
Faithful mapping of model classes to mathematical structures

Ádám Darvas
ETH Zurich

adam.darvas@inf.ethz.ch

Peter Müller
Microsoft Research

mueller@microsoft.com

Abstract
Abstraction techniques are indispensable for the specification and
verification of functional behavior of programs. In object-oriented
specification languages like JML, a powerful abstraction technique
is the use of model classes, that is, classes that are only used for
specification purposes and that provide object-oriented interfaces
for essential mathematical concepts such as set or relation.

While the use of model classes in specifications is natural and
powerful, they pose problems for verification. Program verifiers
map model classes to their underlying logics. Flaws in a model
class or the mapping can easily lead to unsoundness and incom-
pleteness.

This paper proposes an approach for the faithful mapping of
model classes to mathematical structures provided by the theorem
prover of the program verifier at hand. Faithfulness means that a
given model class semantically corresponds to the mathematical
structure it is mapped to.

Our approach enables reasoning about programs specified in
terms of model classes. It also helps in writing consistent and
complete model-class specifications as well as in identifying and
checking redundant specifications.

Categories and Subject Descriptors D.2.1 [Software Engineer-
ing]: Requirements/Specifications—Methodologies; D.2.4 [Soft-
ware Engineering]: Software/Program Verification—Formal meth-
ods, Programming by contract

General Terms Verification

Keywords specification, verification, abstraction, model classes,
isomorphism, Java Modeling Language

1. Introduction
Abstraction is indispensable for the functional specification and
verification of object-oriented programs. Without abstraction, types
with no implementation (i.e. interfaces or abstract classes) cannot
be specified. Abstraction is also necessary to support subtyping and
information hiding.

One way of expressing data abstraction in specification lan-
guages is by relating implementations to corresponding mathemati-
cal structures such as sets and tuples. This approach was pioneered
by the Larch project [10], which advocated two-tiered specifica-
tions consisting of a contract and a theory providing the mathemat-
ical structures.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Sixth International Workshop on Specification and Verification of Component-Based
Systems (SAVCBS 2007), September 3-4, 2007, Cavtat near Dubrovnik, Croatia.
Copyright c© 2007 ACM ISBN 978-1-59593-721-6/07/0009. . . $5.00

package java.util;
//@ import org.jmlspecs.models.JMLObjectSet;

public interface Set extends Collection {
//@ public model instance JMLObjectSet _set;

/*@ also

@ public normal_behavior

@ ensures contains(o);
@*/

public boolean add(Object o);

/*@ also

@ public normal_behavior

@ ensures \result == _set.has(o);
@*/

/*@ pure @*/ public boolean contains(Object o);

// other constructors and methods omitted
}

Figure 1. Specification of type Set using model class
JMLObjectSet defined in JML’s model library. JML annota-
tion comments start with an at-sign (@). Keyword also expresses
that the given specification extends the specification given in
supertype Collection. The import declaration allows one to refer
to the model class. We omit nullable annotations for brevity.

The Java Modeling Language (JML) unifies these tiers to sim-
plify the development of specifications [4]. Instead of using a sep-
arate language to describe mathematical structures, JML describes
them in an object-oriented manner through model classes. These
classes contain only pure (side-effect free) methods. Therefore,
they can be used in specification expressions.

Figure 1 shows the use of model class JMLObjectSet for the
specification of the interface Set. The model class, through its
pure methods, provides access to a mathematical set that contains
objects. In order to use the model class, a model field set is
declared. This field is used for specification purposes only and is
supposed to represent the abstraction of an instance of type Set.

One can specify Set’s method contains in an abstract way
using the model field and pure method has declared in model
class JMLObjectSet. Given a concrete implementation of Set one
would define the relation (using JML’s represents clause) be-
tween the public model field set and the private internal structure.

While model classes are useful for specification purposes, they
pose problems for verification. Program verifiers have to encode
model classes in the underlying theorem prover. This can be done
by encoding pure methods and their contracts as uninterpreted
function symbols and axioms, respectively [6, 5, 12]. However,
this approach is not optimal for model classes because the tactics
of theorem provers are optimized for the prover’s theories rather
than encodings of JML model classes. Moreover, it is difficult to

31

ensure soundness of such encodings, especially in the presence of
recursive specifications [6].

To overcome these problems, previous work [3, 13, 14] pro-
poses to map model classes and their pure methods directly to
theories of the theorem prover at hand. For instance, a method
contains of a model class could be mapped to the ∈ operator of
the theorem prover. However, the existing work only discusses the
mapping of method signatures, but ignores their contracts. With
this approach, the meaning of contains is given by the defini-
tion of ∈, and not by its contract. This is problematic if there is
a mismatch between the contract and the semantics of the oper-
ation given by the theorem prover: static program verifiers might
produce results that come unexpected for programmers relying on
the model class contract. The results may also vary between differ-
ent theorem provers, which define certain operations slightly dif-
ferently. Moreover, runtime assertion checking might diverge from
static verification if the model class implementation used by the
runtime assertion checker is based on the model class contract.

In this paper, we show how model classes can be mapped to the-
orem provers without semantic mismatches. The main contribution
of our work is a technique for proving that the mapping of a model
class to a mathematical structure defined by the theorem prover is
faithful. Faithfulness means that the model class and the structure
indeed correspond to each other in their properties. To show faith-
fulness, we prove formally that the mapping is consistent and com-
plete. Consistency means that everything that can be proved using
the contracts of the model class can also be proved using the cor-
responding structure of the theorem prover. Completeness means
that everything that can be proved using the structure defined by
the theorem prover can also be proved using the contracts.

