
  

An Integrated Verification Environment for JML: Architecture and 
Early Results 

Patrice Chalin, Perry R. James, George Karabotsos 
Dependable Software Research Group, 

Dept. of Computer Science and Software Engineering,  
Concordia University, Montréal, Canada 

{chalin, perry, g_karab}@dsrg.org 
 
ABSTRACT 
Tool support for the Java Modeling Language (JML) is a very 
pressing problem. A main issue with current tools is their 
architecture: the cost of keeping up with the evolution of Java is 
prohibitively high: e.g., almost three years following its release, 
Java 5 has yet to be fully supported. This paper presents the 
architecture of JML4, an Integrated Verification Environment 
(IVE) for JML that builds upon Eclipse’s support for Java, 
enhancing it with Extended Static Checking (ESC), an early form 
of Runtime Assertion Checking (RAC) and JML’s non-null type 
system. Early results indicate that the synergy of complementary 
verification techniques (being made available within a single tool) 
can help developers be more effective; we demonstrate new bugs 
uncovered in JML annotated Java source—like ESC/Java2—
which is routinely verified using first generation JML tools. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification—
programming by contract; D.3.3 [Programming Languages]; F.3.1 
[Logics and Meanings of Programs]: Specifying and Verifying 
and Reasoning about Programs.   

General Terms 
Design, Languages, Theory, Verification. 

Keywords 
Integrated Verification Environment, Java Modeling Language, 
Eclipse, JML4. 

1. INTRODUCTION  
The Java Modeling Language (JML) is the most popular 
Behavioral Interface Specification Language (BISL) for Java. 
JML is recognized by a dozen tools and used by over two dozen 
institutions for teaching and/or research, mainly in the context of 
program verification [18]. Tools exist to support the full range of 
verification from runtime assertion checking (RAC) to full static 
program verification (FSPV) with extended static checking (ESC) 
in between [3]. Of these, RAC and ESC are the technologies 
which are most likely to be adopted by mainstream developers 
because of their ease of use and low learning curve. 

In earlier work [6] we confirmed (among other things) how 
RAC and ESC are most effective when used together, particularly 
when it comes to the verification of sizeable systems. 
Unfortunately, this is more challenging than it should be; one of 
the key reasons being that the tools accept slightly different and 
incompatible variants of JML—sadly this is the case for 
practically all of the current JML tools. The top factors 
contributing to the current state of affairs are 
• partly historical—the tools were developed independently, 

each having their own parsers, type checkers, etc. and 
• partly due to the rapid pace of evolution of both JML and 

Java. 
Not only does this last point make it difficult for individual 
research teams to keep apace, it also results in significant and 
unnecessary duplication of effort. 

For some time now the JML community has recognized that a 
consolidation effort is necessary with respect to its tool base. In 
response to this need, three prototypical “next generation” tools 
have taken shape: JML3, JML4, and JML5 [18]. This paper 
presents the architecture and design rationale behind JML4: we 
explain why we believe JML4 will not suffer from the 
maintenance overhead of other JML tools even in the face of the 
rapid pace of evolution of Java. 

The remainder of the paper is organized as follows. In the 
next section, we present early results demonstrating that the 
synergy of complementary verification techniques (being made 
available within JML4) can help developers be more effective; we 
illustrate new bugs uncovered in ESC/Java2 source—despite the 
fact that the code is routinely verified using itself and other JML 
tools. The remaining sections focus on JML tool support, offering 
• a discussion of the goals to be achieved by any next 

generation JML tool base (Section 3) and 
• a presentation (Section 4) of the architectural and (some 

aspects of) the detailed design of JML4; our objective is to 
provide sufficient detail to allow JML4’s design to be 
assessed relative to the stated goals.  

Section 5 provides initial arguments supporting our belief that 
JML4’s design will be less costly to maintain in the long run than 
current JML tools. Section 6 offers a brief discussion and 
comparison of JML4 with its predecessor JML2 and siblings 
JML3 and JML5 as well as other tools like the Java Applet 
Correctness Kit (JACK). Conclusions and future work are 
presented in Section 7. 

2. EARLY RESULTS: BENEFITS OF SYNERGY 
One of JML4’s first and most fully developed features is 

JML’s non-null type system [7].  This, coupled with the tool’s 
ability to read the extensive JML API library specifications, 
renders it quite effective at statically detecting potential null 
pointer exceptions (NPEs). Recently, JML4 was enhanced to 
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support Extended Static Checking (ESC) through the integration 
of ESC/Java2 [11]. While each verification technique has 
strengths and weaknesses, integration of complementary 
techniques into a single verification environment brings about a 
level of synergy that would not be achievable otherwise. 

