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ABSTRACT
Well-specified programs enable code reuse and therefore
techniques that help programmers to annotate code cor-
rectly are valuable. We devised an automated analysis that
detects unreachable code in the presence of code annota-
tions. We implemented it as an enhancement of the ex-
tended static checker ESC/Java2 where it serves as a check
of coherency of specifications and code. In this article we
define the notion of semantic unreachability, describe an al-
gorithm for checking it and demonstrate on a case study that
it detects a class of errors previously undetected, as well as
describe different scenarios of these errors.

Categories and Subject Descriptors
D.2.1 [Requirements/Specifications]: Tools; D.2.4
[Software/Program Verification]: Formal Methods

General Terms
Verification

Keywords
JML, ESC/Java2

1. INTRODUCTION
Program annotations are logic specifications embedded in

the actual program code [16]. They enable programmers to
express the intended functionality. Variants of a weakest
precondition or a strongest postcondition calculus are used
to statically determine whether a program code conforms to
its annotations. The extended static checker ESC/Java2 [18]
is a tool that attempts to verify annotated Java programs
following this approach (Section 2.1).

Empirical evidence shows that automated sanity check-
ing of annotations is desirable [6]. In particular, Leav-
ens et al. [22] propose as one of the challenges for software
verification the following: “Provide assistance in specifying

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2007), September 3-4, 2007, Cavtat
near Dubrovnik, Croatia.
Copyright 2007 ACM ISBN 978-1-59593-721-6/07/0009 ...$5.00.

libraries of classes.” In this article we focus on a particular
sanity check — code reachability. Code is unreachable if it is
not executed for any possible input. Unreachable code, also
known as dead code, is often a bug. For example, the Java
compiler tries to prevent bugs by disallowing code following
a return statement.

/*@ requires x > 10;
@ ensures
@ \result == 1;*/

int withPre(int x) {
if (x < 10) {
// not checked
return 2;

}
return 1;
}

/*@ requires i >= 10;
@ ensures
@ \result == i;
@ ensures
@ \result < 10;
@ modifies
@ \nothing;*/

int libraryFunc ( int i );

int useLibraryFunc() {
int r = libraryFunc (11);
return 1/0;
}

Figure 1: Examples of code that is unreachable once
the annotations are taken into account.

Annotations provide extra information about the pro-
gram, so the notion of code unreachability needs to be ex-
tended. Consider the examples in Figure 1. The precondi-
tion of the method withPre, expressed by the requires clause,
restricts the value of the parameter x to be greater than 10
and the postcondition, expressed by the ensures clause, re-
stricts the return value to be always 1. The return statement
in the “then” branch of the if statement appears to be vio-
lating the postcondition. Nevertheless, because of the pre-
condition, this code conforms to its annotation and a static
checker like ESC/Java2 will not produce a warning. The
fact that a method contains code that is unreachable from
the point of the specification is likely to be a bug, either in
the specification or in the program code.

The method libraryFunc illustrates a method for which
we do not have an implementation (for example because the
implementation is proprietary) and we need to rely on its
specification. In ESC/Java2 all the methods in the stan-
dard Java API are treated in this way. Unfortunately, the
specification is inconsistent as it requires the return value
to be at least 10 and at the same time to be less than 10.
The repercussions of this inconsistency are demonstrated by
the useLibraryFunc. The return statement in this method
seems wrong and yet the extended static checker does not
give a warning. The reason for this behavior of the checker
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is less obvious than in the previous example and we will ex-
plain it in more detail later. Intuitively, as the specification
of libraryFunc is inconsistent, from the point of view of the
checker the call to that function never terminates and there-
fore the checker ‘believes’ that the return statement is never
executed.

Hence, the problem we address in this article is how to
detect unreachable code in the presence of annotations and
how we can benefit from such analysis in extended static
checking. More specifically, the contributions of the arti-
cle are as follows: (1) we introduce the notion unreacha-
bility for annotated code, (2) we identify several types of
unreachable code categorized by their root cause, (3) we
present an efficient algorithm for detecting unreachable
code, (4) we present an evaluation of the analysis on an ex-
isting code base, and (5) an implementation, which is part
of ESC/Java21.

