

Sixth International Workshop on
Specification and Verification of

Component-Based Systems
(SAVCBS 2007)

ESEC/FSE 2007
6th Joint Meeting of the European Conference on

Software Engineering and the ACM SIGSOFT
Symposium on the Foundations of Software Engineering

Dubrovnik, Croatia
September 3-4, 2007

ii

iii

SAVCBS 2007
PROCEEDINGS

Specification and Verification of Component-

Based Systems

http://www.eecs.ucf.edu/SAVCBS/

September 3-4, 2007
Dubrovnik, Croatia

Workshop at ESEC/FSE 2007
6th Joint Meeting of the

European Conference on Software Engineering and the
ACM SIGSOFT Symposium on the

Foundations of Software Engineering

iv

Permission to make digital or hard copies of all or part of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee.

Sixth International Workshop on Specification and Verification of Component-Based Systems (SAVCBS
2007), September 3-4, 2007, Dubrovnik, Croatia.

Copyright 2007 ACM ISBN 978-1-59593-721-6/07/0009 … $5.00.

v

SAVCBS 2007
TABLE OF CONTENTS

ORGANIZING COMMITTEE vii

PROGRAM COMMITTEE viii

WORKSHOP INTRODUCTION ix

PAPERS 1

Effective Verification of Systems with a Dynamic Number of Components 3
Pavlína Vařeková (Masaryk University)
Pavel Moravec (Masaryk University)
Ivana Černá (Masaryk University)
Barbora Zimmerova (Masaryk University)

Plan-Directed Architectural Change For Autonomous Systems 15
Daniel Sykes (Imperial College)
William Heaven (Imperial College)
Jeff Magee (Imperial College)
Jeff Kramer (Imperial College)

Reachability Analysis for Annotated Code 23

Mikoláš Janota (UCD Dublin)
Radu Grigore (UCD Dublin)
Michał Moskal (University of Wroclaw)

Faithful mapping of model classes to mathematical structures 31

Ádám Darvas (ETH Zürich)
Peter Müller (Microsoft Research)

Proof-Transforming Compilation of Programs with Abrupt Termination 39
Peter Müller (Microsoft Research)
Martin Nordio (ETH Zürich)

An Integrated Verification Environment for JML: Architecture and Early Results 47
Patrice Chalin (Concordia University)
Perry R. James (Concordia University)
George Karabotsos (Concordia University)

vi

Playing with Time in Publish-Subscribe using a Domain-Specific Model Checker 55
Luciano Baresi (Politecnico di Milano)
Giorgio Gerosa (Politecnico di Milano)
Carlo Ghezzi (Politecnico di Milano)
Luca Mottola (Politecnico di Milano)

On timed components and their abstraction 63

Ramzi Ben Salah (CNRS-VERIMAG)
Marius Bozga (CNRS-VERIMAG)
Oded Maler (CNRS-VERIMAG)

CHALLENGE PROBLEM SOLUTIONS 73

Subject-Observer Specification with Component-Interaction Automata 75

Pavlína Vařeková (Masaryk University)
Barbora Zimmerova (Masaryk University)

SHORT PAPERS 83

Games-Based Safety Checking with Mage (extended abstract) 85

Adam Bakewell (University of Birmingham)
Dan Ghica (University of Birmingham)

Specification and Verification of Trustworthy Component-Based Real-Time Reactive
Systems 89

Vasu Alagar (Concordia University)
Mubarak Mohammad (Concordia University)

Components, Objects, and Contracts 95

Olaf Owe (University of Oslo)
Gerardo Schneider (University of Oslo)
Martin Steffen (University of Oslo)

Compositional Failure-based Semantic Equivalences for Reo Specifications 99

Mohammad Izadi (Sharif University of Technology)
Ali Movaghar (Sharif University of Technology)

A Concept for Dynamic Wiring of Components:
Correctness in Dynamic Adaptive Systems 101

Dirk Niebuhr (Clausthal University of Technology)
Andreas Rausch (Clausthal University of Technology)

vii

SAVCBS 2007
ORGANIZING COMMITTEE

Mike Barnett (Microsoft Research, USA)
Mike Barnett is a Research Software Design Engineer in the Foundations of Software
Engineering group at Microsoft Research. His research interests include software
specification and verification, especially the interplay of static and dynamic verification.
He received his Ph.D. in computer science from the University of Texas at Austin in
1992.