As a concrete example of the kind of verification technique 
synergy which JML4 achieves, consider the code fragment given 
in Figure 1, an excerpt from ESC/Java2’s escjava.Main class. 
JML4 correctly reports that a dereference of vcg inside of 
processRoutineDecl() could result in an NPE (Figure 2). 

Since ESC/Java2 is routinely run on itself, why was this error 
not detected before? Because analyzing processRoutine-

Decl(), which consists of 386 lines of code, is beyond the 
capabilities of ESC/Java2 (it gives up on attempting to verify the 
method because the verification condition is too big). Several 
errors that arise under such circumstances were identified in 

ESC/Java2 source by JML4. 
As another example, consider the static options() method 

of escjava.Main (Figure 1) which returns a reference to 
ESC/Java2’s command line options.  This method is used 
throughout the code (272 occurrences) and its return value is 
directly dereferenced even though the method can return null. 

While JML4 reports the 250+ NPEs related to the use of this 
method, ESC fails to do so because another ESC error prevents it 
from determining that the method can return null: namely, a 
possible type cast violation. The effect of having one error mask 
others is particularly acute for ESC/Java2 (even more so than in 
ordinary compilers) thus making effective the more resilient, 
though less powerful, complementary verification capabilities of 
other techniques such as those implemented in JML4 (and 
recently added to ESC/Java2 [17]). Our preliminary use of JML4 
has demonstrated that, e.g., nullity type errors once fixed allow 
ESC to push further its analysis, helping expose yet more bugs in 
code and specifications, which leads to uncovering further nullity 
type errors, etc. 

3. JML TOOLS: BACKGROUND AND GOALS 
In this section we discuss the main goals to be satisfied by any 
next generation tool base for JML. Before doing so we give a 
brief summary of the JML’s first generation of tools. 

3.1 FIRST GENERATION TOOLS 
The first generation JML tools essentially consist of: 
• Common JML tool suite—formerly the Iowa State University 

(ISU) JML tool suite—also known to developers as JML2, 
which includes the JML RAC compiler and JmlUnit [3], 

• ESC/Java2, an extended static checker [11], and 
• LOOP a full static program verifier [20]. 
Of these, JML2 is the original JML tool set. Although ESC/Java2 
and LOOP initially used an annotation language other than JML, 
they quickly switched to use JML.  

Being independent development efforts, each of the tools 
mentioned above has its own Java/JML front end including 
scanner, parser, abstract syntax tree (AST) hierarchy and static 

package escjava; 
... 
public class Main extends javafe.SrcTool { 

 ... 

 public static Options options() {  
  return (Options)options;  
 } 

 ... 
 public String processRoutineDecl(...) { 

  ... 

  VcGenerator vcg = null; ... 
  try { 

   ... // possible assignment to vcg 

  } // multiple catch blocks 
  catch (Exception e) { 

   ... 

  } 
  ... 

  fw.write(vcg.old2Dot()); // <<< possible NPE 

  ... 
 } 

} 

Figure 1. Code excerpt from the escjava.Main class 

 
Figure 2. JML4 reporting non-null type system errors in a method too big for ESC to verify 
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analysis code—though not all developed to the same level of 
completeness or reliability. This is a considerable amount of 
duplicate effort and code (of the order of 50-100K SLOC1). This 
became evident as JML evolved, but the main hurdle which has 
yet to be fully addressed is the advent of Java 5 (especially 
generics). 

3.1.1 LESSONS LEARNED FROM JML2 
Which lessons can be learned from the development of the first 
generation of tools, especially JML2 which, from the start, has 
been the reference implementation of JML? JML2 was essentially 
developed as an extension to the MultiJava (MJ) compiler. By 
“extension”, we mean that 
• for the most part, MJ remains independent of JML 
• many JML features are naturally implemented by subclassing 

MJ features and overriding methods—e.g. abstract syntax tree 
nodes with their associated type checking methods; 

• in other situations, extension points (calls to methods with 
empty bodies) were added to MJ classes so that it was 
possible to override behavior in JML2. 

We believe that this approach has allowed JML2 to be 
successfully maintained as the JML reference implementation 
since 2002 by an increasing developer pool (there are currently 49 
registered developers). In that case what, if anything, went 
wrong? We believe it was a combination of factors including the 
advent of a relatively big step in the evolution of Java (including 
Java 5 generics) and the difficulty in finding developers to 
upgrade MJ. Hence our approach in JML4 has been to repeat the 
successful approach adopted by JML2 but to ensure that we 
choose to extend a Java compiler that we are confident will be 
maintained (outside of the JML community). 