Our approach leads to important results beyond semantical cor-
respondence. Model class contracts are complex and can easily get
inconsistent, which can lead to unsound reasoning. Showing that a
model class can be mapped consistently to a mathematical structure
proves that the model class contract itself is consistent (provided
that the structure is well-defined). In fact, our case study discov-
ered an inconsistent specification in one of the most basic model
classes of JML.

This shows that proving faithfulness of mappings helps in writ-
ing better specifications for model classes by making them consis-
tent and complete. Our approach can also be used to identify redun-
dant parts of specifications as well as to check whether specifica-
tions marked as redundant are indeed derivable from non-redundant
specifications. These capabilities further improve the quality of
model-class specifications.

Throughout the paper we will use JML [15] as specification lan-
guage and Isabelle [18] as target theorem prover. This choice was
made due to the characteristics of the static program verification
tool JIVE [16] that we are working on. However, the presented ap-
proach is applicable to any combination of specification languages
and theorem provers, for instance, Eiffel [21] and Coq [1].

Our approach does not yet have tool support. All steps in the
case study were performed manually. In Section 6, as future work
we briefly mention areas where tool support could greatly help.

The rest of the paper is structured as follows. Section 2 intro-
duces model class JMLObjectSet, the class we use throughout this
paper to illustrate our approach. Section 3 presents our solution
for the faithful mapping of model classes to mathematical struc-
tures defined by a theorem prover. Section 4 presents a case study
we performed on model class JMLObjectSet. Section 5 gives an
overview of related work and in Section 6 we conclude.

2. Running example
As running example, we take model class JMLObjectSet, which
is part of the model library of the JML distribution. It models a set

of objects. That is, it provides the usual operations of mathematical
sets, and equality of elements is based on Java’s reference equality
(“==”). Figure 2 presents the class with the constructors and meth-
ods that we discuss in this paper.

The class and, thus, all its methods are pure. Methods that return
JMLObjectSets (for instance, union) do not mutate their receiver
objects but return newly created JMLObjectSets. In accordance
with the JML semantics, all reference type arguments and return
values are considered to be non-null.

The class is specified by an equational theory and by method
specifications:

1. The equational theory is an object invariant expressed in terms
of the static pure model method equational theory which
has to return true for every non-null JMLObjectSet instance
s2, and objects e1 and e2. The method has a large normal
behavior specification case containing equations written in the
style of algebraic laws. Figure 2 shows a sample equation defin-
ing method union.

2. Method specifications consist of pre- and postconditions at-
tached to constructors and methods of the model class. Modifies
clauses are not needed since all methods are pure. As an exam-
ple, the specification of method union is given on Figure 2.

We follow the proposal of Leavens et al. [13] and Charles [3],
and consider model classes to be final and unrelated to Java’s type
hierarchy rooted in type Object. This prevents problems related to
inheritance, method overriding, and dynamic dispatch. In the realm
of model classes, these restrictions seem acceptable since model
classes are supposed to describe elementary mathematical concepts
and to be used only for specification purposes.

3. Faithful mappings
In this section we present our solution for proving that the mapping
of a model class M to a structure S (defined by some datatype
or theory) is faithful. That is, there is a semantic correspondence
between M and S, namely, they are isomorphic.

The process consists of three stages. In the first stage, we specify
the mapping of M to S by a new JML clause, mapped to. Then we
prove consistency and completeness of the specified mapping in the
second and third stages, respectively. In this section we present the
details of these stages.

3.1 Specifying the mapping
In the first stage, one has to decide how to map model class M .
That is, one has to specify (1) to what structure S is the model class
mapped; and (2) to which function symbols of S are the methods
of the model class mapped.

Figure 2 demonstrates a possible mapping of model class
JMLObjectSet. The model class is mapped to Isabelle’s HOL/Set
theory [19], specifically to type “’a set”. In Isabelle, ’a is a type
variable which gives rise to polymorphic types [18]. This mapping
is specified by the new specification construct mapped to. The
first parameter specifies the target environment, the second the tar-
get context, and the third the specific type in the context to which
the model class is mapped.

The mapped to clause attached to the class determines the con-
text and type to which the methods of the model class will get
mapped. The mapping of the methods is specified by mapped to
clauses attached to the methods. For instance, method has is
mapped to Isabelle’s set membership “:”. The first parameter is
again the target environment, the second specifies the way the
model class method is mapped to some term in the target con-
text. The second parameter typically mentions function symbols of
the target context as well as parameters (including the receiver) of

32

package org.jmlspecs.org;

//@ mapped_to("Isabelle","HOL/Set", "’a set");
public final /*@ pure @*/ class JMLObjectSet {

/*@ public invariant

@ (\forall JMLObjectSet s2; s2 != null;
@ (\forall Object e1, e2; ;
@ equational_theory(this, s2, e1, e2)));
@*/

/*@ public normal_behavior

@ ensures \result <==>
@ (s.union(s2)).has(e1) ==
@ (s.has(e1) || s2.has(e1));
@ also

@ ...
@ static public pure model boolean

@ equational_theory(JMLObjectSet s,
@ JMLObjectSet s2, Object e1, Object e2);
@*/

//@ mapped_to("Isabelle","{}");
public JMLObjectSet();

//@ mapped_to("Isabelle","{e}");
public JMLObjectSet (Object e);

//@ mapped_to("Isabelle","elem : this");
public boolean has(Object elem);

//@ mapped_to("Isabelle","this = s2");
public boolean equals(Object s2);

//@ mapped_to("Isabelle","this = {}");
public boolean isEmpty();

public int int_size();

//@ mapped_to("Isabelle","this <= s2");
public boolean isSubset(JMLObjectSet s2);