2. BACKGROUND
Programmers reduce development time dramatically by

reusing components that are well documented [20]. In the
Java world this is achieved by using javadoc, which sup-
ports a form of structured documentation [15, 19]. The Java
Modeling Language [21] (JML) was designed to allow more
formal documentation. Tools can statically check if code
and JML-annotations agree. When static checking fails (for
example because the code is too complex), the annotations
can be compiled into runtime checks. Moreover, unit tests
can be generated automatically [5].

The leading static checker for JML-annotated Java is
ESC/Java2. Spec# has a similar architecture and works
for annotated C# programs [2].

2.1 ESC/Java2 Architecture
JML annotations are embedded in Java code as a spe-

cial form of comments. They are used to specify the be-
havior of classes and methods in terms of preconditions,
postconditions, invariants, and other higher-level constructs.
ESC/Java2 checks if code and annotations agree and if there
are no runtime exceptions. Methods are checked one at a
time, ignoring other methods’ implementation and relying
on their specification.

For a given JML-annotated method, ESC/Java2 gener-
ates a formula, called a verification condition (VC), us-
ing a strongest postcondition calculus. Further, it tries to
prove the verification condition by using an automated the-
orem prover. If the VC is not proven valid, the checker
produces warnings derived from the counterexamples pro-
vided by the prover. These warnings describe how the pro-
gram may violate its JML specification, or in what way the
specified program might cause runtime exceptions (such as
NullPointerException).

ESC/Java2 performs the translation of JML-annotated
Java code to a VC in several stages. This process is schemat-
ically depicted in Figure 2.

Given a JML-annotated Java program, the front-end pro-
duces an abstract syntax tree (AST), which is translated
into an intermediate representation called guarded com-
mands (GC) [25]; this representation captures both the Java
code and its JML annotation. The components that infer in-

1http://kindsoftware.com/products/opensource/
ESCJava2/cvs.html
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Figure 2: ESC/Java2 architecture

variants [17, 13] work on this representation. Subsequently,
loops are translated into structurally simpler commands by
a process called loop desugaring. ESC/Java2 supports two
modes of loop desugaring: One mode is called loop unrolling
and does not require loop invariants, but it is unsound (see
Section 4.3 for more details); the other mode is called safe
desugaring and treats loops in accord with Hoare logic [16],
but requires loop invariants.

There is an obvious tradeoff between loop unrolling and
safe desugaring. The loop unrolling mode may miss some er-
rors as it does not reason about all possible execution traces
of the program. The safe loop desugaring does not suffer
from this deficiency but it leads to spurious warnings if a
strong-enough loop invariant is not provided. Loop invariant
generation techniques are used to infer invariants automati-
cally and hence alleviate the annotation burden imposed on
the user [10, 13, 23, 17]. Nevertheless, these techniques are
computationally expensive and they do not always succeed
in finding the proper invariant. In ESC/Java2 loop unrolling
is the default loop desugaring mode, since the alternative is
not yet practical.

After loop desugaring, the desugared GC is translated into
an assignment-free form, or passive form, called dynamic
single assignment (DSA). This is done by ensuring that each
variable is assigned-to at most once, which often requires
additional variables, and by replacing assignments with as-
sumptions. The main purpose of this particular transforma-
tion is to avoid the exponential explosion in the size of the
generated VC (see [14] for details).

After the DSA form is generated, the VC is generated
from it and sent to a theorem prover. Finally, the output of
the prover is processed to provide feedback to the user.

The process described above represents the skeleton of
ESC/Java2 and additional analyses can be ‘hooked’ in this
architecture to facilitate the application of the tool. This is
the case of the reachability analysis presented in this paper,
which is applied on the DSA representation and uses a the-
orem prover. Since this particular analysis slows down the
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C N(P, C) W(P, C)
skip P false
assume f f ∧ P false
assert f f ∧ P P ∧ ¬f
C1 8 C2 N(P, C1) ∨N(P, C2) W(P, C1) ∨W(P, C2)
C1; C2 N(N(P, C1), C2) W(P, C1) ∨W(N(P, C1), C2)

Figure 3: Strongest postcondition transformers.

checker, it is disabled by default and can be enabled by the
switch -era.

