

An Integrated Verification Environment for JML: Architecture and
Early Results

Patrice Chalin, Perry R. James, George Karabotsos
Dependable Software Research Group,

Dept. of Computer Science and Software Engineering,
Concordia University, Montréal, Canada

{chalin, perry, g_karab}@dsrg.org

ABSTRACT
Tool support for the Java Modeling Language (JML) is a very
pressing problem. A main issue with current tools is their
architecture: the cost of keeping up with the evolution of Java is
prohibitively high: e.g., almost three years following its release,
Java 5 has yet to be fully supported. This paper presents the
architecture of JML4, an Integrated Verification Environment
(IVE) for JML that builds upon Eclipse’s support for Java,
enhancing it with Extended Static Checking (ESC), an early form
of Runtime Assertion Checking (RAC) and JML’s non-null type
system. Early results indicate that the synergy of complementary
verification techniques (being made available within a single tool)
can help developers be more effective; we demonstrate new bugs
uncovered in JML annotated Java source—like ESC/Java2—
which is routinely verified using first generation JML tools.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
programming by contract; D.3.3 [Programming Languages]; F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs.

General Terms
Design, Languages, Theory, Verification.

Keywords
Integrated Verification Environment, Java Modeling Language,
Eclipse, JML4.

1. INTRODUCTION
The Java Modeling Language (JML) is the most popular
Behavioral Interface Specification Language (BISL) for Java.
JML is recognized by a dozen tools and used by over two dozen
institutions for teaching and/or research, mainly in the context of
program verification [18]. Tools exist to support the full range of
verification from runtime assertion checking (RAC) to full static
program verification (FSPV) with extended static checking (ESC)
in between [3]. Of these, RAC and ESC are the technologies
which are most likely to be adopted by mainstream developers
because of their ease of use and low learning curve.

In earlier work [6] we confirmed (among other things) how
RAC and ESC are most effective when used together, particularly
when it comes to the verification of sizeable systems.
Unfortunately, this is more challenging than it should be; one of
the key reasons being that the tools accept slightly different and
incompatible variants of JML—sadly this is the case for
practically all of the current JML tools. The top factors
contributing to the current state of affairs are
• partly historical—the tools were developed independently,

each having their own parsers, type checkers, etc. and
• partly due to the rapid pace of evolution of both JML and

Java.
Not only does this last point make it difficult for individual
research teams to keep apace, it also results in significant and
unnecessary duplication of effort.

For some time now the JML community has recognized that a
consolidation effort is necessary with respect to its tool base. In
response to this need, three prototypical “next generation” tools
have taken shape: JML3, JML4, and JML5 [18]. This paper
presents the architecture and design rationale behind JML4: we
explain why we believe JML4 will not suffer from the
maintenance overhead of other JML tools even in the face of the
rapid pace of evolution of Java.

The remainder of the paper is organized as follows. In the
next section, we present early results demonstrating that the
synergy of complementary verification techniques (being made
available within JML4) can help developers be more effective; we
illustrate new bugs uncovered in ESC/Java2 source—despite the
fact that the code is routinely verified using itself and other JML
tools. The remaining sections focus on JML tool support, offering
• a discussion of the goals to be achieved by any next

generation JML tool base (Section 3) and
• a presentation (Section 4) of the architectural and (some

aspects of) the detailed design of JML4; our objective is to
provide sufficient detail to allow JML4’s design to be
assessed relative to the stated goals.

Section 5 provides initial arguments supporting our belief that
JML4’s design will be less costly to maintain in the long run than
current JML tools. Section 6 offers a brief discussion and
comparison of JML4 with its predecessor JML2 and siblings
JML3 and JML5 as well as other tools like the Java Applet
Correctness Kit (JACK). Conclusions and future work are
presented in Section 7.

2. EARLY RESULTS: BENEFITS OF SYNERGY
One of JML4’s first and most fully developed features is

JML’s non-null type system [7]. This, coupled with the tool’s
ability to read the extensive JML API library specifications,
renders it quite effective at statically detecting potential null
pointer exceptions (NPEs). Recently, JML4 was enhanced to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Sixth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2007), September 3-4, 2007,
Cavtat near Dubrovnik, Croatia.
Copyright 2007 ACM ISBN 978-1-59593-721-6/07/0009 ... $5.00

47

support Extended Static Checking (ESC) through the integration
of ESC/Java2 [11]. While each verification technique has
strengths and weaknesses, integration of complementary
techniques into a single verification environment brings about a
level of synergy that would not be achievable otherwise.