//@ mapped_to("Isabelle","this < s2");
public boolean isProperSubset(JMLObjectSet s2);

//@ mapped_to("Isabelle","SOME x. x : this");
public Object choose();

/*@ public normal_behavior

@ ensures

@ (\forall Object e; ;
@ \result.has(e) <==>
@ this.has(e) || (e == elem));
@*/

//@ mapped_to("Isabelle","insert elem this");
public JMLObjectSet insert(Object elem);

//@ mapped_to("Isabelle","this - {elem}");
public JMLObjectSet remove(Object elem);

/*@ public normal_behavior

@ ensures

@ (\forall Object e; ;
@ \result.has(e) <==>
@ this.has(e) || s2.has(e));
@*/

//@ mapped_to("Isabelle","this Un s2");
public JMLObjectSet union(JMLObjectSet s2);

}

Figure 2. Model class JMLObjectSet containing the signatures
of members we consider in this paper. The proposed mapping of
the class and its members to Isabelle is given by the mapped to
clause. The object invariant, a fragment of the equational theory and
two sample method specifications are given too. Other specification
elements are omitted.

the method being specified. Note, however, that we permit arbitrary
terms of the target context; this flexibility allows us to specify map-
pings even if the target theorem prover does not provide a structure
that directly corresponds to the model class being mapped.

To support multiple theorem provers, multiple mapped to
clauses may be attached to the model class and its methods. This
is needed since different theorem provers provide different theories
with different function symbols and syntax for the same function-
ality. Thus, the isomorphism proof has to be carried out in every
target theorem prover specified in mapped to clauses.

Important to note is that the mappings need not be specified by
programmers who are typically not familiar with theorem provers
and their theories and syntax. The mappings can be specified by
the author of a model class or by the team which performs the
verification.

3.2 Consistency
Once the mappings are specified, their faithfulness has to be
proven. For each theorem prover, this proof needs to be carried
out only once. Afterwards, any verification system can make use of
the specified mappings to handle model classes in specifications. In
this section, we describe how to prove consistency of the mapping,
that is, we prove that the properties of model class M (as specified
by its contracts) can be derived from the properties of structure S
(as defined by axioms, definitions, theorems etc.).

In order to prove consistency, one has to encode the method
specifications and invariants of M in the language of S based on
the mapped to clauses and prove the resulting formulas using the
properties of S. In fact, not all method specifications have to be
translated and proved but only the ones that specify the normal
behavior of a given method [15]. Other method specifications de-
scribe situations when the method might throw exceptions which is
not of interest for the isomorphism proof.

In the sequel, we use the term relevant specification element
to refer either to an invariant or to a normal-behavior method
specification of a model class. Every relevant specification element
sM in M needs to be translated and proved as follows:1

1. (a) If sM is a method specification of some method m with
precondition pre and postcondition post then it is treated as a
formula of the form “pre ⇒ post” which is universally quanti-
fied over all parameters (including the implicit receiver) of m.
(b) Occurrences of every method call to some method m have
to be replaced by the term prescribed in the mapped to clause
of method m. For simplicity, we assume that JML’s logical
operators are also method calls with implicit mappings to the
underlying theorem prover (e.g., JML’s ==> operator is mapped
to logical implication).2

(c) If sM is a method specification of some method m, then in
the postcondition all occurrences of \result (and this if m
is a constructor) have to be replaced by the term prescribed in
the mapped to clause of method m.

2. The formula has to be turned into a lemma and proved in the
theorem prover specified by the mapped to clause using the
axioms, definitions, theorems, etc. of S.

We demonstrate this process on JMLObjectSet’s insert method.
Its method specification is presented on Figure 2.

1 We ignore ghost fields in this paper. They can be handled by mapping a
model class M with n ghost fields to a n + 1-tuple, where the first compo-
nent represents the structure for M and the other components represent the
state of the ghost fields [17].
2 Proving correspondence of logical operators is out of the scope of this
paper.

33

In step 1(a) the postcondition gets universally quantified over
the parameters of insert: this and elem. In step 1(b) the two
method calls on has get replaced by Isabelle’s set membership
operator “:” as prescribed by the mapped to clause of has in
Figure 2. This yields terms “e : \result” and “e : this”.
Additionally, the logical operators \forall, <==>, ||, and == get
replaced by the corresponding Isabelle operators ∀, =, ∨, and =,
respectively. Step 1(c) replaces \result by “insert elem this”
as prescribed by the mapped to clause of method insert. This
yields the following formula:

∀ this, elem. ∀e.
(e : (insert elem this)) = ((e : this) ∨ (e = elem))

In step 2 the formula is turned into a lemma in Isabelle. Its proof
can be completed automatically by the auto tactic. This is not
surprising since theorem provers like Isabelle are typically well-
equipped with theorems over elementary structures.

Completing this stage successfully for every relevant specifica-
tion element in model class M gives us the guarantee that whatever
can be proven using the properties of M can be proven using S,
too.

An important consequence of this result is that the specification
of M is consistent (i.e., free of contradictions) provided S is con-
sistent. Since structures like Isabelle’s Set are defined using con-
servative extensions and have been reviewed by many people, it is
rather unlikely that they contain inconsistencies. In other words, in
this stage we prove that Isabelle’s Set theory is a model for model
class JMLObjectSet. By exhibiting this model we prove that using
JMLObjectSet’s specification does not lead to unsoundness.

This is also an interesting result concerning the use of pure
methods in specification expressions. As we have shown earlier
[6], the use of pure methods in specifications can easily lead to
unsoundness. The solution we proposed in our earlier work [6] to
prevent unsoundness is to exhibit a witness for showing that the
specification of the method is satisfiable. However, the solution
is not applicable for recursive specifications. With the approach
presented above, recursive specifications do not pose any problems.