2.2 VC Generation from DSA
As we explained in the previous section, DSA is the input

of the reachability analysis and thus it deserves special at-
tention. Hence, in this section we formally define the DSA
language and how a VC is obtained from a DSA program.

Before we proceed, we make several assumptions. In the
rest of the paper we assume a first-order logic language for
formulas and a theory T for the context of validity. We
write T |= f to denote that f is valid in the context of the
theory T . The theory T expresses the background predicate,
a (partial) axiomatization of the Java semantics.

We use f to denote a predicate represented as a logic for-
mula where the free variables correspond to the predicate’s
arguments. In the following, by DSA we understand the
language defined by the following grammar:

cmd := skip | assume f | assert f | cmd 8 cmd | cmd; cmd

Additionally, we will use the following shorthands:

if C then B1 else B2 ≡ (assumeC; B1) 8 (assume¬C; B2)

if C then B ≡ if C then B else skip

Informally, the purpose of the assume f command is that,
once the execution reaches this command, f can be as-
sumed; if an execution trace reaches this command and f
does not hold, that execution trace blocks. The purpose of
the assert f command is that, once the execution reaches
this command, f is checked and if it is invalid, an error oc-
curs. The command C1 8 C2 represents a nondeterministic
choice between the two commands and the command C1; C2

represents a sequence.
To formally define the semantics of DSA, we introduce two

strongest postcondition predicate transformers — N and W.
The predicate N propagates the normal behavior and the
predicate W propagates the wrong behavior. Their semantics
are captured by the following definition.

Definition 1. For the predicate transformers N and W de-
fined as in Figure 3, we define the following:

1. For a precondition P and a command C, we say that
C goes wrong if and only if W(P, C) is satisfiable, i.e.,

T 2 ¬W(P, C)

2. The verification condition for a program C is the fol-
lowing formula:

¬W(true, C)

3. The program C conforms to its specification if and only
if its verification condition is valid:

T |= ¬W(true, C)

Intuitively, the verification conditions expresses that no
possible execution breaks any of the assertions.

An important property of this semantics is that a com-
mand with an unsatisfiable precondition does not go wrong.

Observation 1. If T |= ¬P , then T |= ¬W(P, C), for
all predicates P and all commands C.

This observation is not surprising since an unsatisfiable
precondition states that the command in question should
never be run according to its specification. What is less
obvious is that this fact also comes into effect for a subcom-
mand in a sequence of commands. For example, consider
the sequence C1; (C2; C3). We can say that the postcon-
dition of C1 is a precondition of C2; C3. In particular, if
N(true, C1) is unsatisfiable, the whole sequence cannot go
wrong because of C2 or C3. In other words, C2 and C3 are
not checked. In such situations, an analysis relying on a
strongest postcondition calculus does not provide any useful
information about these subcommands. Moreover, such a
scenario is most likely unintentional.

3. DEFINITION OF UNREACHABILITY
Informally, a command is unreachable if all the execution

traces leading to it have an unsatisfiable normal behavior.
To express this idea formally, this section defines the notion
of unreachability in the context of the normal behavior (the
predicate transformer N) and an acyclic control flow graph.
Let C denote the subset of the DSA language consisting of
the commands skip, assume f , and assert f .

Definition 2. A control flow graph is a tuple
〈V, E, I, O,L〉, where V is the set of nodes, E ⊆ V × V is
the set of edges, I ⊆ V is the set of entry nodes and O ⊆ V
is the set of exit nodes. Nodes are labeled with commands
by the function L : V → C. Additionally, we require that
entry nodes do not have parents, exit nodes do not have
children, the graph is acyclic, and the set of nodes is finite.

The DSA maps to a subclass of control flow graphs, called
series–parallel graphs [27], constructed as follows.

