compilation function is complex, the translation can be
hard. For example, proof-transformation from a subset of
Java with try-catch, try-finally and break statements to
Java Bytecode is not simple. Compiling these statements in
isolation is simple, but the compilation of their interplay is
not.
A try-finally statement is compiled using code duplica-

tion: the finally block is put after the try block. If try-
finally statements are used inside of a while loop, the
compilation of break statements first duplicates the finally
blocks and then inserts a jump to the end of the loop. Fur-
thermore, the generation of exception tables is also harder.
The code duplicated before the break may have exception
handlers different from those of the enclosing try block.
Therefore, the exception table must be changed so that ex-
ceptions are caught by the appropriate handlers. In this pa-
per, we present the first PTC that handles these complica-
tions.

39

Figure 1: General architecture.

Outline. The source language and its Hoare-style logic are
introduced in Section 2. We present the Bytecode language
and its logic in Section 3. In Section 4, we define the proof
transformation. Section 5 illustrates proof transformations
by an example. Section 6 states a soundness theorem. Re-
lated work is discussed in Section 7. Section 8 summarizes
and gives directions for future work.

2. SOURCE LANGUAGE AND LOGIC
The source language we consider is similar to a Java sub-

set. Its definition is the following:

exp ::= literal | var | exp op exp

stm ::= x = exp | stm; stm | while (exp) stm

| break ; | if (exp) stm else stm

| try stm catch (type var) stm

| try stm finally stm | throw exp ;

To avoid return statements, we assume that the return
value of every method is assigned to a special local variable
named result (this is the only discordance with respect to
Java). Moreover, we assume that the expressions are side-
effect-free and cannot throw exceptions.
The subset of Java is small, but the combination of while,

breaks, try-catch and try-finally statements produces an
interesting subset especially from the point of view of com-
pilation. The code duplication used by the compiler for try-
finally statements increases the complexity of the compi-
lation and translation functions, specially the formalization
and its soundness proof.
In our technical report [7], the source languages also in-

cludes object-oriented features such as cast, new, read and
write field, and method invocation. In this paper, we only
present the most interesting features.

2.1 Method and statement specifications
The logic is based on the programming logic introduced

in [6, 12, 13]. We have modified it and proposed new rules
for while including break and exceptions, try-catch and
try-finally. In [13], a special variable χ is used to capture
the status of the program such as normal or exceptional
status. This variable is not necessary in the bytecode proof
since non-linear control flow is implemented via jumps. To
eliminate the χ variable, we use Hoare triples with two or
three postconditions to encode the status of the program
execution. This simplifies not only the translation but also

the presentation.
Properties of methods are expressed by Hoare triples of

the form {P} T.m { Qn , Qe } , where P , Qn , Qe are
first-order formulas and T.m is a method m declared in class
T . The third component of the triple consists of a normal
postcondition (Qn), and an exceptional postcondition (Qe).
We call such a triple method specification.
Properties of statements are specified by Hoare triples of

the form {P} S {Qn ,Qb ,Qe} , where P , Qn , Qb , Qe are
first-order formulas and S is a statement. For statements, we
have a normal postcondition (Qn), a postcondition after the
execution of a break (Qb), and an exceptional postcondition
(Qe).
The triple {P} S {Qn ,Qb ,Qe} defines the following

refined partial correctness property: if S ’s execution starts
in a state satisfying P , then (1) S terminates normally in a
state where Qn holds, or S executes a break statement and
Qb holds, or S throws an exception and Qe holds, or (2) S
aborts due to errors or actions that are beyond the seman-
tics of the programming language, e.g., memory allocation
problems, or (3) S runs forever.

2.2 Rules
Figure 2 shows the rules for compositional, while, break,

try-catch, and throw statements. In the compositional state-
ment, the statement s1 is executed first. The statement s2
is executed if and only if s1 has terminated normally.
In the while rule, the execution of the statement s1 can

produce three results: either (1) s1 terminates normally and
I holds, or (2) s1 executes a break statement and Qb holds,
or (3) s1 throws an exception and Re holds. The postcondi-
tion of the while statement expresses that either the loop
terminates normally and (I ∧ ¬e) ∨ Qb holds or throws an
exception and Re holds. The break postcondition is false,
because after a break within the loop, execution continues
normally after the loop.
The break rule sets the normal and exception postcondi-

tion to false and the break postcondition to P due to the
execution of a break statement.
In the try-catch rule, the execution of the statement s1

can produce three different results: (1) s1 terminates nor-
mally and Qn holds or terminates with a break and Qb

holds. In these cases, the statement s2 is not executed and
the postcondition of the try-catch is the postcondition of s1;
(2) s1 throws an exception and the exception is not caught.
The statement s2 is not executed and the try-catch finishes
in an exception mode. The postcondition is Q ′′