Dimitra Giannakopoulou (RIACS/NASA Ames Research Center, USA)
Dimitra Giannakopoulou is a RIACS research scientist at the NASA Ames Research
Center. Her research focuses on scalable specification and verification techniques for
NASA systems. In particular, she is interested in incremental and compositional
model checking based on software components and architectures. She received
her Ph.D. in 1999 from the Imperial College, University of London.

Gary T. Leavens (School of EECS, University of Central Florida, USA)
Gary T. Leavens is a professor in the School of Electrical Engineering and Computer
Science at the University of Central Florida. He moved to Orlando in Fall 2007.
Previously he was a professor of Computer Science at Iowa State University. His
research interests include programming and specification language design and semantics,
program verification, and formal methods, with an emphasis on the object-oriented and
aspect-oriented paradigms. He received his Ph.D. from MIT in 1989.

Natasha Sharygina (CMU and SEI, USA; Lugano, Switzerland)
Natasha Sharygina is a senior researcher at the Carnegie Mellon Software Engineering
Institute and an adjunct assistant professor in the School of Computer Science at Carnegie
Mellon University, and an assistant professor at the University of Lugano. Her research
interests are in program verification, formal methods in system design and analysis,
systems engineering, semantics of programming languages and logics, and automated
tools for reasoning about computer systems. She received her Ph.D. from The University
of Texas at Austin in 2002.

viii

SAVCBS 2007
PROGRAM COMMITTEE

Arnd Poetzsch-Heffter (Department of CS, Univ. of Kaiserslautern)
Arnd Poetzsch-Heffter chaired the program committee for SAVCBS 2007. He is a
professor in the Department of Computer Science at the University of Kaiserslautern,
Germany. His research interests are in component-oriented programming, program
verification and generative programming. He received his Ph.D. and Habilitation Degree
in Computer Science from the Technische Universität München in 1991 and 1997.

Workshop Program Committee:
Jonathan Aldrich (Carnegie Mellon University)
Michael Barnett (Microsoft Research)
Marcello M. Bonsangue (LIACS – Leiden University)
Paulo Borba (Federal University of Pernambuco)
Kathi Fisler (WPI)
Cormac Flanagan (University of California, Santa Cruz)
Marieke Huisman (INRIA Sophia Antipolis)
Joost-Pieter Katoen (RWTH Aachen)
Gary T. Leavens (Iowa State University)
Peter Müller (ETH Zürich)
David Naumann (Stevens Institute of Technology)
Matthew Parkinson (University of Cambridge)
Arnd Poetzsch-Heffter (University of Kaiserslautern), PC Chair
Ralf Reussner (Universität Karlsruhe)
Natasha Sharygina (Lugano and Carnegie Mellon)
Kurt C. Wallnau (Software Engineering Institute)
Tao Xie (North Carolina State)

ix

SAVCBS 2007
WORKSHOP INTRODUCTION

This workshop is concerned with how formal (i.e., mathematical) techniques can be or should be used to
establish a suitable foundation for the specification and verification of component-based systems.
Component-based systems are a growing concern for the software engineering community. Specification
and reasoning techniques are urgently needed to permit composition of systems from components.
Component-based specification and verification is also vital for scaling advanced verification techniques
such as extended static analysis and model checking to the size of real systems. The workshop will
consider formalization of both functional and non-functional behavior, such as performance or
reliability.

This workshop brings together researchers and practitioners in the areas of component-based software
and formal methods to address the open problems in modular specification and verification of systems
composed from components. We are interested in bridging the gap between principles and practice. The
intent of bringing participants together at the workshop is to help form a community-oriented
understanding of the relevant research problems and help steer formal methods research in a direction
that will address the problems of component-based systems. For example, researchers in formal methods
have only recently begun to study principles of object-oriented software specification and verification,
but do not yet have a good handle on how inheritance can be exploited in specification and verification.
Other issues are also important in the practice of component-based systems, such as concurrency,
mechanization and scalability, performance (time and space), reusability, and understandability. The aim
is to brainstorm about these and related topics to understand both the problems involved and how formal
techniques may be useful in solving them.