1. If C is one of skip, assume f or assert f , then it maps
to 〈{n}, {}, {n}, {n}, [n 7→ C]〉, where n is a fresh node

2. If C1 maps to 〈V1, E1, I1, O1,L1〉 and C2 maps to
〈V2, E2, I2, O2,L2〉 then,

(a) C1; C2 maps to

〈V1 ∪ V2, E1 ∪ E2 ∪ (O1 × I2), I1, O2,L1 ∪ L2〉

(b) and C1 8 C2 maps to

〈V1 ∪ V2, E1 ∪ E2, I1 ∪ I2, O1 ∪O2,L1 ∪ L2〉

3



Once we have the control flow graph, the definition of
unreachability is straight forward.

Definition 3. We define the parents and the precondition
of a node in a control flow graph G ≡ 〈V, E, I, O,L〉 as
follows:

parentsG(n) ≡ {p ∈ V | 〈p, n〉 ∈ E}
preG(n) ≡

true, if n ∈ IW
p∈parentsG(n) N(preG(p),L(p)), otherwise

Definition 4. Node n is semantically unreachable in a
control flow graph G if and only if T |= ¬ preG(n).

Whenever we use the term ‘unreachable’ (and ‘reachable’)
we refer to semantic unreachability as defined above, not to
the graph-theoretic notion.

3.1 How Unreachability Corresponds to DSA
To better understand the definition of semantic unreach-

ability (Definition 4), we explore how the DSA command
corresponds to its control flow graph. First observe that the
DSA semantics (see Figure 3) has the following properties,
where B is either N or W.

B(P, (C1 8 C2); D) = B(P, (C1; D) 8 (C2; D)) (1)

B(P, D; (C1 8 C2)) = B(P, (D; C1) 8 (D; C2)) (2)

B(P, C1 8 (C2 8 C3)) = B(P, (C1 8 C2) 8 C3) (3)

B(P, C1; (C2; C3)) = B(P, (C1; C2); C3) (4)

By applying these equalities, any command can be rewrit-
ten into the choice between all its possible execution traces:

(C1
1 ; C1

2 ; . . . ; C1
l1) 8 . . . 8(Cm

1 ; Cm
2 ; . . . ; Cm

lm)

where each Cj
i is neither the choice nor the sequence, while

preserving the behaviors’ semantics. The paths in the graph
obtained from the process described above correspond to
these execution traces. For both the normal and the wrong
behavior, each behavior is a disjunct of the behaviors of these
traces (see Figure 3); in particular the whole command goes
wrong if and only if at least one of its traces goes wrong.

Let us consider a node n labeled with the command C.
Then each of the paths going through n correspond to an
execution trace of the form Cpre; C; Cpost, where Cpre is a
prefix of the pertaining execution trace. Let Pre be the set
of all these prefixes, then the function preG(n) (see Defi-
nition 3) returns the disjunct of normal behaviors of the
prefixes, i.e.,

W
Cp∈Pre N(true, Cp).

Hence, Definition 4 captures our intuition that a command
is unreachable if all the paths leading to it have an unsatisfi-
able normal behavior. In particular, if C is an assertion, the
whole program cannot go wrong because of that assertion if
it is unreachable as none of the traces leading to C can go
wrong because of C (see Observation 1).

4. SCENARIOS OF
UNREACHABLE CODE

In this section we discuss typical scenarios that result in
unreachable code. In Section 6 we present how often these
scenarios appear in practice. We start by showing several
typical cases of discrepancies in the code or specifications.
The last two subsections discuss unreachable code in the
presence of loops.

4.1 Incoherence of Specification and Code
We present three kinds of unreachable code in Figure 4.

The unreachableCode method contains unreachable code in
the classic sense: the division by zero is not checked. It is
most likely a bug in the user code. More subtle problems
arise when we take into account annotations as well, as in the
withPre method from Figure 1. An extreme example of an
inconsistency in specifications is the method badSpec which
has an unsatisfiable precondition. Such methods always pass
extended static checking without reachability analysis.

A common case of unreachable code is related to the use of
JML’s modifies clause. Consider the methods modA, which
promises to modify only a, and modAB, which can also mod-
ify b. Therefore, modAB should not be called from modA.
ESC/Java2 models this by inserting an assert false before
the call to modAB. This causes the rest of the assertions to
be unreachable. This scenario is a specific instance of a gen-
eral issue where an unsatisfiable asserted expression gener-
ates one warning and hides other warnings. (Assertions that
are merely invalid but satisfiable do not hide other checks.)