As the example of method insert suggests, proving this stage
may be fully automated: (1) the lemma was generated following
three simple steps performing syntactic replacements based on
mapped to clauses, and (2) the lemma was proved without any user
interaction using a powerful tactic of Isabelle.

3.3 Completeness
In the third stage, we complete the isomorphism proof by showing
completeness of the mapping, that is, that the properties of structure
S can be derived from the properties of model class M . The proof
procedure is as follows:

1. Each member m of M is turned into a function symbol m̂ and
its signature is declared based on m’s signature.

2. Each relevant specification element sM in M is turned into an
axiom as follows:
(a) If sM is a method specification with precondition pre and
postcondition post attached to method m then it is treated as
formula “pre ⇒ post” universally quantified over all parame-
ters of m.
(b) Occurrences of method calls on some method m have to
be replaced by function applications of the corresponding func-
tion symbol m̂. Additionally, JML’s logical connectives have to
be replaced by the corresponding connectives of the theorem
prover.
(c) If sM is a method specification of some method m, then in
the postcondition all occurrences of \result (and this if m

is a constructor) have to be replaced by function applications of
function symbol m̂.

3. A lemma is generated from every axiom and definition sS of S
by replacing all occurrences of function symbols in sS by the
corresponding function symbols declared in step 1. Correspon-
dence is based on the mapped to clauses.

4. The lemma has to be proven using the axioms generated in
step 2.

As an example, we show this procedure for Isabelle’s definition of
proper subsets. In the first step, the signature of ˆisProperSubset
is declared based on the signature of method isProperSubset:

ˆisProperSubset : ′a set × ′a set ⇒ bool

The second step is based on the specification of the method. For
demonstration purposes, this time we take the specification pre-
scribed by the invariant, i.e. the equation given in the specification
of method equational theory:

s.isProperSubset(s2) == (s.isSubset(s2) && !s.equals(s2))

Since the equation is part of the method specification of method
equational theory, first it gets quantified over its parame-
ters: s, s2, e1, and e2. Then method calls on isProperSubset,
isSubset and equals are turned into the function applications

ˆisProperSubset(s, s2) ˆisSubset(s, s2) and ˆequals(s, s2), re-
spectively. Additionally, the logical operators are mapped. The re-
sulting formula is turned into the following axiom:

∀ s, s2, e1, e2. ˆisProperSubset(s, s2) =

(ˆisSubset(s, s2) ∧ ¬ ˆequals(s, s2))
(1)

In step 3, we take the definition of proper subsets from Isabelle’s
theory [19]:

psubset_def: "A < B == (A::’a set) <= B & ¬ A=B"

and translate it to the following lemma:3

∀ A, B. ˆisProperSubset(A, B) =

(ˆisSubset(A, B) ∧ ¬ ˆequals(A, B))

In step 4, the lemma needs to be proven using only the axioms
defined in step 2. The proof is trivial since axiom (1) (derived from
the equational theory) is equivalent to the lemma.

Note that theorems of S need not be turned into lemmas since
theorems are properties that are derived from definitions and ax-
ioms of S. However, it is important that all axioms and definitions
are turned into lemmas, including the ones that do not appear in the
textual representation of S. For instance, Isabelle supports induc-
tively defined sets for which the tool generates fixed point defini-
tions and proves several lemmas about them [18]. In such cases the
artefacts introduced “under the hood” need to be turned into lem-
mas too. Theorem provers typically make these artefacts available
for users, for instance, Isabelle can be queried to show them and
PVS [22] generates separate files for them.

Proving this stage guarantees that whatever can be proved using
the axioms, definitions and theorems of Isabelle’s Set, can also be
proved using JML’s JMLObjectSet. An interesting consequence
is that we have proved that the axiom system extracted from the
specifications of JMLObjectSet is complete relative to Isabelle’s
theory of Set. Since Isabelle structures like Set are heavily used

3 Isabelle definitions are implicitly universally quantified over variables that
are not bound by quantifiers that appear explicitly.

34

in formalizations and proofs, one can be sure that they contain the
most important properties of the structure.

The generation of lemmas (step 3) for this stage is not as trivial
as for the consistency proof. The mapped to clauses specify the
mappings from M to S, which is the opposite direction of this
stage. The mapping from S to M is not necessarily unique. For
instance, the = operator of S is typically used in the mapped to
clauses of several methods of M , which makes it difficult to choose
automatically the appropriate mapping.

Furthermore, proving the lemmas (step 4) is also less trivial than
in the consistency proof. First, even the application of automated
tactics typically requires one to manually select the set of axioms
to be used for proving a given lemma because selecting all axioms
might cause the tactic to loop. Second, the specifications of the
model class may be too weak to verify some axioms or definitions
of the structure. In this case, the missing specifications need to be
identified and added to the model class. Thus, it seems that the
automation of this stage can, in general, only be partial and manual
intervention is needed for its completion. However, the effort is
justified by the increased quality of the model class specification.

3.4 Summary
Successful completion of the three stages described above guar-
antees that model class M and structure S are isomorphic. This
property confirms that the mappings prescribed by the mapped to
clauses were semantically correct.

The most important property from the consistency proof is that
the axiom system extracted from the model class is consistent, thus
its usage cannot lead to unsoundness. This is obviously a crucial
property for every verification system. For this stage, the generation
and proving of lemmas seem to be automatable. Failing to prove a
lemma most probably indicates an error in the model class contract.