3.1.2 EVOLUTION OF IDES 
Another important point to be made about the first generation of 
JML tools is that they are mainly command line tools, though 
some developers were able to make comfortable use of them 
inside Emacs, which in a sense, can be considered an early 
integrated development environment (IDE).  

With a phenomenal increase in the popularity of modern IDEs 
like Eclipse, it seems clear that to increase the likelihood of 
getting widespread adoption of JML, it will be necessary to have 
its tools operate well within one or more popular IDEs. In 
recognition of this, early efforts have successfully provided basic 
JML tool support via Eclipse plug-ins, which mainly offer access 
to the command line capabilities of the JML RAC or ESC/Java2.  

Other efforts (generation 1.5), resulted in tools that were built 
from the outset within an IDE but have not been designed to 
support RAC and ESC. These include the 
• Java Applet Correctness Kit (JACK), built directly as an 

Eclipse plug-in, supports interactive static verification [2]. 
• KeY tool, which was recently adapted to support JML as a 

constraint language for expressing specifications in design 
models. The KeY tool is built on top of Borland’s Together 
IDE [1, 12]. 

                                                                 
1 (Physical) Source Lines of Code obtained by counting end-of-lines for 

non-comment code. 

3.2 GOALS FOR NEXT GENERATION TOOL 
BASES 

We are targeting mainstream industrial software developers as our 
key end users. From an end user point of view, we strive to offer a 
single Integrated (Development and) Verification Environment 
(IVE) within which they can use any desired combination of 
RAC, ESC, and FSPV technology. No single tool currently offers 
this feature set for JML. In addition, user assistance by means of 
the auto-generation of specifications (or specification fragments) 
should be possible—e.g. based on approaches currently offered 
by tools like Daikon [14], Houdini [15] and JmlSpec [3]. 

Since JML is essentially a superset of Java, most JML tools 
will require, at a minimum, the capabilities of a Java compiler 
front end. Some tools (e.g., the RAC) would benefit from 
compiler back-end support as well. One of the important 
challenges faced by the JML community is keeping up with the 
rapid pace of the evolution of Java. As researchers in the field of 
applied formal methods, we get little or no reward for developing 
and/or maintaining basic support for Java. While such support is 
essential, it is also very labor intensive. Hence, an ideal solution 
would be to extend a Java compiler, already integrated within a 
modern IDE, whose maintenance is assured by a developer base 
outside of the JML research community. If the extension points 
can be judiciously chosen and kept to a minimum then the extra 
effort caused by developing on top of a rapidly moving base can 
be minimized.  

In summary, our general goals are to provide 
• a base framework for the integrated capabilities of RAC, ESC, 

and FSPV 
• in the context of a modern Java IDE whose maintenance is 

outside the JML community  
• by implementing support for JML as extensions to the base 

support for Java so as to minimize the integration effort 
required when new versions of the IDE are released. 

A few recent projects have attempted to satisfy these goals. In the 
next section, we describe how we have attempted to satisfy them 
in our design of JML4; the other projects are discussed in the 
section on related work. 

4. JML4 
In our first feature set, JML4 enhanced Eclipse 3.3 with: scanning 
and parsing of nullity modifiers, enforcement of JML’s non-null 
type system (both statically and at runtime) and the ability to read 
and make use of the extensive JML API library specifications. 
This subset of features was chosen so as to exercise some of the 
basic capabilities that any JML extension to Eclipse would need 
to support. These include 
• recognizing and processing JML syntax inside specially 

marked comments, both in *.java files as well as *.jml 
files; 

• storing JML-specific nodes in an extended AST hierarchy, 
• statically enforcing a modified type system, and 
• providing for runtime assertion checking (RAC). 
Also, the chosen subset of features is useful in its own right, 
somewhat independent of other JML features [7]; i.e. the 
capabilities form a natural extension to the existing embryonic 
Eclipse support for nullity analysis. 

We have since been pursuing our enrichment of the JML4 
feature set so that to date, we have completed a full integration of 
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ESC/Java2 and begun work towards the support of runtime 
assertion checking of JML Level 0 [19, Section 2.9]. 

In the remainder of this section, we present our proposed 
means of extending Eclipse to support JML, appealing at times to 
the specific way in which the JML4 features described above 
have been realized. 