As a concrete example of the kind of verification technique
synergy which JML4 achieves, consider the code fragment given
in Figure 1, an excerpt from ESC/Java2’s escjava.Main class.
JML4 correctly reports that a dereference of vcg inside of
processRoutineDecl() could result in an NPE (Figure 2).

Since ESC/Java2 is routinely run on itself, why was this error
not detected before? Because analyzing processRoutine-

Decl(), which consists of 386 lines of code, is beyond the
capabilities of ESC/Java2 (it gives up on attempting to verify the
method because the verification condition is too big). Several
errors that arise under such circumstances were identified in

ESC/Java2 source by JML4.
As another example, consider the static options() method

of escjava.Main (Figure 1) which returns a reference to
ESC/Java2’s command line options. This method is used
throughout the code (272 occurrences) and its return value is
directly dereferenced even though the method can return null.

While JML4 reports the 250+ NPEs related to the use of this
method, ESC fails to do so because another ESC error prevents it
from determining that the method can return null: namely, a
possible type cast violation. The effect of having one error mask
others is particularly acute for ESC/Java2 (even more so than in
ordinary compilers) thus making effective the more resilient,
though less powerful, complementary verification capabilities of
other techniques such as those implemented in JML4 (and
recently added to ESC/Java2 [17]). Our preliminary use of JML4
has demonstrated that, e.g., nullity type errors once fixed allow
ESC to push further its analysis, helping expose yet more bugs in
code and specifications, which leads to uncovering further nullity
type errors, etc.

3. JML TOOLS: BACKGROUND AND GOALS
In this section we discuss the main goals to be satisfied by any
next generation tool base for JML. Before doing so we give a
brief summary of the JML’s first generation of tools.

3.1 FIRST GENERATION TOOLS
The first generation JML tools essentially consist of:
• Common JML tool suite—formerly the Iowa State University

(ISU) JML tool suite—also known to developers as JML2,
which includes the JML RAC compiler and JmlUnit [3],

• ESC/Java2, an extended static checker [11], and
• LOOP a full static program verifier [20].
Of these, JML2 is the original JML tool set. Although ESC/Java2
and LOOP initially used an annotation language other than JML,
they quickly switched to use JML.

Being independent development efforts, each of the tools
mentioned above has its own Java/JML front end including
scanner, parser, abstract syntax tree (AST) hierarchy and static

package escjava;
...
public class Main extends javafe.SrcTool {

 ...

 public static Options options() {
 return (Options)options;
 }

 ...
 public String processRoutineDecl(...) {

 ...

 VcGenerator vcg = null; ...
 try {

 ... // possible assignment to vcg

 } // multiple catch blocks
 catch (Exception e) {

 ...

 }
 ...

 fw.write(vcg.old2Dot()); // <<< possible NPE

 ...
 }

}

Figure 1. Code excerpt from the escjava.Main class

Figure 2. JML4 reporting non-null type system errors in a method too big for ESC to verify

48

analysis code—though not all developed to the same level of
completeness or reliability. This is a considerable amount of
duplicate effort and code (of the order of 50-100K SLOC1). This
became evident as JML evolved, but the main hurdle which has
yet to be fully addressed is the advent of Java 5 (especially
generics).

3.1.1 LESSONS LEARNED FROM JML2
Which lessons can be learned from the development of the first
generation of tools, especially JML2 which, from the start, has
been the reference implementation of JML? JML2 was essentially
developed as an extension to the MultiJava (MJ) compiler. By
“extension”, we mean that
• for the most part, MJ remains independent of JML
• many JML features are naturally implemented by subclassing

MJ features and overriding methods—e.g. abstract syntax tree
nodes with their associated type checking methods;

• in other situations, extension points (calls to methods with
empty bodies) were added to MJ classes so that it was
possible to override behavior in JML2.

We believe that this approach has allowed JML2 to be
successfully maintained as the JML reference implementation
since 2002 by an increasing developer pool (there are currently 49
registered developers). In that case what, if anything, went
wrong? We believe it was a combination of factors including the
advent of a relatively big step in the evolution of Java (including
Java 5 generics) and the difficulty in finding developers to
upgrade MJ. Hence our approach in JML4 has been to repeat the
successful approach adopted by JML2 but to ensure that we
choose to extend a Java compiler that we are confident will be
maintained (outside of the JML community).