The most important result of the completeness proof is that the
model class expresses the properties of the mathematical structure.
This is important in order to prevent mismatches between the prop-
erty one wants to express in a specification and the property one
actually proves during the verification process. As noted above, the
generation and proving of lemmas is not as trivial as for consis-
tency.

Once both directions are successfully proved, method calls can
be directly translated to the corresponding function applications
without being worried about soundness issues or differences in the
semantics of related methods and function symbols.

An interesting side-effect of the proposed proof technique is that
redundant specifications can be discovered in the model class. If an
axiom is never used in the completeness proof then the specification
element from which the axiom was derived is redundant in the
model class.

4. Case study
In this section, we demonstrate our approach for the model class
JMLObjectSet by describing in detail the process of proving faith-
fulness with Isabelle’s HOL/Set theory. We highlight the interest-
ing observations and results of the case study.

We considered 17 members of the model class: 2 constructors,
9 query methods, and 6 methods that create new JMLObjectSet
instances. These were all the members that remained after the sim-
plifications described in the next section. All proofs were carried
out in Isabelle. The proof scripts contained a total of ca. 380 LOC
without comments and empty lines. Consistency of the mapping
was proven in ca. 100, completeness in ca. 110 LOC. Equivalence
of the equational theory and the method specifications (see Sec-
tion 4.5) was proven in ca. 170 LOC. All proof scripts were written
manually.

4.1 Simplifications
Since we were interested in the mapping of JMLObjectSet and
its methods to an Isabelle theory, we first removed all methods
that provided object-oriented features irrelevant for the mapping
of the model class. These methods included, for instance, clone,
singleton, hashCode, and toString. In our opinion, such meth-
ods need not be part of model classes if one thinks of them as math-
ematical structures.

As a next step we removed all implementation details. This in-
cluded all method bodies, and members and specifications not vis-
ible for clients. Additionally, we removed all public members that
were only used in informal specifications or provided only syntactic
sugar. As mentioned in Section 3.2, only method specification that
describe normal behavior need to be treated by our approach. Thus,
we removed all other method specification cases. In order to keep
our case study comprehensible, we removed ghost fields from the
model class together with all specification expressions that referred
to them.

To focus on the main ideas of this paper, we decided not to
handle members that referred to non-primitive types other than
JMLObjectSet. For instance, constructors that take as argument a
node of a singly-linked list from which a JMLObjectSet is created,
or methods that convert JMLObjectSets to other model or non-
model types. The handling of these kinds of members is possible
once one has provided a mapping for the types mentioned in their
signatures.

4.2 Division of specifications
We analyzed the specification of JMLObjectSet and found that the
equational theory and method specifications contained a lot of re-
dundancy. Many properties of the model class were attempted to
be expressed both by the equational theory and by method specifi-
cations. We illustrate this by method union. The equation defining
the method in the equational theory and its method specification is
given on Figure 2. It is easy to see that after proper substitutions
the two specifications express the same property.

Thus we decided to split specifications into two parts: one con-
taining only the equational theory and the other containing only the
method specifications. This allowed us to analyze their relation, as
discussed in Section 4.5.

We note that it is not always necessarily the case that the equa-
tional theory of a model class and its method specifications con-
tain so much redundancy. There are, for instance, JML model
classes that specify the behavior of the class in great majority by
method specifications (e.g., JMLObjectToObjectRelation and
JMLValueValuePair). Thus, in general, faithfulness of a model
class to some structure should be proven using both the equational
theory and the method specifications together.

4.3 Specifying the mapping
The next step was the specification of the mapping of the model
class and its methods. The resulting mapping to Isabelle’s higher-
order set theory HOL/Set is shown in Figure 2.

The mapping of the different methods of the model class was
mostly straightforward. Here we mention three interesting cases.
Method choose yields an arbitrary element of the set in case it is
not empty. This directly corresponds to Hilbert’s ε-operator, written
as “SOME x. P (x)” in Isabelle, denoting some x for which P (x) is
true, provided one exists [18].

Another interesting case to mention was the mapping of method
remove that takes an object elem as argument. Isabelle’s theory
contains no operation that removes a single element from the set.
Thus, remove had to be mapped to two other set operations: cre-
ation of a singleton set and set difference: this - {elem}.

35

Finally, we mention method int size, which yields the num-
ber of elements the set contains. The method cannot be mapped
to any term in the target theory since the theory does not define
set cardinality. We discuss the consequences and solutions of such
cases in Section 4.7.

An important issue of the mapping is the handling of equal-
ity. In general, we use reference equality for objects [3]. However,
instances of model classes are treated as terms of a mathemati-
cal structure; therefore, the equality of this structure applies. We
achieve this by overloading Isabelle’s = operator. Instances of non-
model classes are represented in Isabelle by a designated sort. The
= operator on this sort denotes reference equality. Consequently, we
simply map Java’s == operator to Isabelle’s = operator when applied
to instances of non-model classes, in particular, to the elements
stored in a JMLObjectSet. Instances of model classes are repre-
sented in Isabelle by the sort specified in the mapped to clause of
the model class. When applied to instances of model classes, we re-
place the == operator by a call to equals. This call is then mapped
to Isabelle as prescribed by the mapped to clause for equals. For
instance, == operator on JMLObjectSet instances is mapped to set
equality in Isabelle.

4.4 Consistency
We proved that the specifications of the model class are implied by
the properties of Isabelle’s Set theory. The proof was performed as
described in Section 3.2.

We found one unsound equation in the equational theory. This
equation intended to describe a relation between methods remove
and insert as follows:

s.insert(e1).remove(e2).
equals(e1 == e2 ? s : s.remove(e2).insert(e1))

where s is a JMLObjectSet instance, and e1 and e2 are two
objects. The specification expresses that if e1 and e2 refer to the
same object then inserting and removing the object in and from set
s yields a set equivalent to s; otherwise, the order of performing
the two operations is interchangeable.