4.1 ARCHITECTURAL OVERVIEW 
Eclipse is a plug-in based application platform. An Eclipse 
application consists of the Eclipse plug-in loader (Platform 
Runtime component), certain common plug-ins (such as those in 
the Eclipse Platform package) along with application specific 
plug-ins. Well known bundlings of Eclipse plug-ins include the 
Eclipse Software Development Kit (SDK) and the Eclipse Rich 
Client Platform (RCP). While Eclipse is written in Java, it does 
not have built-in support for Java. Like all other Eclipse features, 
Java support is provided by a collection of plug-ins—called the 
Eclipse Java Development Tooling (JDT)—offering, among other 
things, a standard Java compiler and debugger. 

The main packages of interest in the JDT are the ui, core, 
and debug. As can be gathered from the names, the core (non-UI) 
compiler functionality is defined in the core package; UI 
elements and debugger infrastructure are provided by the 
components in the ui and debug packages, respectively. 

One of the rules of Eclipse development is that public APIs 
must be maintained forever. This API stability helps avoid 
breaking client code. The following convention was established 
by Eclipse developers: only classes or interfaces that are not in a 
package named internal can be considered part of the public 
API. Hence, for example, the classes for the JDT’s internal AST 
are found in the org.eclipse.jdt.internal.compiler.ast 
package, where as the public version of the AST is (partly) 
reproduced under org.eclipse.jdt.core.dom. For JML4 we 
have generally made changes to internal components (to insert 
hooks) and then moved most of the JML specific code to 
org.jmlspecs.eclipse.jdt. 

At the top-most level, JML4 consists of: 
• a customized version of the org.eclipse.jdt.core 

package (details will be given below) that is used as a drop-in 
replacement for the official Eclipse JDT core. 

• JML specific classes contained in org.jmlspecs.-

eclipse.jdt including core classes (most of which are sub-
classes of the JDT Abstract Syntax Tree (AST) node 
hierarchy) and ui classes (e.g. for JML related preferences). 

These packages are shown in bold in Figure 3.  

4.2 COMPILATION PHASES OVERVIEW 
The main steps of the compilation process performed by JML4 
are illustrated in Figure 4. In the Eclipse JDT (and JML4), there 
are two types of parsing: in addition to a standard full parse, there 
is also a diet parse, which only gathers signature information and 
ignores method bodies. When a set of JML annotated Java files is 
to be compiled, all are diet parsed to create (diet) ASTs 
containing initial type information, and the resulting type bindings 
are stored in the lookup environment (not shown). Then each 
compilation unit (CU) is fully parsed. During the processing of 
each CU, types that are referenced but not yet in the lookup en-
vironment must have type bindings created for them. This is done 
by first searching for a binary (*.class) file or, if not found, a 
source (*.java) file. Bindings are created directly from a binary 
file, but a source file must be diet parsed and added to the list to 
be processed. In both cases the bindings are added to the lookup 
environment. If JML specifications for any CU or referenced type 
are contained in a separate external file (e.g. a *.jml file), then 
these specification files are diet parsed and the resulting 
information merged with the CU AST (or associated with the 

core
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org.eclipse.jdt
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Platform 
Runtime

Eclipse Platform Workbench
Workspace
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Figure 3. High-level package view 

 
Figure 4. JDT/JML4 compilation phases 
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binding in the case of a binary file). Finally, flow analysis and 
code generation are performed. Extended static checking is 
treated as a distinct phase between flow analysis and code 
generation. In the remaining subsections we briefly cover some 
aspects of JML4 compilation—details can be found in [8]. 

4.3 LEXICAL SCANNING, PARSING AND THE 
AST 

Figure 5 provides an overview of the main parser components as 
well as the means by which they are generated; components in 
bold are those that have been customized under JML4. 

Scanning. Since all of JML is contained within specially 
marked comments, the main change to the lexical scanner was to 
enhance it to recognize JML annotations. This is currently 
handled using a Boolean field that indicates if the scanner is in a 
JML annotation or not. Adding support for new keywords 
requires a little more work than usual since the JDT’s scanner is 
highly optimized and hand crafted. Keywords, for example, are 
identified by a set of nested case statements based on the first 
character of a lexeme and its length.  

Parsing. The JDT’s parser is auto-generated from a grammar 
file (java.g) using the Jikes Parser Generator (JikesPG) and a 
custom script we have written. On a positive note, the grammar 
file, java.g, closely follows the Java Language Specification 
[16] and hence has been relatively easy to extend. Possibly the 
main source of difficulty in the parser is the lack of automatic 
support for token stacks. 