3.1.2 EVOLUTION OF IDES
Another important point to be made about the first generation of
JML tools is that they are mainly command line tools, though
some developers were able to make comfortable use of them
inside Emacs, which in a sense, can be considered an early
integrated development environment (IDE).

With a phenomenal increase in the popularity of modern IDEs
like Eclipse, it seems clear that to increase the likelihood of
getting widespread adoption of JML, it will be necessary to have
its tools operate well within one or more popular IDEs. In
recognition of this, early efforts have successfully provided basic
JML tool support via Eclipse plug-ins, which mainly offer access
to the command line capabilities of the JML RAC or ESC/Java2.

Other efforts (generation 1.5), resulted in tools that were built
from the outset within an IDE but have not been designed to
support RAC and ESC. These include the
• Java Applet Correctness Kit (JACK), built directly as an

Eclipse plug-in, supports interactive static verification [2].
• KeY tool, which was recently adapted to support JML as a

constraint language for expressing specifications in design
models. The KeY tool is built on top of Borland’s Together
IDE [1, 12].

1 (Physical) Source Lines of Code obtained by counting end-of-lines for

non-comment code.

3.2 GOALS FOR NEXT GENERATION TOOL
BASES

We are targeting mainstream industrial software developers as our
key end users. From an end user point of view, we strive to offer a
single Integrated (Development and) Verification Environment
(IVE) within which they can use any desired combination of
RAC, ESC, and FSPV technology. No single tool currently offers
this feature set for JML. In addition, user assistance by means of
the auto-generation of specifications (or specification fragments)
should be possible—e.g. based on approaches currently offered
by tools like Daikon [14], Houdini [15] and JmlSpec [3].

Since JML is essentially a superset of Java, most JML tools
will require, at a minimum, the capabilities of a Java compiler
front end. Some tools (e.g., the RAC) would benefit from
compiler back-end support as well. One of the important
challenges faced by the JML community is keeping up with the
rapid pace of the evolution of Java. As researchers in the field of
applied formal methods, we get little or no reward for developing
and/or maintaining basic support for Java. While such support is
essential, it is also very labor intensive. Hence, an ideal solution
would be to extend a Java compiler, already integrated within a
modern IDE, whose maintenance is assured by a developer base
outside of the JML research community. If the extension points
can be judiciously chosen and kept to a minimum then the extra
effort caused by developing on top of a rapidly moving base can
be minimized.

In summary, our general goals are to provide
• a base framework for the integrated capabilities of RAC, ESC,

and FSPV
• in the context of a modern Java IDE whose maintenance is

outside the JML community
• by implementing support for JML as extensions to the base

support for Java so as to minimize the integration effort
required when new versions of the IDE are released.

A few recent projects have attempted to satisfy these goals. In the
next section, we describe how we have attempted to satisfy them
in our design of JML4; the other projects are discussed in the
section on related work.

4. JML4
In our first feature set, JML4 enhanced Eclipse 3.3 with: scanning
and parsing of nullity modifiers, enforcement of JML’s non-null
type system (both statically and at runtime) and the ability to read
and make use of the extensive JML API library specifications.
This subset of features was chosen so as to exercise some of the
basic capabilities that any JML extension to Eclipse would need
to support. These include
• recognizing and processing JML syntax inside specially

marked comments, both in *.java files as well as *.jml
files;

• storing JML-specific nodes in an extended AST hierarchy,
• statically enforcing a modified type system, and
• providing for runtime assertion checking (RAC).
Also, the chosen subset of features is useful in its own right,
somewhat independent of other JML features [7]; i.e. the
capabilities form a natural extension to the existing embryonic
Eclipse support for nullity analysis.

We have since been pursuing our enrichment of the JML4
feature set so that to date, we have completed a full integration of

49

ESC/Java2 and begun work towards the support of runtime
assertion checking of JML Level 0 [19, Section 2.9].

In the remainder of this section, we present our proposed
means of extending Eclipse to support JML, appealing at times to
the specific way in which the JML4 features described above
have been realized.