Although this might look correct at first sight, the attempt to
formally prove its correctness reveals that it is incorrect in case s
contains e1, and e1 and e2 refer to the same object. In this case,
the insertion yields some set s′ that contains the same objects as s
and the remove operation yields some set s′′ that contains the same
objects as s′ except the object referenced by e2 (and e1). Thus, this
set cannot be equivalent to s.

This problem was directly pointed out by Isabelle via the open
goal that remained after applying the automatic tactic auto on the
corresponding lemma. The open goal was: e2 : s ⇒ False,
expressing that the property does not hold in case s contains e2.

The buggy equation could be easily patched after the problem
was caught and all specifications of the equational theory and
the method specifications could be proven trivially using the auto
tactic of Isabelle. As a consequence, we proved that the (patched)
specifications of the model class are consistent.

4.5 Equivalence of equational theory and method
specifications

While it was easy to notice the large overlap of properties specified
by the class invariant and by the method specifications, it was not
trivial to see whether they are equivalent. Thus, after having proved
that the specifications are consistent, we proved their equivalence
formally using Isabelle.

The procedure of proving the equivalence was the following.
First, we declared signatures of function symbols the same way as
described in Section 3.3. When proving that the equational theory
implies the method specifications, we stated axioms based on the

equational theory and generated lemmas based on the method spec-
ifications. Finally, we attempted to prove the lemmas by using the
axioms. The other direction was proved analogously.

We found that the equational theory and the method specifi-
cations were not equivalent and none of them contained stronger
specifications than the other. That is, while proving either direction,
some lemmas could not be proven without strengthening some of
the axioms or adding new ones. Four additional equations had to
be added to the equational theory and one postcondition had to be
strengthened in the method specifications in order to prove their
equivalence. Here we give one example for each direction.

The equational theory contains two specifications that mention
method isEmpty:

new JMLObjectSet().isEmpty() and
!s.insert(e1).isEmpty()

These express that a newly allocated set is empty and that a set in
which an element is inserted is not empty.
These specifications do not imply the property stated in the post-
condition of method isEmpty:

\result == (\forall Object e; ; !this.has(e))

That is, isEmpty returns true if and only if the set does not contain
any object. The postcondition could not be proven using the two
equations because those just express properties of isEmpty (after
construction and insertion) while the postcondition gives the defi-
nition of isEmpty.

Adding this definition to the equational theory (and thus to the
set of axioms used in the proofs) solved the problem. In fact, the
two original specifications could as well be removed since the new
one (together with other properties) implies them.

The example where the method specifications had to be strength-
ened is the postcondition of JMLObjectSet’s constructor which
takes an object e as argument and yields a set that contains e.
The original postcondition “this.has(e)” was not sufficient to
prove two specifications from the equational theory, for instance,
the equation that relates the two constructors of the class:

new JMLObjectSet(e1).
equals(new JMLObjectSet().insert(e1))

The weakness of the constructor’s postcondition was again revealed
by the open goal while proving the above equation and suggested
us to strengthen the postcondition to express that object e is the one
and only object contained by the set after construction:

(\forall Object e1; this.has(e1) <==> (e == e1))

The strengthened postcondition allowed us to prove the two re-
maining specifications in the equational theory.

To make sure that the added and strengthened specifications do
not introduce unsoundness, we proved their consistency the same
way as in Section 4.4.

The result of having proved the equivalence of the equational
theory and the method specifications is that one can use either one
or the other. For instance, one only needs to prove isomorphism of
the method specifications and theory HOL/Set while the equational
theory can be marked as redundant.

An interesting side-effect of this proof technique is that one can
check whether specifications marked as redundant are indeed re-
dundant. For instance, to check if a method specification marked
as redundant is indeed implied by other method specifications, one
needs to generate a lemma out of the specification marked as redun-
dant and axioms from the non-redundant method specifications. If
the lemma is provable, the specification is indeed redundant.

36

4.6 Completeness
As the last step we proved that the definitions of Isabelle’s Set the-
ory are implied by the (corrected and strengthened) specifications
of JMLObjectSet. The proof was performed both for the equa-
tional theory and for method specifications and was carried out as
described in Section 3.3. We note that due to the equivalence proof
sketched above, it would have sufficed to perform this step either
for the equational theory or for the method specifications. We car-
ried out the proofs for both of them in order to gain more experience
with our approach.

The most interesting part in this step was the mapping of Is-
abelle definitions to the signatures of the model class. Specifically,
many of the definitions in Isabelle’s Set theory use set compre-
hension. This is a construct that cannot be expressed by a method
in the model class. However, probably for this reason, JML sup-
ports set comprehension on the syntax level [15]. The JML Ref-
erence Manual does not give a concrete definition for the seman-
tics of the construct, thus we used the same meaning that Isabelle
defines. This (1) ensured that we did not introduce unsoundness
(provided the Isabelle definition is sound), and (2) gave a connec-
tion between mathematical set comprehension and the methods of
JMLObjectSet since the Isabelle definition refers to set member-
ship which corresponds to the has method of the model class.

With the help of set comprehension, most Isabelle definitions
could be easily mapped back to the “language” of the model class.
The corresponding lemmas could be proven both by the corrected
and strengthened equational theory and by the strengthened method
specifications. This means that both kinds of specifications are
strong enough to imply the elementary properties of sets.