The goals of the workshop are to produce:

1. An outline of collaborative research topics,
2. A list of areas for further exploration,
3. An initial taxonomy of the different dimensions along which research in the area can be

categorized. For instance, static/dynamic verification, modular/whole program analysis,
partial/complete specification, soundness/completeness of the analysis, are all continuums along
which particular techniques can be placed, and

4. A web site that will be maintained after the workshop to act as a central clearinghouse for
research in this area.

x

We enthusiastically thank the authors of submitted papers; their quality contributions and participation
are what make a workshop like SAVCBS successful. We thank the program committee for their careful
reading and reviewing of the submissions. Our PC members have expertise in a wide variety of sub-
disciplines related to specification and verification of component-based systems; they include
established research leaders and promising recent Ph.D.s; they come from both industry and academia,
and hail from all over the world.

We received 17 submissions. All papers were reviewed by at least 3 PC members. After PC discussions
via a conference tool, 8 papers were accepted for long presentation at the workshop. Similar to previous
years, we accepted 6 additional submissions for short presentation, reflecting the community-building
role of SAVCBS and the goal of promoting discussion and incubation of new ideas for which a full
paper may be premature. One of the accepted short presentations was withdrawn by the authors. Three
submissions were rejected.

This year’s program also includes a solution to a specification and verification challenge problem posed
to workshop attendees. The problem focused on the specification of the subject-observer pattern. This
common programming pattern is to separate the component that encapsulates some state from the
components that access that state. The former component is often called a subject, while the latter type is
an observer. At a minimum, a subject has a method for registering an observer, a method for updating
the encapsulated state, and a method for retrieving the value of the state. Observers must provide a
method for being notified: the behavior of the pair is that when the update method is called, all
registered observers have their notification method called. While familiar to many programmers, this
problem poses real challenges for specification and verification systems and it has already been the topic
of a number of papers in the field. The received and presented solution was reviewed by two members
of the program committee.

Arnd Poetzsch-Heffter (Program Committee Chair)

Jonathan Aldrich (Organizing Committee)
Mike Barnett (Organizing Committee)
Dimitra Giannakopoulou (Organizing Committee)
Gary T. Leavens (Organizing Committee)
Natasha Sharygina (Organizing Committee)

SAVCBS 2007
PAPERS

1

2

Effective Verification of Systems
with a Dynamic Number of Components

Pavlína Vařeková
�

, Pavel Moravec
�

, Ivana Černá
�
, Barbora Zimmerova

�

Faculty of Informatics
Masaryk University

602 00 Brno, Czech Republic
{xvareko1, xmoravec, cerna, zimmerova}@fi.muni.cz

ABSTRACT
�� ��� ������ 	� ���
��� � ���� �������� �� �����������
�� ������� ������������
��
�
���
� ���
�
���
 ���� ���
���� � �������� ������ �� ���������
 ���� ����� ���������
�� ����
 ��� ��������� ��
�
���
 	��� �
���� ���� �����
��������� ��� � ������ �� ������� ���������
 �� ��� ����
����� ����	
�� �����
� �������
�
���
 ��� �� ����� ���
�����
�� ����
������
 ��� ���
� ��� ������ ��� ��������
���� ��
���
�
���
 �
 ��
�� �� ����������� � ������ � ��
������� ���������
�
��� ���� �� �
�
��� �
 ������ �������
��� ��� ������ �	�� ���� �� �� �
 ���
������� ������� ���
�� ���������� ���� ������ �� ������� ���������
� ��
����� ���
 ��� ��� �� ������� ��� �����
�����
 ����
����
���
� �� �����������
 �
� �� �������� ���
�� �� �������

�
���
 ��� �������� ���������
 �� � 	��� ���� � �
 ����
�����
�� ��� ���
 ��������� ������
����� �� �������� ��
���
� 	� ���
��� �� �������� ��� ��������� ��

Categories and Subject Descriptors
!�"�# $�������� �	
�	����	
%& '���	���()������ *�����
������

General Terms
+�����������
��
�
���
�
���	��� �����������

Keywords
+�����������
��
�
���
� ������� ������ �� ���������
�
������
����
�
���
� ����� �����������

1. INTRODUCTION
 �� ��Æ���� �� ����� ����������� �� ��	��� �����	�	
�
���� ���
���� ���
�
���
 ���� ��� ���� �������� ������ ��

� �� ������
 ���� ����
�������� �� ��� ����� ,��
-. #//0//1/#�
� �� ������ ��
 ���� �������
�������� �� ��� 2����
3����� �� +4��� 5������ ����� ,�� -/"(/1(6/1/�

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
���
� �	
��	
��	� �������� �	 �������
��	 	� �������

��	 �� �����	�	
����� ���
��� ������� ��� !, September
3-4, 2007, Cavtat near Dubrovnik, Croatia.
Copyright 2007 ACM ISBN 978-1-59593-721-6/07/0009 ...$5.00.