4.1 ARCHITECTURAL OVERVIEW
Eclipse is a plug-in based application platform. An Eclipse
application consists of the Eclipse plug-in loader (Platform
Runtime component), certain common plug-ins (such as those in
the Eclipse Platform package) along with application specific
plug-ins. Well known bundlings of Eclipse plug-ins include the
Eclipse Software Development Kit (SDK) and the Eclipse Rich
Client Platform (RCP). While Eclipse is written in Java, it does
not have built-in support for Java. Like all other Eclipse features,
Java support is provided by a collection of plug-ins—called the
Eclipse Java Development Tooling (JDT)—offering, among other
things, a standard Java compiler and debugger.

The main packages of interest in the JDT are the ui, core,
and debug. As can be gathered from the names, the core (non-UI)
compiler functionality is defined in the core package; UI
elements and debugger infrastructure are provided by the
components in the ui and debug packages, respectively.

One of the rules of Eclipse development is that public APIs
must be maintained forever. This API stability helps avoid
breaking client code. The following convention was established
by Eclipse developers: only classes or interfaces that are not in a
package named internal can be considered part of the public
API. Hence, for example, the classes for the JDT’s internal AST
are found in the org.eclipse.jdt.internal.compiler.ast
package, where as the public version of the AST is (partly)
reproduced under org.eclipse.jdt.core.dom. For JML4 we
have generally made changes to internal components (to insert
hooks) and then moved most of the JML specific code to
org.jmlspecs.eclipse.jdt.

At the top-most level, JML4 consists of:
• a customized version of the org.eclipse.jdt.core

package (details will be given below) that is used as a drop-in
replacement for the official Eclipse JDT core.

• JML specific classes contained in org.jmlspecs.-

eclipse.jdt including core classes (most of which are sub-
classes of the JDT Abstract Syntax Tree (AST) node
hierarchy) and ui classes (e.g. for JML related preferences).

These packages are shown in bold in Figure 3.

4.2 COMPILATION PHASES OVERVIEW
The main steps of the compilation process performed by JML4
are illustrated in Figure 4. In the Eclipse JDT (and JML4), there
are two types of parsing: in addition to a standard full parse, there
is also a diet parse, which only gathers signature information and
ignores method bodies. When a set of JML annotated Java files is
to be compiled, all are diet parsed to create (diet) ASTs
containing initial type information, and the resulting type bindings
are stored in the lookup environment (not shown). Then each
compilation unit (CU) is fully parsed. During the processing of
each CU, types that are referenced but not yet in the lookup en-
vironment must have type bindings created for them. This is done
by first searching for a binary (*.class) file or, if not found, a
source (*.java) file. Bindings are created directly from a binary
file, but a source file must be diet parsed and added to the list to
be processed. In both cases the bindings are added to the lookup
environment. If JML specifications for any CU or referenced type
are contained in a separate external file (e.g. a *.jml file), then
these specification files are diet parsed and the resulting
information merged with the CU AST (or associated with the

core

org.jmlspecs.
eclipse.jdt

org.eclipse.jdt
...

Platform
Runtime

Eclipse Platform Workbench
Workspace
Team
Help

ui

debug

core

ui

Figure 3. High-level package view

Figure 4. JDT/JML4 compilation phases

50

binding in the case of a binary file). Finally, flow analysis and
code generation are performed. Extended static checking is
treated as a distinct phase between flow analysis and code
generation. In the remaining subsections we briefly cover some
aspects of JML4 compilation—details can be found in [8].

4.3 LEXICAL SCANNING, PARSING AND THE
AST

Figure 5 provides an overview of the main parser components as
well as the means by which they are generated; components in
bold are those that have been customized under JML4.

Scanning. Since all of JML is contained within specially
marked comments, the main change to the lexical scanner was to
enhance it to recognize JML annotations. This is currently
handled using a Boolean field that indicates if the scanner is in a
JML annotation or not. Adding support for new keywords
requires a little more work than usual since the JDT’s scanner is
highly optimized and hand crafted. Keywords, for example, are
identified by a set of nested case statements based on the first
character of a lexeme and its length.

Parsing. The JDT’s parser is auto-generated from a grammar
file (java.g) using the Jikes Parser Generator (JikesPG) and a
custom script we have written. On a positive note, the grammar
file, java.g, closely follows the Java Language Specification
[16] and hence has been relatively easy to extend. Possibly the
main source of difficulty in the parser is the lack of automatic
support for token stacks.