However, there were definitions that could not be mapped back
to the model class in a straightforward way. An example is function
image which takes a function f and a set A as parameters, and yields
the image of set A under f. The model class does not provide such
functionality and it cannot be expressed by the use of other methods
of the class. Such cases lead us to the notion of observational
faithfulness, discussed in the next session.

4.7 Mismatches between model class and structure
So far we only dealt with situations where each method of M had
a direct correspondence in S and vice versa. However, this is not
necessarily the case. If there is no direct correspondence, one can
try to express the operation in terms of other operations (either of
M or of S) that could already be mapped (directly or indirectly). As
an example, in Section 4.3 we mentioned JMLObjectSet’s remove
method, which could be expressed in terms of two functions of
Isabelle’s Set. In such cases the isomorphism result still holds.

However, there might be situations when no mapping exists and
the operation cannot be expressed in terms of other ones. In such
cases, there is a mismatch between M and S that cannot be bridged,
that is, M and S are not isomorphic. However, the “direction” of
the mismatch makes a difference in the consequences.

If a method of M cannot be translated to S then we can-
not be sure that specifications referring to the method are indeed
consistent and that the method semantically corresponds to some
mathematical operation. An example for this situation is method
int size in JMLObjectSet. It has no counterpart in Isabelle’s
HOL/Set theory and cannot be expressed by other methods of the
model class. This means that if we use theory HOL/Set we can nei-
ther guarantee consistency of specifications mentioning the method
nor that the semantic meaning of the method is the intended one,
namely set cardinality. In such situations, one needs to pick a dif-
ferent target theory where the mapping is possible. In our case Is-
abelle’s HOL/Finite Set could be picked as it provides function
card to express set cardinality.

The situation is better if an operation of S cannot be translated
to M . In this case the consistency of all methods in M can still be
shown and the mappings prescribed by the mapped to clauses can
be safely used. That is, although isomorphism of M and S cannot
be proven, isomorphism of all operations accessible in M and the
corresponding operations in S can be shown. We call this kind of
isomorphism observational faithfulness which is a sufficient result
for the sound use of mapped to clauses.

As mentioned above, HOL/Set’s function image cannot be
mapped to JMLObjectSet. This means that the model class and
the theory are not isomorphic. However, they are observation-
ally faithful since isomorphism can still be shown for all methods
of JMLObjectSet that may appear in specifications (apart from
method int size, as mentioned above).

5. Related work
The idea of using function symbols that are understood by the
backend theorem prover directly on the specification level was
already present in ESC/Java [9]. The special construct \dttfsa
(Damn The Torpedos, Full Speed Ahead!) allowed users to refer to
function applications on the level of Simplify, the theorem prover
of ESC/Java. The corresponding function symbols were defined
directly on the level of the prover. While this construct was a
powerful means for specification, one had to be careful with its
usage since on the specification level the definitions of the function
symbols were hidden. The verification system did not give support
for showing that the definitions were free of inconsistencies.

The Caduceus tool is a static verification system for C programs
[7]. For specification and verification purposes the tool allows one
to declare types and predicates as well as to define or axiomatize
these predicates on the C source level. One can also define “hybrid”
predicates, predicates that refer both to elements of the C program
and elements of these specification-only types and predicates. Def-
initions of predicates can also be postponed on the source level and
given directly in Coq, the backend prover of the tool. This con-
cept eases the task of specifying and verifying programs since, for
instance, it prevents the use of method calls in specifications and
leads to definitions that are more suitable for provers than JML
specifications. Case studies demonstrate the power of this approach
[8, 11]. The drawback of the approach is the lack of consistency
proof for definitions and axioms given on the source or prover level.
This might lead to soundness issues.

Leavens et al. [14] identify the problem of specifying model
types as a challenge for the specification and verification of pro-
grams. As a solution they propose the direct translation of model
classes to mathematical theories, however, their proposal does not
include details on how the translation would work and the issue of
faithfulness is not mentioned.

Schoeller [20] roughly sketches the idea of the faithful mapping
of model classes to mathematical structures. However, no details
are given on how one would prove faithfulness.

Schoeller et al. developed a model library for Eiffel [21]. They
address the faithfulness issue by equipping methods of model
classes with specifications that directly correspond to axioms and
theorems taken from mathematical textbooks. A shortcoming of
this approach is that the resulting model library has to follow ex-
actly the structure of the mimicked theory. This limits the design
decisions one can make when composing the model library and it
is unclear how one can support multiple theorem provers. Further-
more, user-defined model classes cannot be supported since there
is no corresponding theory. Our approach allows more flexibility in
the construction of model classes and libraries by using mapped to
clauses that can go beyond direct mappings since arbitrary terms of
the target context can be specified. In turn, our approach requires
one to prove faithfulness of the mapping.

37

Charles [3] proposes the introduction of the native keyword
to JML in the context of work on the program verifier Jack [2].
The keyword can be attached to methods with a similar meaning
to ESC/Java’s \dttfsa construct: methods marked as native
introduce uninterpreted function symbols and their definitions can
be directly given on the level of Coq, the backend prover of Jack.
Charles carries the idea over to model classes: the native keyword
may also be attached to types with the meaning that such types get
mapped to corresponding Coq datatypes. The mapping of native
types is defined on the Coq level, too. This approach differs mainly
in two ways from ours. First, our approach ensures faithfulness
of the mappings. There is no attempt to do so in the work of
Charles. Second, the mapped to clause we propose in this paper
allows one to specify the mappings on the specification language
level. Furthermore, properties of model classes are specified in JML
which typically provide easier understanding (for programmers)
of the semantics than definitions given directly on the level of a
theorem prover.