In the introduction we have already mentioned that spec-
ifications of methods for which an implementation is not
available are a common source of inconsistencies. Consider
again the methods libraryFunc and useLibraryFunc in Fig-
ure 1. The body of the method useLibraryFunc is translated
to DSA as follows:

C1: assert 11 ≥ 10;
C2: assume r1 = 11 ∧ r1 < 10;
C3: assert 0 6= 0;
C4: assumeRES = 1/0

Here, the command C1 represents the check for the pre-
condition of libraryFunc and C2 represents its postcondition.
This is a general approach of translating method calls, pre-
conditions are translated as asserts and postconditions as as-
sumes. If the called method can modify the program state,
the variables whose values may change need to be reset. The
technique for reseting values of variables is called havocking
and we will briefly describe it in Section 4.2. Neverthe-
less, in this particular case the modifies \nothing; clause in
the specification of libraryFunc guarantees that it does not
modify anything. The command C3 checks that the divi-
sion by 0 will not occur and the command C4 stores the
result of the division in a special variable RES modeling
the method’s return value. Apparently, the normal behav-
ior (11 ≥ 10) ∧ (r1 = 11 ∧ r1 < 10) of C1; C2 is unsatisfi-
able. Recalling Definition 4, the commands C3 and C4 are
unreachable. Hence, the method uselibraryFunc cannot go
wrong because of the assertion C3, i.e., it is not checked.

Because ESC/Java2 is a modular checker, method calls
are always checked with respect to the specification of the
called method and its implementation is ignored. This
means that the situation described above would occur even if
we did have an implementation for the method libraryFunc .
If we had the implementation, however, we would uncover
that the postcondition is not satisfiable during the check of
that implementation (as an unsatisfiable postcondition can-
not be established). See [6] for a detailed discussion about
the pitfalls of specifications without implementation.

4.2 Safe Loop Desugaring
As we have described in Section 2, ESC/Java2 supports

two modes of loop desugaring. In this section we discuss
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//@ requires x > 0;
//@ requires x < 0;
int badSpec(int x, int y) {

return 1/0;
}

//@ modifies a, b;
void modAB() { ... }

int unreachableCode(int x) {
if (x > 10)

if (x < 5)
return 1/0;

return 0;
}

//@ modifies a;
int modA() {

modAB();
return 1/0;

}

Figure 4: Examples of different types of unreachable code.

what information the reachability analysis provides in the
safe desugaring mode. Please recall that the loop safe mech-
anism relies on loop invariants.

Since the reachability analysis does not depend on the way
loops are desugared, we do not provide full account of this
process. We illustrate the behavior on examples instead.
Consider the following method where the user provided the
invariant i ≥ 5:

//@ requires i >= 5;
void infiniteLoop ( int i ) {
//@ loop_invariant i >= 5;
while ( i >= 0) i = 5;
//@ assert false;

}
In the loop safe mode this method is desugared as follows:

C1: assume i0 ≥ 5;
C2: assert i0 ≥ 5;
C3: assume i1 = i′;
C4: assume i1 ≥ 5;
C5: ((assume i1 ≥ 0;assume i2 = 5;

assert i2 ≥ 5;assume false)
8(assume¬(i1 ≥ 0));

C6: assert false

The command C1 represents the precondition and C2

checks for the validity of the loop invariant before the loop.
The command C3 resets the value of i to a fresh value. This
is called havocking and it models the fact that for an arbi-
trary iteration we do not know anything about the variables
modified in the loop body except for what is in the loop in-
variant. In other words, havocking discards the information
about these variables that was available before the loop. The
command C4 corresponds to the fact that the loop invariant
holds before any iteration (knowing that it was established
before the loop). The command C5 represents a choice be-
tween termination of the loop and the loop body. More
precisely, the left branch of the choice command models an
arbitrary iteration of the loop, checks the loop invariant af-
ter the iteration, and blocks. The right branch of the choice
command conditions further execution by the negation of
the loop’s guard.

Now we observe that the conjunct of the invariant and
the negation of the guard (i ≥ 5) ∧ ¬(i ≥ 0) is unsatisfi-
able. Therefore, the reachability analysis detects that the
assertion at the end is unreachable.