Other than adding methods corresponding to new grammar-
rule reductions, the most prominent change to the parser is the
replacement of calls to constructors of JDT AST nodes with those
of JML-specific AST subclasses. The abstract syntax tree
hierarchy for JML4 is obtained by subclassing specific JDT AST
nodes as needed. An illustration of how this is done is given in
Figure 6. For example, JML type references are like Java type

references but have additional information such as nullity.
Currently we subclass 20% of the AST node types; the JML
specific subclasses generally contain very little code (and in
particular, no code is copied from superclasses).

4.4 TYPE CHECKING AND FLOW ANALYSIS
Type checking is performed by invoking the resolve() method
on a compilation unit. Similarly, flow analysis is performed by
the analyseCode() method. Addition of JML functionality is
achieved by inserting “hooks” into the previously mentioned
methods—i.e. calls to methods with empty bodies in the parent
class that are then overridden in JML-specific AST nodes. Our
hope is that such hooks will be ported back into the Eclipse JDT,
something the JDT developers have confirmed is feasible
provided we can demonstrate that no public APIs are changed and
that there is little or no impact on runtime performance.

Between type checking and flow analysis, the compiler
checks for external specification files (e.g., *.jml files)
corresponding to the file being compiled. If one is found, it is
parsed and any annotations are added to the corresponding
declarations. Binary types (i.e., those found in *.class files)
whose specifications are needed are handled differently. For
these, the system searches for both a source and external
specification file.

4.5 RUNTIME CHECKING AND EXTENDED
STATIC CHECKING

Code generation is performed by each ASTNode’s generate-
Code() method. Its CodeStream parameter provides methods for
emitting JVM bytecode and hides some of the bookkeeping
details, such as determining the generated code’s runtime stack
usage. Hence, supporting runtime checking is relatively
straightforward.

Extended Static Checking in JML4 is currently achieved by a

org.eclipse.jdt.internal.compiler.parser

JikesPG

Parser
.java

Terminal
Tokens

.java

Parser code
fragments

Parser table
fragments

(.rsc)

DSRG
script

Resource
and other

files

Scanner
.java

java.g

Figure 5. Customizing the JDT lexer and parser

Figure 6. Part of the AST hierarchy (org.eclipse.jdt.internal.compiler.ast)

51

preliminary integration of ESC/Java2. That is, during compilation
in a step just following flow analysis, we invoke escjava’s main
processing method—which effectively reparses the file inside of
ESC/Java2. While such an approach is inefficient, it has allowed
us to focus on the integration of the problem reporting. As a next
step, we will create a visitor which will map Eclipse JDT AST’s
into ESC/Java2’s AST, thus avoiding the reparsing. Finally, we
plan on building a custom transformation from the JDT’s AST
into ESC/Java2’s guarded command language, hopefully allowing
us to reuse the rest of ESC/Java2’s verification condition
generation back-end.

5. VALIDATION OF ARCHITECTURAL
APPROACH

JML4 was recently used to help validate our proposal that JML’s
non-null type system should be non-null by default [7]. It was
used to produce RAC-enabled versions of five case studies
(totaling over 470K SLOC), which were then used to execute
those systems’ extensive test suites. This exercise gave us
confidence in JML4’s runtime checking capabilities and its ability
to process JML API specifications.

JML4, like JML2, is built as a closely integrated and yet
loosely coupled extension to an existing compiler. An additional
benefit for JML4 is that the timely compiler base maintenance is
assured by the Eclipse Foundation developers. Hence, as
compared to JML2, we have traded in committer rights for free
maintenance; a choice which we believe will be more
advantageous in the long run—in particular due to the rapid pace
of the evolution of Java. Unfortunately, loosing committer rights
means that we must maintain our own version of the JDT code.
Use of the CVS vendor branch feature has made this manageable.

While we originally had the goal of creating JML4 as a proper
Eclipse plug-in, only making use of public JDT APIs (rather than
as a replacement plug-in for the JDT), it rapidly became clear that
this would result in far too much copy-and-change code; so much
so that the advantage of coupling to an existing compiler was lost
(e.g. due to the need to maintain our own full parser and AST).

Nonetheless we were also originally reluctant to build atop
internal APIs, which contrary to public APIs, are subject to
change—with weekly releases of the JDT code, it seemed like we
would be building on quicksand. Anticipating this, we established
several conventions that make merging in the frequent JDT
changes both easier and less error prone. These include
• avoiding introducing JML features by the copy-and-change of

JDT code, instead we make use of subclassing and method
extension points;

• bracketing any changes to our copy of the JDT code with
special comment markers.