e ∧ τ(excV) 6¹
T , where τ yields the runtime type of an object, excV is a
variable that stores the current exception, and ¹ denotes
subtyping; (3) s1 throws an exception and the exception is
caught. In the postcondition of s1, Q ′

e ∧ τ(excV) ¹ T
specifies that the exception is caught. Finally, s2 is executed
producing the postcondition. Note that the postcondition
is not only a normal postcondition: it also has to take into
account that s2 can throw an exception or can execute a
break.
Similar to break, the throw rule modifies the postcondi-

tion P by updating the exception component of the state
with the just evaluated reference.
To define the rule for try-finally, we have to treat a

special case, illustrated through the example in Figure 3.
The exception thrown in the try block is never caught.

However, the loop terminates normally due to the execution

40

compositional
{P} s1 {Qn ,Rb ,Re}
{Qn} s2 {Rn ,Rb ,Re}
{P} s1; s2 {Rn ,Rb ,Re}

while
{e ∧ I} s1 {I ,Qb ,Re}

{I} while (e) s1 {((I ∧ ¬e) ∨ Qb), false,Re}
break

{P} break {false,P , false}
try-catch

{P} s1 {Qn ,Qb ,Q}
{Q ′e [e/excV]} s2 {Qn ,Qb ,Re}

{P} try s1 catch (T e) s2 {Qn ,Qb ,R}
where
Q ≡ ((Q ′′e ∧ τ(excV) 6¹ T) ∨ (Q ′e ∧ τ(excV) ¹ T))

R ≡ (Re ∨ (Q ′′e ∧ τ(excV) 6¹ T))

throw

{P [e/excV]} throw e {false, false,P}

Figure 2: Rules for composition, while, break, try-
catch, and throw.

void foo () {
int b = 1;
while (true) {

try { throw new Exception(); }
finally { b++; break; }

}
b++;

}

Figure 3: The exception raised in the try block is
not handled, yet the method terminates normally.

of the break statement in the finally block. Thus, the value
of b at the end of foo is 3.
If an exception occurs in a try block, it will be re-raised

after the execution of the finally block. If both the try
and the finally block throw an exception, the latter takes
precedence. The following table summarizes the status of
the program after the execution of the try-finally:

finally
normal break exc2

normal normal break exc2

try break break break exc2

exc1 exc1 break exc2

We use the fresh variable eTmp to store the exception
occurred in s1 because another exception might be raised
and caught in s2. In this case, we still need to have access to
the first exception of s1 because this exception is the result
of that statement [13]. We use the fresh variable XTmp to
store the status of the program after the execution of s1.
The possible values of XTmp are: normal , break , and exc.
Depending on the status after the execution of s2, we need to
propagate an exception or change the status of the program
to break . The rule is the following:

{P} s1 {Qn ,Qb ,Qe}
{Q} s2 {R,R′b ,R′e}

{P} try s1 finally s2 {R′n ,R′b ,R′e}

where

Q ≡
(

(Qn ∧ XTmp = normal) ∨ (Qb ∧ XTmp = break) ∨(
Qe [eTmp/excV] ∧ XTmp = exc ∧ eTmp = excV

)
)

R ≡
(

(R′n ∧ XTmp = normal) ∨ (R′b ∧ XTmp = break) ∨
(R′e ∧ XTmp = exc)

)

Furthermore, the logic contains language-independent rules
such as the rule of consequence. Due to space limitations,
we do not present them here.

3. BYTECODE LANGUAGE AND LOGIC
The bytecode language consists of classes with fields and

methods. Methods are implemented as method bodies con-
sisting of a sequence of labeled bytecode instructions. Byte-
code instructions operate on the operand stack, local vari-
ables (which also include parameters), and heap. The byte-
code instructions used to compile the source language are:
pushc v , pushv x , pop x , binop , goto l , brtrue l , and athrow.
pushc v pushes constant v onto the stack. pushv x pushes the
value of a variable x onto the stack. pop x pops the topmost
element off the stack and assigns it to the local variable x .
binop removes the two topmost values from the stack and
pushes the result of applying binop to these values. goto l
transfers control to the point l . brtrue l transfers control
to the point l if the topmost element of the stack is true
and unconditionally pops it. athrow takes the topmost value
from the stack, assumed to be an exception, and throws it.
To simplify the translation of source programs, we assume
the bytecode language has a type boolean.
The bytecode logic is a Hoare-style program logic which

allows one to formally verify that implementations satisfy
interface specifications given as pre- and postconditions. We
use the bytecode logic developed by Bannwart and Müller [1].