Other than adding methods corresponding to new grammar-
rule reductions, the most prominent change to the parser is the 
replacement of calls to constructors of JDT AST nodes with those 
of JML-specific AST subclasses. The abstract syntax tree 
hierarchy for JML4 is obtained by subclassing specific JDT AST 
nodes as needed. An illustration of how this is done is given in 
Figure 6. For example, JML type references are like Java type 

references but have additional information such as nullity. 
Currently we subclass 20% of the AST node types; the JML 
specific subclasses generally contain very little code (and in 
particular, no code is copied from superclasses). 

4.4 TYPE CHECKING AND FLOW ANALYSIS 
Type checking is performed by invoking the resolve() method 
on a compilation unit. Similarly, flow analysis is performed by 
the analyseCode() method. Addition of JML functionality is 
achieved by inserting “hooks” into the previously mentioned 
methods—i.e. calls to methods with empty bodies in the parent 
class that are then overridden in JML-specific AST nodes. Our 
hope is that such hooks will be ported back into the Eclipse JDT, 
something the JDT developers have confirmed is feasible 
provided we can demonstrate that no public APIs are changed and 
that there is little or no impact on runtime performance. 

Between type checking and flow analysis, the compiler 
checks for external specification files (e.g., *.jml files) 
corresponding to the file being compiled. If one is found, it is 
parsed and any annotations are added to the corresponding 
declarations. Binary types (i.e., those found in *.class files) 
whose specifications are needed are handled differently. For 
these, the system searches for both a source and external 
specification file.  

4.5 RUNTIME CHECKING AND EXTENDED 
STATIC CHECKING 

Code generation is performed by each ASTNode’s generate-
Code() method. Its CodeStream parameter provides methods for 
emitting JVM bytecode and hides some of the bookkeeping 
details, such as determining the generated code’s runtime stack 
usage. Hence, supporting runtime checking is relatively 
straightforward. 

Extended Static Checking in JML4 is currently achieved by a 
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Figure 5. Customizing the JDT lexer and parser 

 
Figure 6. Part of the AST hierarchy (org.eclipse.jdt.internal.compiler.ast) 
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preliminary integration of ESC/Java2. That is, during compilation 
in a step just following flow analysis, we invoke escjava’s main 
processing method—which effectively reparses the file inside of 
ESC/Java2. While such an approach is inefficient, it has allowed 
us to focus on the integration of the problem reporting. As a next 
step, we will create a visitor which will map Eclipse JDT AST’s 
into ESC/Java2’s AST, thus avoiding the reparsing. Finally, we 
plan on building a custom transformation from the JDT’s AST 
into ESC/Java2’s guarded command language, hopefully allowing 
us to reuse the rest of ESC/Java2’s verification condition 
generation back-end. 

5. VALIDATION OF ARCHITECTURAL 
APPROACH 

JML4 was recently used to help validate our proposal that JML’s 
non-null type system should be non-null by default [7]. It was 
used to produce RAC-enabled versions of five case studies 
(totaling over 470K SLOC), which were then used to execute 
those systems’ extensive test suites. This exercise gave us 
confidence in JML4’s runtime checking capabilities and its ability 
to process JML API specifications. 

JML4, like JML2, is built as a closely integrated and yet 
loosely coupled extension to an existing compiler. An additional 
benefit for JML4 is that the timely compiler base maintenance is 
assured by the Eclipse Foundation developers. Hence, as 
compared to JML2, we have traded in committer rights for free 
maintenance; a choice which we believe will be more 
advantageous in the long run—in particular due to the rapid pace 
of the evolution of Java. Unfortunately, loosing committer rights 
means that we must maintain our own version of the JDT code. 
Use of the CVS vendor branch feature has made this manageable. 

While we originally had the goal of creating JML4 as a proper 
Eclipse plug-in, only making use of public JDT APIs (rather than 
as a replacement plug-in for the JDT), it rapidly became clear that 
this would result in far too much copy-and-change code; so much 
so that the advantage of coupling to an existing compiler was lost 
(e.g. due to the need to maintain our own full parser and AST). 

Nonetheless we were also originally reluctant to build atop 
internal APIs, which contrary to public APIs, are subject to 
change—with weekly releases of the JDT code, it seemed like we 
would be building on quicksand. Anticipating this, we established 
several conventions that make merging in the frequent JDT 
changes both easier and less error prone. These include  
• avoiding introducing JML features by the copy-and-change of 

JDT code, instead we make use of subclassing and method 
extension points; 

• bracketing any changes to our copy of the JDT code with 
special comment markers. 