6. Conclusion
For the static verification of programs, model classes have to be
mapped to mathematical structures of the underlying theorem
prover. In this paper, we proposed an approach to show that this
mapping is faithful by proving isomorphism between the model
classes and the structures.

The proposed approach improves on previous work in three
ways. First, previous work that proposed the direct translation of
model-class methods to functions of a theorem prover does not en-
sure any actual semantic relationship between the mapped entities.
This can easily lead to semantic mismatch between what was in-
tended to be specified and what was actually verified.

Second, our approach leads to better specifications for model
classes by ensuring their (relative) consistency and completeness.
The identification and checking of redundant specifications further
improves the quality of the specifications.

Third, previous work for ensuring the consistency of specifi-
cations of pure methods does not provide a satisfying solution in
the presence of recursion [6]. The solution proposed by this paper
solves this problem: by proving that a certain mathematical struc-
ture is a model for the specifications of a model class, we get the
guarantee that the specifications are consistent. This result is inde-
pendent of the presence of recursion.

To demonstrate our approach, we did a case study with a model
class from JML’s model library and a theory from Isabelle’s library.
The case study was successful in that observational faithfulness
could be proved (except for method int size) and interesting ob-
servations could be made on the model class: an incorrect specifi-
cation was revealed, missing specifications were identified, and a
precise relation between its equational theory and method specifi-
cations was identified.

Future work. Future work remains to provide tool support for
the proposed mapping process described in this paper. Tools could
support the typechecking of mapped to clauses; the (partial) gen-
eration of proof scripts for faithfulness proofs; and the actual use
of the mappings for static verification of programs.

For a better understanding of the strengths and weaknesses
of our approach, further case studies with more complex model
classes need to be done. In particular, it would be interesting to see
how well our approach works for model classes that do not have a
directly corresponding theory in the theorem prover, e.g., a stack.

Acknowledgments. We are grateful to Vijay d’Silva and Farhad
Mehta for interesting discussions, and to the reviewers for helpful
comments. Müller’s work was done at ETH Zurich and was funded
in part by the Information Society Technologies program of the

European Commission, Future and Emerging Technologies under
the IST-2005-015905 MOBIUS project.

References
[1] Y. Bertot and P. Castran. Interactive Theorem Proving and Program

Development. Coq’Art: The Calculus of Inductive Constructions.
Texts in Theoretical Computer Science. Springer, 2004.

[2] L. Burdy, A. Requet, and J.-L. Lanet. Java applet correctness: A
developer-oriented approach. In FME, volume 2805 of LNCS, pages
422–439. Springer, 2003.

[3] J. Charles. Adding Native Specifications to JML. In Formal
Techniques for Java-like Programs, 2006.

[4] Y. Cheon, G. Leavens, M. Sitaraman, and S. Edwards. Model
variables: cleanly supporting abstraction in design by contract:
Research articles. Softw. Pract. Exper., 35(6):583–599, 2005.

[5] A. Darvas and K. R. M. Leino. Practical reasoning about invocations
and implementations of pure methods. In FASE, volume 4422 of
LNCS, pages 336–351. Springer, 2007.

[6] A. Darvas and P. Müller. Reasoning About Method Calls in Interface
Specifications. JOT, 5(5):59–85, 2006.

[7] J.-C. Filliâtre, T. Hubert, and C. Marché. The Caduceus verification
tool for C programs. Tutorial and Reference Manual. 2007.

[8] J.-C. Filliâtre and C. Marché. Multi-prover verification of C programs.
In ICFEM, volume 3308 of LNCS, pages 15–29. Springer, 2004.

[9] C. Flanagan, K. R. M. Leino, M. Lillibridge, J. B. S. G. Nelson, and
R. Stata. Extended static checking for Java. In PLDI, volume 37,
pages 234–245. ACM Press, 2002.

[10] J. V. Guttag and J. J. Horning. Larch: Languages and Tools for
Formal Specification. Texts and Monographs in Computer Science.
Springer-Verlag, 1993.

[11] T. Hubert and C. Marché. A case study of C source code verification:
the Schorr-Waite algorithm. In SEFM. IEEE Comp. Soc. Press, 2005.

[12] B. Jacobs and F. Piessens. Verification of programs with inspector
methods. In Formal Techniques for Java-like Programs, 2006.

[13] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok. How
the design of JML accommodates both runtime assertion checking
and formal verification. Science of Computer Programming, 55(1–
3):185–205, 2005.

[14] G. T. Leavens, K. R. M. Leino, and P. Müller. Specification and
verification challenges for sequential object-oriented programs.
Formal Aspects of Computing, 2007. To appear.

[15] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok,
P. Müller, and J. Kiniry. JML Reference Manual. Iowa State
University, Last revised February 2007.

[16] J. Meyer, P. Müller, and A. Poetzsch-Heffter. The JIVE system—
implementation description. 2000.

[17] M. Miragliotta. Specification model library for the interactive
program prover JIVE. ETH Zurich, Semester Thesis, 2004.

[18] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,
2002.

[19] T. Nipkow, L. C. Paulson, and M. Wenzel. Theory HOL/Set from
“The Isabelle Library”. isabelle.in.tum.de/library/HOL/
Set.html, 2005.

[20] B. Schoeller. Strengthening Eiffel contracts using models. In Formal
Aspects of Component Software, 2003.

[21] B. Schoeller, T. Widmer, and B. Meyer. Making specifications
complete through models. In Architecting Systems with Trustworthy
Components, volume 3938 of LNCS. Springer, 2006.

[22] N. Shankar, S. Owre, and J. M. Rushby. A Tutorial on Specification
and Verification Using PVS (Beta Release). Technical report,
Computer Science Laboratory, SRI International, March 1993.

38