3.1 Method and Instruction Specifications
To make proof transformation feasible, it is essential that

the source logic and the bytecode logic are similar in their
structure. In particular, they treat methods in the same
way, they contain the same language-independent rules, and
triples have a similar meaning.
Analogously to the source logic, properties of methods are

expressed by method specifications of the form form {P}
T.mp {Qn , Qe}. Properties of method bodies are expressed
by Hoare triples of the form {P} comp {Q}, where P, Q
are first-order formulas and comp is a method body. The
triple {P} comp {Q} expresses the following refined partial
correctness property: if the execution of comp starts in a
state satisfying P, then (1) comp terminates in a state where
Q holds, or (2) comp aborts due to errors or actions that
are beyond the semantics of the programming language, or
(3) comp runs forever.
The unstructured control flow of bytecode programs makes

it difficult to handle instruction sequences, because jumps
can transfer control into and from the middle of a sequence.
Therefore, the logic treats each instruction individually: each
individual instruction Il in a method body p has a precon-
dition El . An instruction with its precondition is called an
instruction specification, written as {El} l : Il .
The meaning of an instruction specification {El} l : Il

cannot be defined in isolation. {El} l : Il expresses that if
the precondition El holds when the program counter is at
position l , the precondition El′ of Il ’s successor instruction
I ′l holds after normal termination of Il .

41

3.2 Rules
All the rules for instructions, except for method calls, have

the following form:

El ⇒ wp1
p (Il)

A ` {El} l : Il

where wp1
p (Il) denotes the local weakest precondition of in-

struction Il . Such a rule specifies that the precondition of
Il has to imply the weakest precondition of Il with respect
to all possible successor instructions of Il . The definition of
wp1

p is shown in Table 1.
Within an assertion, the current stack is referred to as

s and its elements are denoted by non-negative integers:
element 0 is the topmost element, etc. The interpretation
[El] : State × Stack → Value for s is

[s(0)]〈S , (σ, v)〉 = v and
[s(i + 1)]〈S , (σ, v)〉 = [s(i)]〈S , σ〉

The functions shift and unshift define the substitutions
that occur when values are pushed onto and popped from
the stack, respectively:

shift(E) = E [s(i + 1)/s(i) | ∀i ∈ N]
unshift = shift−1

Il wp1
p (Il)

pushc v unshift(El+1[v/s(0)])

pushv x unshift(El+1[x/s(0)])

pop x (shift(El+1))[s(0)/x]

binop (shift(El+1))[s(1) op s(0)/s(1)]

goto l ′ El′

brtrue l ′ (¬s(0) ⇒ shift(El+1)) ∧ (s(0) ⇒ shift(El′))

Table 1: Definition of function wp1
p .

4. PROOF TRANSLATION
Our proof-transforming compiler is based on two transfor-

mation functions, ∇S and ∇E , for statements and expres-
sions, respectively. Both functions yield a sequence of byte-
code instructions and their specification. The PTC takes a
list of classes with their proofs and returns the bytecode
classes with their proofs.
The function ∇E generates a bytecode proof from a source

expression and a precondition for its evaluation. The func-
tion ∇S generates a bytecode proof and an exception table
from a source proof. These functions are defined as a com-
position of the translations of its sub-trees. The signatures
are the following:

∇E : Precondition × Expression × Postcondition ×
Label → BytecodeProof

∇S : ProofTree × Label × Label × Label × List [Finally] ×
ExcTable → [BytecodeProof × ExcTable]

In ∇E , the label is used as the starting label of the transla-
tion. ProofTree is a derivation in the source logic. In ∇S , the
three labels are: (1) lstart for the first label of the resulting
bytecode; (2) lnext for the label after the resulting bytecode;
this is for instance used in the translation of an else branch

Type Typical use

Precondition ∪ Postcondition P ,Q ,R,U ,V
ProofTree (for source language only) TS1 ,TS2 ,Treei

ProofTree (for finally only) TFi

List [Finally] f
ExceptionTable eti
ExceptionTable (for finally only) et ′i
BytecodeProof BS1 ,BS2

InstrSpec bpushc, ..., bbrtrue
Label lstart , lnext , lbreak ,

lb , lc , ..., lg

Table 2: Naming conventions.

to determine where to jump at the end; (3) lbreak for the
jump target for break statements.
The BytecodeProof type is defined as a list of InstrSpec,

where InstrSpec is an instruction specification. The Finally
type, used to translate finally statements, is defined as a
tuple [ProofTree,ExcTable]. Furthermore, the ∇S takes an
exception table as parameter and produces an exception ta-
ble. This is necessary because the translation of break state-
ments can lead to a modification of the exception table as
described above. (more details are presented in Section 4.3).
The ExcTable type is defined as follows:

ExcTable := List [ExcTableEntry]
ExcTableEntry := [Label ,Label ,Label ,Type]

In the ExcTableEntry type, the first label is the starting label
of the exception line, the second denotes the ending label,
and the third is the target label. An exception of type T1

thrown at line l is caught by the exception entry [lstart ,
lend ,ltarg ,T2] if and only if lstart ≤ l < lend and T1 ¹ T2.
Control is then transferred to ltarg .
In the following, we present the proof translation for com-

positional rule, while, try-finally, and break. Table 2 com-
prises the naming conventions we use in the rest of this pa-
per.