While following these conventions, incorporating each of the 
regular JDT updates since the fall of 2006 (to our surprise) has 
taken less than 10 minutes, on average. 

6. RELATED WORK 
In this section we briefly compare JML4 to its sibling next 
generation projects JML3, JML5 as well as to the Java Applet 
Correctness Kit (JACK). Further details, examples and tools are 
covered in [8]. 

The first next-generation Eclipse-based initiative was JML3, 
created by David Cok. The main objective of the project was to 
create a proper Eclipse plug-in, independent of the internals of the 
JDT [9]. Considerable work has been done to develop the 
necessary infrastructure, but there are growing concerns about the 
long term costs of this approach.  

Because the JDT’s parser is not extensible from public JDT 
extensions points, a separate parser for the entire Java language 
and an AST had to be created for JML3; in addition, Cok notes 
that “JML3 [will need] to have its own name / type / resolver / 
checker for both JML constructs [and] all of Java” [9]. Since one 
of the main goals of the next generation tools is to escape from 
providing support for the Java language, this is a key 
disadvantage. 

The Java Applet Correctness Kit (JACK) is a proprietary tool 
for JML annotated Java Card programs initially developed at 
Gemplus (2002) and then taken over by INRIA (2003) [2]. It uses 
a weakest precondition calculus to generate proof obligations that 
are discharged automatically or interactively using various 
theorem provers [5]. While JACK is emerging as a candidate next 
generation tool (offering features unique to JML tools such as 
verification of annotated byte code [4] and a proof obligation 
viewer), being a proper Eclipse plug-in, it suffers from the same 
drawbacks as JML3. Additionally JACK does not provide support 
for RAC which we believe is an essential component of a 
mainstream IVE. 

The JML5 project, recently initiated at Iowa State University, 
has taken a different approach. Its goal is to embed JML 
specifications in Java 5 annotations rather than Java comments. 
Such a change will allow JML’s tools to use any Java 5 compliant 
compiler. Unfortunately, the use of annotations has important 
drawbacks as well. In addition to requiring a separate parser to 
process the JML specific annotation contents (e.g. assertion 
expressions), Java’s current annotation facility does not allow for 
annotations to be placed at all locations in the code at which JML 
can be placed. JSR-308 is addressing this problem as a 
consequence of its mandate, but any changes proposed would 
only be present in Java 7 and would not allow support for earlier 
versions of Java [13].  

Table 1 presents a summary of the comparison of the tools. 
As compared to the approach taken in JML4, the main drawback 
of the other tools is that they are likely to require more effort to 
maintain over the long haul as Java continues to evolve and due to 
the looser coupling with their base. 

7. CONCLUSION AND FUTURE WORK 
The idea of providing JML tool support by means of a closely 
integrated and yet loosely coupled extension to an existing 
compiler was successfully realized in JML2. This has worked 
well since 2002, but unfortunately the chosen Java compiler is not 
being kept up to date with respect to Java in a timely manner. We 
propose applying the same approach by extending the Eclipse 
JDT (partly through internal packages). Even though it is more 
invasive than a proper plug-in solution, using this approach we 
have demonstrated that it was relatively easy to enhance the type 
system and provide RAC and ESC support. 
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Other possible next generation JML tools have been 
discussed, but all seem to share the common overhead of 
maintaining a full Java parser, AST, and type checker separate 
from the base tools they are built from. This seems like an 
overhead that will be too costly in the long run. We are certainly 
not claiming that JML4 is the only viable next generation 
candidate but are hopeful that this paper has demonstrated that it 
is a likely candidate. 
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Table 1. A Comparison of Possible Next Generation JML Tools 
  JML2 JML3 JML4 JML5 ESC/Java2 Plug-in JACK 

Name MJ JDT JDT any Java 7+ ESC/Java2 and JDT JDT Base  
Compiler / IDE Maintained (supports Java ≥ 5)     1  

Reuse/extension of base  
(e.g. parser, AST) vs. copy-and-change       

RAC    ( ) N/A N/A 
ESC N/A ( )  N/A   Tool Support 

FSPV N/A ( ) ( ) N/A N/A  
MJ = MultiJava,    JDT = Eclipse Java Develoment Toolkit 
N/A = not possible, practical or not a goal,  ( ) = planned 

1 ESC/Java2 is currently being maintained to support new verification functionality, but its compiler front end has yet to reach Java 5 [10]. 
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