The example above illustrates that the reachability anal-
ysis discovers that a loop does not terminate but only if the

loop invariant is strong enough. Thus, it would be beneficial
to combine the reachability analysis with techniques for loop
invariant generation [10, 17, 23]. For example, consider the
following excerpt of code:

int sum = 0;
for ( int i = 0; i < 10; j++) sum += i;
//@ assert false;

The loop above does not terminate. If a technique for loop
invariant inference is used, the user is likely to expect that
the invariant 0 ≤ i ∧ i ≤ 10 will be automatically inferred.
Instead, however, the invariant i = 0 is inferred and the rest
of the method is unchecked. Hence, the reachability analysis
provides a warning about this bug.

4.3 Loop Unrolling
Apart from the safe desugaring discussed in the previous

section, ESC/Java2 supports an unsound handling of loops
called loop unrolling. This technique is parameterized by
a constant L and reasons only about the scenarios when a
given loop terminates in 0, 1, . . . , L iterations. By following
this approach, ESC/Java does not detect errors that may
only happen when a loop is executed more than L times.
The following schematically describes the result of an un-
rolling for L = 2:

while (C) {
B

}
⇒

if C then B;
if C then B;
if C then assume false;

Execution traces that do not terminate in L iterations
are modeled as blocking in the loop by the command
assume false.

Loop unrolling contains a significant pitfall. If for all pos-
sible inputs the analyzed loop does not terminate within L
iterations, the checker does not reason about the code fol-
lowing the loop.

Consider the following translation of a Java code to its
DSA representation (for L = 2):

int i = 0;
while ( i < 10)

i++;
return 1/0;

⇒

C1: if 0 < 10 then
assume i1 = 0 + 1;

C2: if i1 < 10 then
assume i2 = i1 + 1;

C3: if i2 < 10 then
assume false;

C4: assert 0 6= 0;
C5: assumeRES = 1/0
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We note that T |= ¬N(true, C1; C2; C3). From Observa-
tion 1, it follows that T |= ¬W(N(true, C1; C2; C3), C4; C5).
Therefore, the assertion C4 cannot cause the program to
go wrong since from the point of view of the checker that
assertion is unreachable.

The analysis presented in this article detects that the code
following the loop is not checked. Once the user is informed
about it, he or she may either instruct ESC/Java2 to un-
roll the loop more times or may provide appropriate loop
invariants and instruct ESC/Java2 to use safe desugaring.

5. THE ALGORITHM
We are given a directed acyclic flow graph in which we

want to detect semantically unreachable nodes. An efficient
algorithm is needed to make the analysis usable in practice.
For that we need to (1) compute small prover queries, and
(2) call the prover only a few times. Experimental data
shows that the response time of the automated theorem
prover used in these experiments (Simplify [12]) sharply in-
creases when the size of the query exceeds a certain limit,
which motivates (1). A prover call is on average hundreds
times slower than any reasonable manipulation of the flow
graph, which motivates (2).

The precondition of each node can be computed from Defi-
nition 3. If the implementation is memoized then the precon-
dition will be represented as a directed acyclic graph (DAG)
with n − 1 nodes for ∨ and m nodes for ∧, where n is the
number of nodes and m is the number of edges in the flow
graph. (Note that N(preG(p),L(p)) may introduce at most
one ∧ operator, according to Figure 3.) Unfolding the DAG
naively into a tree to send it to a prover often yields queries
with exponential size. A simple way to obtain precondi-
tions that produce queries with linear size is to introduce an
auxiliary variable for each precondition, and then use it to
express subsequent preconditions. But auxiliaries increase
the query size. We can minimize the size of the formula by
introducing auxiliaries only for subformulas of size S when
they appear in P places and PS − P − S ≥ 2. This trans-
formation reduces the size of the queries dramatically: On
our benchmarks it reduced by 90% the number of queries
that are too big for the prover to process. This transforma-
tion exploits the series–parallel structure of the flow graph.
Hence, the queries are roughly the same size as the normal
behavior computed directly on the DSA as in [14].