4.1 Compositional Statement
Let TS1 and TS2 be the following proof trees:

TS1 ≡
Tree1

{P} s1 {Qn ,Rb ,Re}

TS2 ≡
Tree2

{Qn} s2 {Rn ,Rb ,Re}

TS1;S2 ≡
TS1 TS2

{P} s1; s2 {Rn ,Rb ,Re}

In the translation of TS1 , the label lnext is the start label
of the translation of s2, say lb . The translation of TS2 uses
the exception table produced by the translation of TS1 , et1.
The translation of TS1;S2 yields the concatenation of the
bytecode proofs for the sub-statements and the exception
table produced by the translation of TS2 .
Let [BS1 , et1] and [BS2 , et2] be of type [BytecodeProof ,

ExcTable]:

[BS1 , et1] = ∇S

(
TS1 , lstart , lb , lbreak , f , et

)

[BS2 , et2] = ∇S

(
TS2 , lb , lnext , lbreak , f , et1

)

42

The translation is defined as follows:

∇S

(
TS1;S2, lstart , lnext , lbreak , f , et

)
=

[BS1 + BS2 , et2]

The bytecode for s1 establishes Qn , which is the precondi-
tion of the first instruction of the bytecode for s2. There-
fore, the concatenation BS1 + BS2 produces a sequence of
valid instruction specifications. We will formalize soundness
in Section 6.

4.2 While Statement
Let TS1 and Twhile be the following proof trees:

TS1 ≡
Tree1

{e ∧ I} s1 {I ,Qb ,Re}

Twhile ≡
TS1

{I} while (e) s1 {(I ∧ ¬e) ∨ Qb , false,Re}

In this translation, first the loop expression is evaluated at
lc . If it is true, control is transferred to lb , the start label of
the loop body. In the translation of TS1 , the start label and
next labels are lb and lc . The break label is the end of the
loop (lnext). Furthermore, the finally list is set to ∅, because
a break inside the loop jumps to the end of the loop without
executing any finally blocks.
Let bgoto and bbrtrue be instruction specifications and BS1

and Be be bytecode proofs:

bgoto = {I } la : goto lc

[BS1 , et1] = ∇S (TS1 , lb , lc , lnext , ∅, et)
Be = ∇E (I , e, (shift(I) ∧ s(0) = e) , c)

bbrtrue = {shift(I) ∧ s(0) = e} ld : brtrue lb

The definition of the translation is the following:

∇S (Twhile , lstart , lnext , lbreak , f , et) =
[bgoto + BS1 + Be + bbrtrue , et1]

The instruction bgoto establishes I , which is the precondition
of the successor instruction (the first instruction of Be). Be

establishes shift(I) ∧ s(0) = e because the evaluation of
the expression pushes the result on top of the stack. This
postcondition implies the precondition of the successor in-
struction bbrtrue. bbrtrue establishes the preconditions of both
possible successor instructions, namely e ∧ I for the suc-
cessor lb (the first instruction of BS1), and I ∧ ¬e for lnext .
Finally, BS1 establishes I , which implies the precondition of
its successor Be , I . Therefore, the produced bytecode proof
is valid.

4.3 Try-Finally Statement
Sun’s newer Java compilers translate try-finally state-

ments using code duplication. Consider the following exam-
ple:

while (i < 20) {
try {

try {
try { ... break; ... }
catch (Exception e) { i = 9; }

}
finally { throw new Exception(); }

}
catch (Exception e) { i = 99; }

}

The finally body is duplicated before the break. But the
exception thrown in the finally bock must be caught by the
outer try-catch. To achieve that, the compiler creates, in
the following order, exception lines for the outer try-catch,
for the try-finally, and for the inner try-catch. When the
compiler reaches the break, it divides the exception entry of
the inner try-catch and try-finally into two parts so that
the exception is caught by the outer try-finally. To be able
to divide the exception table the compiler needs to compare
the exception entries. This is why our Finally type consists
of a proof tree (for the duplicated code) and an exception
table. Note that we have a list of Finally to handle nested
try-finally statements.
Let TS1 , TS2 and Ttry−finally be the following proof trees:

TS1 ≡ Tree1

{P} s1 {Qn ,Qb ,Qe}

TS2 ≡ Tree2

{Q} s2 {R,R′b ,R
′
e}

Ttry−finally ≡ TS1 TS2

{P} try s1 finally s2 {R′n ,R′b ,R
′
e}

where

Q ≡
(

(Qn ∧ XTmp = normal) ∨ (Qb ∧ XTmp = break) ∨(
Qe [eTmp/excV] ∧ XTmp = exc ∧ eTmp = excV

)
)

R ≡
(

(R′n ∧ XTmp = normal) ∨ (R′b ∧ XTmp = break) ∨
(R′e ∧ XTmp = exc)

)

In this translation, the bytecode for s1 is followed by the
bytecode for s2. In the translation of TS1 , the finally block
is added to the finally-list f with TS2 ’s source proof tree
and its associated exception table. The corresponding ex-
ception table is retrieved using the function getExcLines :
Label ×Label ×ExcTable → ExcTable. Given two labels and
an exception table et , getExcLines returns, per every ex-
ception type in et , the first et ’s exception entry (if any) for
which the interval made by the starting and ending labels
includes the two given labels. Furthermore, a new exception
entry, for the finally block, is added to the exception ta-
ble et . Then, the bytecode proof for the case when s1 throws
an exception is created. The exception table of this transla-
tion is produced by the predecessor translations.
Let et ′, et ′′ be the following exception tables:

et1 = et + [lstart , lb , ld , any]
et ′ = getExcLines(la , lb , et1)

Let bgoto, bpop, bpushv, and bathrow be instructions specifica-
tions and BS1 , BS2 , and B ′

S2 be bytecode proofs:

[BS1 , et2] = ∇S (TS1 , lstart , lb , lbreak , [TS2 , et ′] + f , et1)

[BS2 , et3] = ∇S (TS2 , lb , lc , lbreak , f , et2)

bgoto = {Q ′
n} lc : goto lnext

bpop =

shift(Qe) ∧
excV 6= null

∧ s(0) = excV

ld : pop eTmp

[BS ′2 , et4] = ∇S (TS2 , le , lf , lbreak , f , et3)

bpushv =
{

Q ′
n ∨ Q ′

b ∨ Q ′
e

}
lf : pushv eTmp

bathrow =

{
(Q ′

n ∨ Q ′
b ∨ Q ′

e)

∧ s(0) = eTmp

}
lg : athrow

43

The translation is defined as follows:

∇S (Ttry−finally , lstart , lnext , lbreak , f , et) =
[BS1 + BS2 + bgoto + bpop + BS ′2 + bpushv + bathrow , et4]

It is easy to see that the instruction specifications bgoto, bpop,
bpushv, and bathrow are valid (by applying the definition of
the weakest precondition). However, the argument for the
translation of TS1 and TS2 is more complex. Basically, the
result is a valid proof because the proof tree inserted in f for
the translation of TS1 is a valid proof and the postcondition
of each finally block implies the precondition of the next
one. Furthermore, for normal execution, the postcondition
of BS1 (Qn) implies the precondition of BS2 (Q).

4.4 Break Statement
To specify the rules for break, we use the following recur-

sive function: divide: ExcTable × ExcTableEntry × Label
× Label → ExcTable. Its definition assumes that the ex-
ception entry is in the given exception table and the two
given labels are in the interval made by the exception en-
try’s starting and ending labels. Given an exception entry
y and two labels ls and le , divide compares every exception
entry, say x , of the given exception table to y . If the inter-
val defined by x ’s starting and ending labels is included in
the interval defined by y ’s starting and ending labels, then
x must be divided to have the appropriate behavior of the
exceptions. Thus, the first and the last interval of the three
intervals defined by x ’s starting and ending labels, ls , and
le are returned, and the procedure is continued for the next
exception entry. If x and y are equal, then recursion stops
as divide reached the expected entry. The formal definition
of divide is the following:

divide : ExcTable × ExcTableEntry × Label ×
Label → ExcTable

divide : ([], e ′, ls , le) = [e ′]
divide : (e : et , e ′, ls , le) =

[lstart , ls , ltarg , T1] + [le , lend , ltarg , T1]+
divide(et , e ′, ls , le) if e ⊆ e ′ ∧ e 6= e ′

| e : et if e = e ′

| e : divide(et , e ′, ls , le) otherwise
where
e ≡ [lstart , lend , ltarg ,T1] and e ′ ≡ [l ′start , l

′
end , l ′targ ,T2]

⊆ : ExcTableEntry × ExcTableEntry → Boolean
⊆ : ([lstart , lend , ltarg ,T1], [l

′
start , l

′
end , l ′targ ,T2]) =

true if (l ′st ≤ lst) ∧ (l ′end ≥ lend)
| false otherwise

When a break statement is encountered, the proof tree of
every finally block the break has to execute upon exiting
the loop is translated. Then, control is transferred to the end
of the loop using the label lbreak . Let fi = [TFi , et