While following these conventions, incorporating each of the
regular JDT updates since the fall of 2006 (to our surprise) has
taken less than 10 minutes, on average.

6. RELATED WORK
In this section we briefly compare JML4 to its sibling next
generation projects JML3, JML5 as well as to the Java Applet
Correctness Kit (JACK). Further details, examples and tools are
covered in [8].

The first next-generation Eclipse-based initiative was JML3,
created by David Cok. The main objective of the project was to
create a proper Eclipse plug-in, independent of the internals of the
JDT [9]. Considerable work has been done to develop the
necessary infrastructure, but there are growing concerns about the
long term costs of this approach.

Because the JDT’s parser is not extensible from public JDT
extensions points, a separate parser for the entire Java language
and an AST had to be created for JML3; in addition, Cok notes
that “JML3 [will need] to have its own name / type / resolver /
checker for both JML constructs [and] all of Java” [9]. Since one
of the main goals of the next generation tools is to escape from
providing support for the Java language, this is a key
disadvantage.

The Java Applet Correctness Kit (JACK) is a proprietary tool
for JML annotated Java Card programs initially developed at
Gemplus (2002) and then taken over by INRIA (2003) [2]. It uses
a weakest precondition calculus to generate proof obligations that
are discharged automatically or interactively using various
theorem provers [5]. While JACK is emerging as a candidate next
generation tool (offering features unique to JML tools such as
verification of annotated byte code [4] and a proof obligation
viewer), being a proper Eclipse plug-in, it suffers from the same
drawbacks as JML3. Additionally JACK does not provide support
for RAC which we believe is an essential component of a
mainstream IVE.

The JML5 project, recently initiated at Iowa State University,
has taken a different approach. Its goal is to embed JML
specifications in Java 5 annotations rather than Java comments.
Such a change will allow JML’s tools to use any Java 5 compliant
compiler. Unfortunately, the use of annotations has important
drawbacks as well. In addition to requiring a separate parser to
process the JML specific annotation contents (e.g. assertion
expressions), Java’s current annotation facility does not allow for
annotations to be placed at all locations in the code at which JML
can be placed. JSR-308 is addressing this problem as a
consequence of its mandate, but any changes proposed would
only be present in Java 7 and would not allow support for earlier
versions of Java [13].

Table 1 presents a summary of the comparison of the tools.
As compared to the approach taken in JML4, the main drawback
of the other tools is that they are likely to require more effort to
maintain over the long haul as Java continues to evolve and due to
the looser coupling with their base.

7. CONCLUSION AND FUTURE WORK
The idea of providing JML tool support by means of a closely
integrated and yet loosely coupled extension to an existing
compiler was successfully realized in JML2. This has worked
well since 2002, but unfortunately the chosen Java compiler is not
being kept up to date with respect to Java in a timely manner. We
propose applying the same approach by extending the Eclipse
JDT (partly through internal packages). Even though it is more
invasive than a proper plug-in solution, using this approach we
have demonstrated that it was relatively easy to enhance the type
system and provide RAC and ESC support.

52

Other possible next generation JML tools have been
discussed, but all seem to share the common overhead of
maintaining a full Java parser, AST, and type checker separate
from the base tools they are built from. This seems like an
overhead that will be too costly in the long run. We are certainly
not claiming that JML4 is the only viable next generation
candidate but are hopeful that this paper has demonstrated that it
is a likely candidate.

REFERENCES
[1] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R.

Hähnle, W. Menzel, W. Mostowski, A. Roth, S. Schlager,
and P. H. Schmitt, “The KeY Tool”, Software and System
Modeling, 4:32-54, 2005.

[2] G. Barthe, L. Burdy, J. Charles, B. Grégoire, M. Huisman,
J.-L. Lanet, M. Pavlova, and A. Requet, “JACK: a tool for
validation of security and behaviour of Java applications”.
Proceedings of the 5th International Symposium on Formal
Methods for Components and Objects (FMCO), 2007.

[3] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll, “An Overview
of JML Tools and Applications”, International Journal on
Software Tools for Technology Transfer (STTT), 7(3):212-
232, 2005.