The auxiliary variables can be defined using equivalence.`
a ⇔ f(b)

´
∧ g(a, b) (5)

Here b is a set of variables, a is the auxiliary variable, f(b)
is its definition, and g(f(b), b) is the original formula. Now
consider the alternative:`

a ⇒ f(b)
´
∧ g(a, b) (6)

It can be shown that (5) is satisfiable if and only if (6)
is satisfiable, provided that g is monotonic in a, that is,
g(false, b) ⇒ g(true, b). We can make sure that that is
the case by eliminating sharing only below the operators ∧
and ∨. (Note that ∧ and ∨ are the only operators intro-
duced by the N predicate.) In practice, replacing (5) by (6)
reduces the proving time to two thirds.

We say that the nodes of the flow graph that can be
tracked back to Java code are interesting. The details of
how to keep track from where in the Java code a DSA com-
mand comes from are outside the scope of this paper and

can be found elsewhere [24]. For typical Java code there
are less than 20 interesting nodes in most cases. Processing
them takes negligible time, which is why later we shall con-
centrate on minimizing the number of prover queries. We
contract the graph by keeping only the interesting nodes; we
have an edge (u, v) in the contracted graph if in the original
one there was a path from u to v with no other interesting
node. This can be done in O(mn) time with a slight mod-
ification of a DFS-based solution to the transitive closure
problem. The contracted graph has a unique inital node
denoted by i.

The key observation that allows us to have fewer prover
calls than interesting nodes is that the information about
node reachability can be propagated in the flow graph ac-
cording to these rules: (1) we can infer that u is unreach-
able if all paths from i to u contain an unreachable node,
and (2) we can infer that u is reachable if it dominates a
reachable node v, that is, if all paths from i to v that do
not contain unreachable nodes go through u. These rules
are expressed in terms of paths, implying that we can use
the propagation algorithm (Figure 5) on the original graph
as well as on the contracted graph.

Propagate-Unreachable(u)

label u as unreachable
for each child v of u

such that v has only unreachable parents
do Propagate-Unreachable(v)

Propagate-Reachable(u)

label u as reachable
if u has an immediate dominator d

then Propagate-Reachable(d)

Figure 5: Reachability propagation.

Reachability-Analysis()

while there are unlabeled nodes
do choose an unlabeled node u that has

a maximal number of unlabeled dominators
if the prover says that

the precondition of u is satisfiable
then Propagate-Reachable(u)
else use binary search with prover queries

to identify the farthest
unreachable dominator d of u

Propagate-Unreachable(d)
Recompute-Dominators
if d has an immediate dominator d′

then Propagate-Reachable(d′)

Figure 6: The algorithm implementing the analysis.

We compute dominators ignoring nodes already marked as
unreachable using the simple algorithm of Cooper [8], which
works in O(mn) time for DAGs. The critical part that makes
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our implementation fast in practice is the heuristic used to
decide for which node we query the prover.

In the case that all nodes are reachable and interesting
the greedy algorithm (Figure 6) is optimal, because the
prover must be called for all the leafs of the (immediate)
dominator tree. In practice the performance is good. We
have run ESC/Java2 on its front-end (javafe) which con-
tains 1890 methods and is one of the largest coherent set
of JML-annotated code available. The total running time is
31589 seconds (almost 9 hours), out of which 34.8% is spent
in the reachability analysis, out of which 99.8% is spent in
the prover. The total number of leafs in the dominator trees
is 3256 and the number of prover calls is 3351. The aver-
age number of nodes in the flow graph is a few hundred and
in the contracted flow graph it is 10. For this benchmark
we used the default loop desugaring in ESC/Java2, which is
unrolling once.

6. CASE STUDY
As described in the previous section, we have tested the

analysis on the ESC/Java2 front-end, the javafe package.
The package contains 217 classes.

We have found 5 inconsistencies in the specifications of the
JDK that are not reported without the reachability anal-
ysis. More details can be found in the ESC/Java2 bug-
tracker2 under the bugs #595, #550, #568, #549, #545.
We found one more inconsistency in the JDK specification
which was due to the incorrect handling of a JML feature
informal comment by ESC/Java2. ESC/Java2 treats an
informal comment as true, this is harmless in most cases
(such as requires (* is upper-case *)) but for example,
ensures \result <=> (* is upper-case *) likely results
in an unintended specification (see bug #547).