′
i] denote

the i-th element of the list f , where

TFi =
Treei

{U i} si {V i}

and U i and V i have the following form, which corresponds

to the Hoare rule for try-finally (see Section 2):

U i ≡

(U i
n ∧ XTmp = normal) ∨

(U i
b ∧ XTmp = break) ∨(
U i

e [eTmp/excV] ∧ XTmp = exc ∧
eTmp = excV

)

V i ≡

(V ′i
n ∧ XTmp = normal) ∨

(V ′i
b ∧ XTmp = break) ∨

(V ′i
e ∧ XTmp = exc)

 , V i

b , V i
e

Let BFi be a BytecodeProof for TFi such that

[BFi
, eti+1] = ∇S

(
TFi

, lstart+i , lstart+i+1, lbr , fi+1...fk ,

divide(eti , et
′
i [0], lstart+i , lstart+i+1)

)

bgoto = {Bk
b } lstart+k+1 : goto lbr

The definition of the translation is the following:

∇S

(

{P} break {false,P , false} , lstart , lnext , lbr , f , et0

)

= [BF1 + BF2 + ...BFk + bgoto, etk]

To argue that the bytecode proof is valid, we have to show
that the postcondition of BFi implies the precondition of
BFi+1 and that the translation of every block is valid. This is
the case because the source rule requires the break-postcondition
of s1 to imply the normal precondition of s2.
The exception table has two important properties that

hold during the translation. The first one (Lemma 1) states
that the exception entries, whose starting labels appear af-
ter the last label generated by the translation, are kept un-
changed. The second one (Lemma 2) expresses that the ex-
ception entry is not changed by the division. These proper-
ties are used to prove soundness of the translation.

Lemma 1. If ∇S ({Pn} s {Q}, la , lb+1, lbreak , f , et)
= [(Ila ...Ilb), et

′] and lstart ≤ la < lb ≤ lend then for every
ls , le ∈ Label such that lb < ls < le ≤ lend and for every
T ∈ Type such that T ¹ Throwable∨T ≡ any, the following
holds: et [lstart , lend ,T] = et ′[ls , le ,T].

Lemma 2. Let r ∈ ExcTableEntry and et ′ ∈ ExcTable be
such that r ∈ et ′. If et ∈ ExcTable and ls , le ∈ Label are
such that et = divide(et ′, r , ls , le), then et [ls , le ,T] = r [2]

5. EXAMPLE
Figure 4 exemplifies the translation. The source proof of

the example in Figure 3 is presented on the left-hand side
and the corresponding bytecode proof on the right. An ex-
ception is thrown in the try block with precondition b = 1.
The finally block increases b and then executes a break
changing the status of the program to break mode (the post-
condition is b = 2). In the bytecode proof, the body of the
loop is between lines 09 and 18. Lines 17 and 18 re-throw
the exception produced at line 10. Due to the execution of
a break instruction, the code from 17 to 18 is not reachable
(this is the reason for their false precondition). The break
translation yields at line 16 a goto instruction whose target
is the end of the loop, i.e., line 23.

44

void foo () {
{ true }
int b = 1;
{ b = 1, false , false }
while (true) {

{ b = 1, false , false }
try {

{ b = 1, false , false }
throw new Exception();
{ false , false , b = 1 }

}
finally {

{ b = 1 ∧Xtmp = exc }
b = b+1;
{ b = 2 ∧Xtmp = exc, false, false }
break;
{ false , b = 2 ∧Xtmp = exc, false }

}
{ false , b = 2, false }

}
{ b = 2, false , false }
b = b+1;
{ b = 3, false , false }

}

{ true } 00 : pushc 1
{s(0) = 1} 01 : pop b
{b = 1} 02 : goto 20
{b = 1} 09 : newobj Exception
{b = 1} 10 : athrow
{b = 1 ∧ excV 6= null ∧ s(0) = excV } 11 : pop eTmp
{b = 1 ∧ eTmp = excV } 12 : pushc 1
{b = 1 ∧ s(0) = 1} 13 : pushv b
{b = 1 ∧ s(1) = 1 ∧ s(0) = b} 14 : binop+

{b = 1 ∧ s(0) = b + 1} 15 : pop b
{b = 2} 16 : goto 23
{ false } 17 : pushv eTmp
{ false } 18 : athrow
{b = 1} 20 : pushc true
{b = 1 ∧ s(0) = true } 21 : brtrue 04
{b = 2} 23 : pushc 1
{b = 2 ∧ s(0) = 1} 24 : pushv b
{b = 2 ∧ s(1) = 1 ∧ s(0) = b} 25 : binop+

{b = 2 ∧ s(0) = 1 + b} 26 : pop b

Exception Table
From to target type

0 7 10 any

Figure 4: Example of source and bytecode proofs generated by the PTC.