[4] L. Burdy, M. Huisman, and M. Pavlova, “Preliminary
Design of BML: A Behavioral Interface Specification
Language For Java Bytecode”. Proceedings of the
Fundamental Approaches to Software Engineering (FASE),
vol. 4422 of LNCS, pp. 215-229, 2007.

[5] L. Burdy, A. Requet, and J.-L. Lanet, “Java Applet
Correctness: A Developer-Oriented Approach”.
Proceedings of the International Symposium of Formal
Methods Europe, vol. 2805 of LNCS. Springer, 2003.

[6] P. Chalin and P. James, “Cross-Verification of JML Tools:
An ESC/Java2 Case Study”. Proceedings of the Workshop
on Verified Software: Theories, Tools, and Experiments
(VSTTE), Seattle, Washington, August, 2006.

[7] P. Chalin and P. James, “Non-null References by Default in
Java: Alleviating the Nullity Annotation Burden”.
Proceedings of the 21st European Conference on Object-
Oriented Programming (ECOOP), Berlin, Germany, July-
August, 2007.

[8] P. Chalin, P. R. James, and G. Karabotsos, “The
Architecture of JML4, a Proposed Integrated Verification
Environment for JML”, Dependable Software Research
Group, Concordia University, ENCS-CSE-TR 2007-006.
May, 2007.

[9] D. R. Cok, “Design Notes (Eclipse.txt)”,
http://jmlspecs.svn.sourceforge.net/viewvc/jmlspecs/trunk/d
ocs/eclipse.txt, 2007.

[10] D. R. Cok, E. Hubbers, and E. Rodríguez, “Esc/Java2
Eclipse Plug-in”, http://sort.ucd.ie/projects/escjava-eclipse/,
2007.

[11] D. R. Cok and J. R. Kiniry, “ESC/Java2: Uniting ESC/Java
and JML”. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet,
and T. Muntean editors, Proceedings of the International
Workshop on the Construction and Analysis of Safe, Secure,
and Interoperable Smart Devices (CASSIS'04), Marseille,
France, March 10-14, vol. 3362 of LNCS, pp. 108-128.
Springer, 2004.

[12] C. Engel and A. Roth, “KeY Quicktour for JML”:
www.key-project.org, 2006.

[13] M. Ernst and D. Coward, “Annotations on Java Types”,
JCP.org, JSR 308. October 17, 2006.

[14] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C.
Pacheco, M. S. Tschantz, and C. Xiao, “The Daikon system
for dynamic detection of likely invariants”, Science of
Computer Programming, 2007.

[15] C. Flanagan and K. R. M. Leino, “Houdini, an Annotation
Assistant for ESC/Java”. Proceedings of the International
Symposium of Formal Methods Europe, Berlin, Germany,
vol. 2021, pp. 500-517. Springer, 2001.

[16] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java
Language Specification, 3rd ed. Addison-Wesley
Professional, 2005.

[17] M. Janota, R. Grigore, and M. Moskal, “Reachability
Analysis for Annotated Code”, UCD Dublin, submitted to
SAVCBS, 2007.

[18] G. T. Leavens, “The Java Modeling Language (JML)”:
http://www.jmlspecs.org, 2007.

[19] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D.
Cok, P. Müller, J. Kiniry, and P. Chalin, “JML Reference
Manual”, http://www.jmlspecs.org, 2007.

[20] J. van den Berg and B. Jacobs, “The LOOP compiler for
Java and JML”. In T. Margaria and W. Yi editors,
Proceedings of the Tools and Algorithms for the
Construction and Analysis of Software (TACAS), vol. 2031
of LNCS, pp. 299-312. Springer, 2001.

Table 1. A Comparison of Possible Next Generation JML Tools
 JML2 JML3 JML4 JML5 ESC/Java2 Plug-in JACK

Name MJ JDT JDT any Java 7+ ESC/Java2 and JDT JDT Base
Compiler / IDE Maintained (supports Java ≥ 5) 1

Reuse/extension of base
(e.g. parser, AST) vs. copy-and-change

RAC () N/A N/A
ESC N/A () N/A Tool Support

FSPV N/A () () N/A N/A
MJ = MultiJava, JDT = Eclipse Java Develoment Toolkit
N/A = not possible, practical or not a goal, () = planned

1 ESC/Java2 is currently being maintained to support new verification functionality, but its compiler front end has yet to reach Java 5 [10].

53