ESC/Java2’s repository contains handcrafted tests to de-
tect inconsistencies in the JDK specifications. These tests
did not detect the problems uncovered by the reachability
analysis because they are not exhaustive. We should note
that fixing these problems involved a tedious process of nar-
rowing down the set of inconsistent annotations. This effort,
however, was justified by the wide usage of these specifica-
tions.

In 1 case a catch-block was unreachable because it was
catching an exception that was not declared in any of the
specifications of the methods called in the try-block (see
documentation for the signals_only pragma).

An incorrect use of the modifies clause (as in Figure 4)
hiding the rest of the potential warnings appeared 9 times.
Warnings hiding subsequent code appeared 6 times. The
case of unreachable code resulting from loop unrolling, as
discussed in Section 4.3, appeared 4 times. In 9 cases the
informal comments indicated that the author was aware that
the code is unreachable. The user can mark such code with
the unreachable pragma and then the analysis does not
warn about it. We detected only one case of unreachable
code in the classical sense.

In several cases the unreachability was due to the un-
sound modeling of the modifies \everything; pragma.
This pragma is the default annotation if no modifies

clause is provided. Whenever a method with the modi-

fies \everything; annotation is called, ESC/Java2 does
not consider the potential state change. Therefore, the

2http://sort.ucd.ie/tracker/?group_id=97

code that we have found is actually executed. Neverthe-
less, ESC/Java2 does not check that code, thus the warnings
provided by the analysis are not spurious.

In the remaining 12 cases we were not able to precisely
identify the source of the problem. Nevertheless, we suspect
that the source lies in inconsistent specifications of classes
inside the javafe package. Such inconsistencies are very
hard to pinpoint as they involve object invariants in a class
hierarchy.

7. RELATED WORK
Traditionally, unreachable code is detected by techniques

based on data flow analysis or abstract interpretation [9].
These techniques are generally known under the term dead
code elimination [26] and are used for code optimization. To
our knowledge, automated theorem proving is not used in
mainstream compilers. Interactive theorem proving, how-
ever, is used to show properties of code optimizations. For
example, Blech et al. [3] applied the higher-order theorem
prover Isabelle/HOL to mechanically prove that a code op-
timization based on dead code elimination is semantics pre-
serving.

Another stream of research related to our work is focused
on reasoning about specifications for which there is no im-
plementation available. Chalin [6] describes an enhancement
of ESC/Java2 that checks ‘definedness’ of specifications.
An example of a partial specification is requires a.x == 0;
since it does enforce a to be non-null . As in the case of our
work, this technique is fully automated.

Bouquet et al. [4] use a constraint solver to animate spec-
ifications. Basically, specification animation provides a way
to debug specifications without implementation. The an-
imating system maintains an abstract state and the user
can ask the system what happens to that state if a certain
method is called. Using this technique, it is possible to un-
cover that a sequence of method calls necessarily lead to an
inconsistent state.

The term reachability analysis is used in related areas in
a slightly different sense. In model checking it denotes the
analysis that searches for reachable states of the given state
space [1]. In heap analysis the reachability analysis is done
on the reference graph [7].

8. SUMMARY AND FUTURE WORK
We devised the theoretical underpinnings of reachability

analysis for annotated code, implemented it efficiently, and
classified the bugs that it helps to find. We intend to adapt
it for BoogiePL [11], whose flow graphs are not necessarily
series–parallel.

We pose two open problems related to this analysis.
Provide better warnings. As the case study shows, al-

though our analysis uncovers real bugs, they are often hard
to track down. The warning message should also pinpoint
the likely locations causing code to be unreachable, not only
the location of the unreachable code. Even better, the warn-
ing should also classify the problem, for example by saying
that it is a ‘loop unrolling’ problem if that is the case.

Optimize VCs and prover queries. The reachability anal-
ysis suggests that one VC per method might not be optimal,
for example because it includes all the unreachable code. In
general, what is an optimal strategy for querying the prover
for the correctness of a method, given its flow graph?
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