6. SOUNDNESS THEOREM
In a PCC environment, a soundness proof is required only

for the trusted components. PTCs are not part of the trusted
code base: If the PTC generates an invalid proof, the proof
checker would reject it. But from the point of view of the
code producer, we would like to have a compiler that always
generates valid proofs. Otherwise, it would be useless.
We prove the soundness of the translations, i.e., the trans-

lation produces valid bytecode proofs. It is, however, not
enough to prove that the translation produces a valid proof,
because the compiler could generate bytecode proofs where
every precondition is false. The theorem states that if (1)
we have a valid source proof for the statement s1, and (2)
we have a proof translation from the source proof that pro-
duces the instructions Ilstart ...Ilend , their respective precondi-
tions Elstart ...Elend , and the exception table et , and (3) the
exceptional postcondition in the source logic implies the pre-
condition at the target label stored in the exception table
for all types T such that T ¹ Throwable ∨ T ≡ any but
considering the value stored in the stack of the bytecode,
and (4) the normal postcondition in the source logic im-
plies the next precondition of the last generated instruction
(if the last generated instruction is the last instruction of
the method, we use the normal postcondition in the source
logic), (5) the break postcondition implies finallyProperties.
Basically, the finallyProperties express that for every triple
stored in f, the triple holds and the break postcondition of
the triple implies the break precondition of the next triple.
And the exceptional postcondition implies the precondition
at the target label stored in the exception table eti but con-
sidering the value stored in the stack of the bytecode. Then,
we have to prove that every bytecode specification holds
(` {El} Il).
In the soundness theorem, we use the following abbrevia-

tion: for an exception table et , two labels la , lb , and a type
T , et [la , lb ,T] returns the target label of the first et ’s excep-
tion entry whose starting and ending labels are less or equal
and greater or equal than la and lb , respectively, and whose

type is a supertype of T .
Due to space limitations, we present the theorem without

the details of the properties satisfied by the finally func-
tion f . The proof runs by induction on the structure of the
derivation tree for {P} s1 {Qn ,Qb ,Qe}. The proof and the
complete theorem can be found in our technical report [7].

Theorem 1.

` Tree
{P} s1 {Qn ,Qb ,Qe}

≡ TS1 ∧
[
(Ilstart ...Ilend

), et
]

= ∇S

(
TS1 , lstart , lend+1, lbreak , f , et ′

)∧
(∀ T : Type : (T ¹ Throwable ∨ T ≡ any) :

(Qe ∧ excV 6= null ∧ s(0) = excV) ⇒ Eet′[lstart ,lend ,T]) ∧(
Qn ⇒ Elend+1

)
∧

(Qb ⇒ finallyProperties)

⇒
∀ l ∈ lstart ... lend : ` {El} Il

7. RELATED WORK
Necula and Lee [9] have developed certifying compilers,

which produce proofs for basic safety properties such as type
safety. Since our approach supports interactive verification
of source programs, we can handle more complex properties
such as functional correctness.
The open verifier framework for foundational verifiers [4]

verifies untrusted code using customized verifiers. The ap-
proach is based on foundation proof carrying code. The ar-
chitecture consists of a trusted checker, a fixpoint module,
and an untrusted extension (a new verifier developed by un-
trusted users). However, the properties that can be proved
are still limited.
A certified compiler [5, 11] is a compiler that generates a

proof that the translation from the source program to the
assembly code preserves the semantics of the source pro-
gram. Together with a source proof, this gives an indirect

45

correctness proof for the bytecode program. Our approach
generates the bytecode proof directly, which leads to smaller
certificates.
Barthe et al. [3] show that proof obligations are preserved

by compilation (for a non-optimizer compiler). They prove
the equivalence between the verification condition (VC) gen-
erated over the source code and the bytecode. The source
language is an imperative language which includes method
invocation, loops, conditional statements, try-catch and throw
statements. However, they do not consider try-finally state-
ments, which make the translation significantly more com-
plex. Our translation supports try-finally and break state-
ments.
Pavlova [10] extends the aforementioned work to a subset

of Java (which includes try-catch, try-finally, and return
statements). She proves equivalence between the VC gener-
ated from the source program and the VC generated from
the bytecode program. The translation of the above source
language has a similar complexity to the translation pre-
sented in this paper. However, Pavlova avoided the code
duplication for finally blocks by disallowing return state-
ments inside the try blocks of try-finally statements. This
simplifies not only the verification condition generator, but
also the translation and the soundness proof.
Furthermore, Barthe et al. [2] translate certificates for op-

timizing compilers from a simple interactive language to an
intermediate RTL language (Register Transfer Language).
The translation is done in two steps: first the source pro-
gram is translated into RTL and then optimizations are per-
formed building the appropriate certificate. Barthe et al. use
a source language that is simpler than ours. We will inves-
tigate optimizing compilers as part of future work.
This work is based on Müller and Bannwart’s work [1].

They present a proof-transforming compiler from a subset
of Java which includes loops, conditional statements and
object oriented features. We have extended the source lan-
guage including exception handling and break statements.
Moreover, we have also proved soundness.

8. CONCLUSION
We have defined proof transformation from a subset of

Java to bytecode. The PTC allows us to develop the proof
in the source language (which is simpler), and transforms it
into a bytecode proof. Since Java source and bytecode are
very similar, proof transformation is simple for many lan-
guage features. In this paper, we focused on one of the most
complex translations, namely the interaction between try-
finally and break statements. We showed that our trans-
lation is sound, that is, it produces valid bytecode proofs.
To show the feasibility of our approach, we implemented

a PTC for a language similar to the Java subset considered
here. The compiler takes a proof in XML format and pro-
duces the bytecode proof.
As future work, we plan to extend the source language

with statements like return and continue. Also, we plan
to develop a proof checker that tests the bytecode proof.
Moreover, we plan to analyze how proofs can be translated
using an optimizing compiler.
Moreover, we will investigate proof-transforming compila-

tion for language features that cannot by directly mapped
to bytecode such as multiple inheritance and Eiffel’s once
methods. This extension will lead to a more general trans-
formation framework.

9. ACKNOWLEDGMENTS
We would like to thank Nicu Georgian Fruja for review-

ing and providing helpful comments on drafts of this paper.
Müller’s work was carried out at ETH Zurich. It was funded
in part by the Information Society Technologies program of
the European Commission, Future and Emerging Technolo-
gies under the IST-2005-015905 MOBIUS project. Nordio’s
work was funded in part by ETH under the Heterogeneous
Proof-Carrying Components project.

10. REFERENCES
[1] F. Y. Bannwart and P. Müller. A Logic for Bytecode.

In F. Spoto, editor, Bytecode Semantics, Verification,
Analysis and Transformation (BYTECODE), volume
141 of ENTCS, pages 255–273. Elsevier, 2005.

[2] G. Barthe, B. Grégoire, C. Kunz, and T. Rezk.
Certificate Translation for Optimizing Compilers. In
13th International Static Analysis Symposium (SAS),
LNCS, Seoul, Korea, August 2006. Springer-Verlag.

[3] G. Barthe, T. Rezk, and A. Saabas. Proof obligations
preserving compilation. In Third International
Workshop on Formal Aspects in Security and Trust,
Newcastle, UK, pages 112–126, 2005.

[4] B. Chang, A. Chlipala, G. Necula, and R. Schneck.
The Open Verifier Framework for Foundational
Verifiers. In ACM SIGPLAN Workshop on Types in
Language Design and Implementation (TLDIŠ05),
2005.

[5] G. Goos and W. Zimmermann. Verification of
Compilers. LNCS, pages 201–230. Springer-Verlag,
2005.

[6] P. Müller. Modular Specification and Verification of
Object-Oriented Programs, volume 2262 of LNCS.
Springer-Verlag, 2002.

[7] P. Müller and M. Nordio. Proof-Transforming
Compilation of Programs with Abrupt Termination.
Technical Report 565, ETH Zurich, 2007.

[8] G. Necula. Compiling with Proofs. PhD thesis, School
of Computer Science, Carnegie Mellon University,
1998.

[9] G. Necula and P. Lee. The Design and
Implementation of a Certifying Compiler. In
Programming Language Design and Implementation
(PLDI), pages 333–344. ACM Press, 1998.

[10] M. Pavlova. Java Bytecode verification and its
applications. PhD thesis, University of Nice
Sophia-Antipolis, 2007.

[11] A. Poetzsch-Heffter and M. J. Gawkowski. Towards
Proof Generating Compilers. ENTCS, 132(1):37–51,
2005.

[12] A. Poetzsch-Heffter and P. Müller. A Programming
Logic for Sequential Java. In S. D. Swierstra, editor,
European Symposium on Programming Languages and
Systems (ESOP’99), volume 1576 of LNCS, pages
162–176. Springer-Verlag, 1999.

[13] A. Poetzsch-Heffter and N. Rauch. Soundness and
Relative Completeness of a Programming Logic for a
Sequential Java Subset. Technical report, Technische
Universität Kaiserlautern, 2004.

46