���������
 ���� ����� ��������� �
 ��� �� ��� ��
� ��
��

��
�

��
 ���
� ���
 �� +7'.� ��
���� ���	
 ���� ��� ����
���� �� ��� ������ �� ���������
 �� � �������
�
��� �
 ���
������� ��� ��� ���	 ���� � �����
�� ���
�
��� ���� �

������� �� �������

��� �������� �� ��� �������
�
���
 ����������� �
 ��
��
�� �	�
���� ��
��������
� 8��
�� ��� ������� ���������
�

�
� �� ��
���� � �����	
���� �������� � ������ ����
���� �� ����� ���������� '������ �������
�
���
 ��� �����
	�
 �	�	�
� �� 	
"��� �� 	� ����������� � �������
�
���
�
 � �������� �� ��
 ��
�����
� ���� 	��� � �9�� ������
�� ������� ���������
 �� ���� ����� ��� ��
�����
 	���
�� ������
����� �� �� ��
� ���� ������ ������
���� ����
�
6�	���� ����� ������ 	��� �� �������� 	���� �
 ��� ����
�� ��� �������

�� ���
 ������ 	� ����
 �� �������
�
���
 	��� �
����
���� ����� ��������� ��� � ������ �� ������� ���������

�� ��� ���� ����� ����	
�� �����
� �������
�
���
 ��� ��
����� �������
�� ���� ����
 	��� ���

��������� �� ������
���� �� ��� �������� �� ����������� �� �
�� �� ���������
 ��

���
�
���
 ��� �� ���
����� �
 ���	
� 3
 ��� �������
���������

���� � ������ ���������� ����� �9�
�
 � ����
��� � � ��
��� ����& ��
�� ������
��� ���� �	
�� ���
��
#�
� � ��	��� �����	�	
� ��� 	� � � �$
��� ��� ����
�	
�� ���
�� #�
� ����
��	 � ��	��� �����	�	
�� ��
��� ������ 	� �����
��� �� ����� ���

�������� ���� ��� ���
��� ��
��� �� �������� ��� ��������� ���

�� ���������� ��� ���� � ��� � �������
�
��� ��� �
�� ��
���������
 ��� �� �
������� �
 �
�� �� �	� ���
���
� ��
��
� ��� �
 � ���
��� �� �����9��� �� � �������
�
��� ���
:������ ��� ��9��� ������ �� �����
 ���� ��� �������� ��
��� ��������� ��
����� ��� �
 �
����� ���
��� �� �����
�����
 ���� ��:���
 ��� ������ ������ �� �����
 ����

���
�� �9����� � ���� ��������
������ ���������
� �� ��� ���
���� 	� ����
 �� ; ;���� ���������
� ��� 	� ��� ������
���
��� �� ���
� ���������
 	��
� �������� ������
 � ������
������ �� ���������
�

3
 �� ��������� ������
� ��� ���
 	���� 	� �
� ��� ������
	�	
��	
���
��	 "
��
 ������� $--%� 6�	���� ��� ��
��
���� �� ���
 ������������ �
 ���� ������ ��� ��� ���
�����
���
����� ���� �
 �
� �������� �� ����� ������
�
 ����

� �� ���������
 ���� ��� ��������� ����� ��� �������
�� ��������< ������ �� ��
�����
 �� � �����

3

����
�
���
 �
 ������
���� ; ' �� ���������� �9���

���
�

 �� ����� �

��������� �
 ���	
� 8��
�� 	� ����:� ��
��

������ 	��� �� '������ "� ���� '������ 0 ������
 ��� ���

�� ���������
 �� ��� +�������������������� �������� ���
������ ��� '������ # ������ �����
 �������
�
���
 ����
��� �� ��� ������
�� '������ 1 ��
������
 ���
�� �� ���������

���� ��� ����������� ��� ����������� �
��� ��� ��������� ���
�� �����

����� �����
�����
 ���� ��� ������ ��� �����������
�� �������
�
���
� '������ = �
 ��������� �� ��� ��������
��� ������ ��� ���� � ��
��

�� ������ ��� ��� ��9� �
 ��
��
	��� � �����
��� ��� ��
��

��� �� ������ 	��� �� '������ >�

2. RELATED WORK
3
 ��� �
 	� ��� ���������� ��� ���� ���
����� ����� ��
 ���
���� ��������� ���� 6�	���� ����� ��� ����� ���������

���� ��� �� 	��� ����� ����
 �� ��������� ������� ���
�����
�
���
� �� $-%� ��� ������ ���
���
 ��

������ ��
�������� � ����� ���� �� � ��������� ���� ��� ��������
���� �� ��������� ������ �� �����
� �� �
 �

���� ���� ���� ��
������� ��� ������ �� ������� ���������
 ��������� ��
��� ��������� ��� �� ���������� ������ ��� �

���� ���
��
�������� ������ �� ��� ���������
 �
 ���	�� �� ������
���
 ��� ���
���� ������� �������� ��� ������ �� ������
����
 �� ��������� 3������ �������� �

������ �� $-/% 	����

�
���
 ��� ��
� ������ �
 ��������
���� ��� ���� �������
�� ������
���� �� ��?�
��� ����������� ���������� �� $>%� ���
������
 �
� �
� ��� ��������� ��
�����
���� ���������� ��
���
 ��
� ��� ����������� �� @��� �������
�

3� ���������� ��
�����
���� ��������� �
 ��� ����������� ��
��������
���� ����
� ��
 �
 ��
��

�� ��� ��
����� �� $"%�
6�	���� ���
� ���������
 ��� ���� ���� ���
����� ��� �����
�� ��� ��������� �� ���
��

3. COMPONENT-INTERACTION
AUTOMATA LANGUAGE

+�������������������� �������� $1% ��� �
����������� ���
����� ��� ������� �� ��������� �����������
 �� ����������
�� ������������
��
���	���
�
���
� ��� ������� ����
��������� �
 � ����� ����
�����
�
��� 	���
���������
���
 ��� � ��������� �� ��������� ����
� �� ��
�� ����
������
 ��� ����:� �������� �� ���

������� 8�� ���� �����
�

�� $--%�

��	����	 ���� 3 �������� �� �����	�	
 	���� �
 � ���
�� � A ���� � � � � ��� �� ��� �� ��� ���	��� ����
� 	����
�� ������
 ���
�� �� ��������� ����
 �����
������� ����
 �� ��
� ��
� �
 ���� ��� � � � � �� ��� ����	�
� ��B����� ����
��� ������
 ��
�����
 ���� ��� 2���� ������� �������� �
	����� ��� ��9��< ���� �� A

��
�������� ��
����� ��
� �

���� ��� � � � � �� ��� ����������
 �� ��������� ����
 	����
��� � � � � � ��� ��� ����	�
� ��
?����< ���� �� A

��
��� ��� �

3 �����	�	
��	
���
��	 "
��
�	 ��� � �� "
��
�	 ���

����� �
 � 1����� � A �����	� Æ�
��� 	���� � �
 � �����
��
��
����
� ��	 �
 � �����
�� �� �
��	�� C A ���� � ���� 	
��	 	 ��� � �����
 ���� 	 ��	 	 ���� �
 �
�� �� ������
Æ � � 	 C 	 � �
 � �����
�� �� �������
�	��
��	��
 � �

�3
 ��
����� �� ��� ������� ���������� ��� ��������� ����

�� ��� ���� �� �� ������ ������
� ���� ��� �
� ��
�����

���� 2���� �������� ��
 ����������� ���
 ��� ��:�����
��� ����� ���������
�

�
 � ��������
�� �� �	�
�� �

��� ��� � �
 � ��������� ��
��������� ����
�

 �� ���
 ��� ������
 �� � ���� ����������������� �� ��������

��� ���������� ��� �� ��� ���� �	�"
� �"
�"
� �� �	
��	�
��
���������
� �� ����� ��� �������� �����
���
 ���� ��� ��������� ��

�������
 ��� ������ � �
 �� ������
� �� ������ ��� ������� �����
���
 ���� ��� ��������� �

���
 ��� ������ � �
 �� �������
� �� ������� ��� �������� �����
���
 ���� ��� ���������
�
���
 ��� ������ � �
 �� ������ ���
���������
� ���
��������� �� �������
 ��� ������ � �
 �� ������

.9����
 �� +� �������� ��� ����� ����������
 �� ���������
����
 ��� �� 8����� " ��� 8����� #�

��	����	 ���� 3 �
� �� � +� ��������� � A �����	� Æ�
���
�
 �� ����������
������� ��
����
 ��� ���
 ����� �� Æ
���� �
 ������ �������� �� �
 ����� �� ��
� ���� �� ���
 	���
� �������
����� �	���� �
 ���
�� �� � ����
 �� ��� +�
��������� �� �	�������� �
 ��

��
�� ���������� � ����

������� �� �� ������
���� ��� �	�������	 ��� �
 ���
�� �� �

������� ����
 ���� �	���������

�� � A ��� ��� ��� ��� � � � �
 � ������ �� �������� ���� �� ��� +�
��������� �� ����
� ��� �� �
 ��� ���� ��� �� � �
������� ���� � A /� �� �����
�
 ���< ���� ��� �� A ���
� ���� �
 ��� ����
���� �� � �� �� �9�
�
< ���� ���� A �� ���
� �� �
 ��� ����
�Æ9 �� �< ���� �� A ��� ��� � � � �

�������	� %�� &���	 �� "
��
�	 � #� ��	�
� �
�� ��

�� �� ����� ������� ���� 	 �	�
�� �

� �	 �$ �����
�� ��

�� �� �	
��	� ����� ������� �	 �'

��	����	 ���� ��
�� ���� �
�� �� ���������������������
�������� ����� ��	�� Æ��
�� ������� �
 ��������� �� � � �

�
 ����� ��� ������� �
 � ��������� �� ��������� ����
�

;�� � A ����� ��	�� Æ��
�� ������������� � ����� �����
���

�� �� ��������������������� ��������� ��� ��� ������
�

�	��
��	 ���� ��� �� 	������ D� � �
 �
�� �� ����
�����

����� �������
����
 ���� E�����
��� ���� ���� ����
�����
��:���
 ���� ������ ��� �� ��� �������� ���� � ���	
 ��

������� ����
����� ��� ��� �����
 	���� �� �	� ��������
���
������
� �� ������������ ���
 ������� ��� ��������� 	����
�� �� � � � � � ��� �� ����
 � ��	 ��� ��������� 8�� �����
�
���������
�� ��� �������9�

;�� � A ����� ��	�� Æ��
�� ������� �� � �����
���
�� ��
+� �������� ��� � �

�
��� ������ �� �
�� �� ����
����

���
� ��� �� �
 � �������
��	 ����
�� #�
� ������

�
������� ����� 	���� ��� ���
�� � ���������
 ��� +� �������
��� ��� A �E������������	�� Æ�E���
�� ��������
��� ����
Æ A ���� �� ��� � D� � � � ���

��
�� ���� ��� ��������� ��������� �
 ���	�� �B �������
�
 � �����
���
�� �� +� �������� ��� � �

�
��� ������ �

��	����	 ���� ;�� �� �
�� �� ���
� � �
�� �� ����
������ ����
� ��� ������ �� �
 �
�� �� ��� ���

�������� 	��� ��� ������� ���
 ���� ���	 ���� �����
������������� 	��� ���������
 	��
� ����
 ��� �� ���

�� ��

4

������ �� A � ��������� � ������� � � �� � �� �
� ��������� � �������� � � � � ��

������� ���� 8�� A �����
����������
����������
������ ���
&
������ �-�"��A������
����������
����������
����������
�������

3.1 The logic for specifying properties
�� ����� ����������� ���������
� ��� ����� ������	& $=%� ���
���������
 ��� ����������� ���
������� �� ������� ����
� ��
��� ��������� 	� �
� ��� ���� +��; ; $-"%� +��; ; �
 ��
�9���
��� �� ��� ���������
�� ; ; $F%� 	���� �
 �� ��������
��� �� �9���

 ���� � ����� ������ �
 ������ �� �
���� �� �
���� �����
��� �����������

��	����	 ���� ;�� �� �
�� �� ���
 �� +� ���������
���� +��; ; ������
 ���� ��� ������ ����������&
-� �� � � � ���� ���� ��� ���� ��� ������
�
"� �� � ��� � ��� ������
� ���� � � ��� ��� � ��� � � �
��� ������
�
0� .���� ������ ��� �� �������� �� � ����� ������ �� ���
��������
 �� �������
 �	�
���
�

;�� � A �����	� Æ�
��� �� � +� ���������� ���� +��; ;
������
 ��� ����������� ���� ��� ����
 � � �	�������	 ���
	���� ���
���
������� ������� �A �
 ������ ����������&

� �A ���� �� �� � � & ��/�

�� �

� �A ���� �� ��� /� A �

� �A � � � �� � �A � ��� � �A �

� �A � � �� � ��A �

� �A � � �� �� �A �

� �A � � � �� �� � �� & �
� �A � ���

�� � �� � � � � & �� �A �

����� ��������
 ��� �� ������ �

�������
& � � !
� �� � � � ��� � � � ! � �� � � ��� � � ! ���� � ��
" � ! � � � ��

�������	� (�
 � �� ���()(����"�
��	 � �� ��
 ��
�����
�
 ���"� �	
�� ����"�'

4. DYNAMIC SYSTEM MODEL
 �
������ ��� �9�������� �� ��� ��������� 	� �����	 ���
��������� �� ��� �������
�
���
 ���
�
���� �� � ������ ��
������� �����
 	���� ��� ��������� �� ��� �������� ����
�����
���
 ���
���� ���� �� ���
�
���� �� �

��� ����
��� �����
 ���� ���
��� ���������� ��� ���� ���� �� ���
����������� 	��� ���� ����� ���
������ �� 8����� -�� ��

�
 ������ �� ���
�
��� 	���� ��� �����
 ��� �� ����� ���
������� ����������

3���������� 	� ����
 ��� �� ���
�
���
 ���� ��� ����&
�-� ���
�
��� ��
 ��� ��� ���� �� �����
� ��� �"� ����
����� �
 ������ �
 �� ��������� 	��� ��� ��������� ��
��������� ����
 ���� ,��� ���� ��� �������
 ���������
 ��
���
���������� ��
����� ��� ������ ��
�
���
 	� ��� ���
	���� 5������� ���
�
��� ������������ �
��� ���
 ��
����
���� �
�
��� ���� ��� �����

��� ����

�� ��� ��������� ���	� ��� ��
�������� �
 ��:����� �
 ���
�	
� �� ��
� ����
����
 ���� ��� ���������
 ���
������
��� ��� �������� ��� ����� 	���
�����
 ���� 2���� ��������

��
��� �� � ��	���� � ��� ���! � ����	� �

 ��
����� ���� ��:���
 ���� � ��� �����
 ���� ���
���
����
 �� �� ��� ����
 �� ������ ���������
� 	���� ����
����� ����
 � ��������� 	��� � �������� ���� �� ��
������ ������ ��� ���� ���� ��
����� ��� ����
�����
 ��	��
�� ��� �����
����� �� ��� ��������� �� ����� ����
����

���� �� �	� �����
 ��� ����������� 	��� ���� ������ ���
������ �

���
 ���� � �����
 ��� ������ ����� �� ���
��������� ��� ��� ���� ���� ��� ��� �����
����� �� �� ���
�����

��	����	 ���� ;�� �� A ���� ��	�� Æ��
�� ��� ��� �� A
�����	� Æ��
� ����� 	���� � � �� �� +� �������� ��� � �� �

�� �� ���
� �� ���� ���� ���������� �
 � �� ����� ��
��	��� ���
�� ��� � ��	��� ���
�� ����� ���
����� �B&
� ��� � � ��

� ��� � � � � ��� +� ���������� 	���� ��
��
 ���� ��
����� �������� �� � ��������� ����
 	��� � & ��� � �-��
�
 ���� �� ��� +� ��������� ���
� � # �����
���� � �� � � �� � �A �� A $�
� ���� ����������� � �� ���
�� � � � � ���� 	���� �
 ���
�������� �� ���
�� � � ��� ���
&
����� � A ���������������� � ��������� � ���
� � � ������ �

�
��������� �

�������	� %�� ��	��� ���
�� ����� % A ���� ����������

�� "
��
�	 �� �� ����� ��������$ �� "
��
 ��� ��� � � �
�� ����� �����
'

8�� ��� ��
� �� ��� ����� �� �
 �9 ���� �� % �
 � �������

�
���� ���� �� ������
 ��� ����&
��� A ���� ��	�� Æ��
�� ���� ��� A �����	� Æ��
� ������������

��	����	 ���� ;�� % �� � �������
�
��� ��� � � �� �
���� %� A ����������� �
 ��� +� ��������� �������

�
��� % 	��� � �����
 ��� 	 A

�
����

	� �
 ���
�� ��

� ���
 �������� �� ��� �� ��� �������� �%�������

������� ���� ;�� �
 ���
���� �
���� �9���� �� � ���
�����
�
��� ���� �������� �� 8����� " ��������� �
����

�
��� ���
�
���� �� � ������
� ��� ��
 �����
�

 �� ������
� ������� �� ��� ��������� ��� �������
 �����
����
 ��
������
& ����-� ����" ��� �� �" 	���� �����
����
��
������� ������� ��
����� �� ���� �� � ������
�� .���
�� ���
������
 �
 ������ �� � ���� �� ������
� ��� ��
�
�� ����� ���� ������������ �����
���
 � ��������� �� � �����
�
�� ���
������ ��� ���
������ ���� ������������� ����
 ���
��
���
�� 	���� ��������
 ���� ���
������ 	�
 ���
���� '���
����
 ����- ��� ����" ��� �� �9������ �� ������ ��� �� �"

�
� �
 ���
�� ��
�����
 ���� 2���� �������

5

��� ���� 7����
� ��
���� ���
��
�
������
 ����- ��� ����"
��� ������ 	������ ������������� �����
� '������ �� �"
�
 ������ �
 �
������ ���� ��� �� �������� ��� ����� �
���������� �� � ��������� ���� ��������
 ���
�������

+����
 ������� �� ���������
 ��� � � �� ��� �
� �����
�������
� ��������� ����
 ��
������
� ��� ��
� �������
�
�����
�
��� ��� ����� ���� ���� ����
� ��� �� �	� ���
���

�� ���
���	���� �� ���� ����
� ���
��� -�/� ���� ��� ���
���� ���� ���� ��� ������
� �� ������� �����
���	���� �
�
���� ��� ���� ����� ���� ���� ���
��� ��� ������
�

� �� &

���
��������

���������

��

���
��������

������������

��
�����������

��
���
��������

����������

��

��
���
��������

�����������

��

�����������

��

����������� ��

���
��������

������������

��

������������

��

���
�������� ������������

��

���
��������������������

		

�����������

��

3 ��������� �� ��������� ����
& �!�

� ��� 	���� � � �&

/	
�����
���������� �� -	
�����

���������� ��

����������

��
��

��
�

"	
�����

�����������

��
����������

�������������������������

0	
�����

�����������

��

���������

��

#	
�����

������������

��
1	
�����

���
������

=	
�����
������������

�� >	
�����
�������������

���������� ��
F	
�����

������������

��

G	
�����
�����������

��
�����������

��

���� ��������������

������
������

��

3 ��������� �� ��������� ����
& ���

� � A
�
��������� � ������������������ ���� �

���
��� � � � ���

��
��� �� � "# ����� �� ��	���� � ��� %" A
���� �����������

5. VERIFICATION
�� ���

������� 	�
���� ����������� �� ��� ���������
 	��
�
�������� ������
 �� ��
� � ����� ������ �� �����
� �� ���
���� � ��� ������ ������ �� �����
 ���� ��� ����

���
��� ��� ��������� 8�� �� ��������� ������� � ��� � ���
�����
�
��� ���� % ���
�� ��
��� ���������
 �
 �������
�����	#�%���� 3 �������� ��� � A " ��� ��� �9����

���� ���� #��	���� ��	��� �����	�	
 �"
�"
� ��*"��

��� ������� �$ 	� �
��� ��	��� �����	�	
 &�
�
�� �����	��
��� � ������
�� ������"� �����	�	
 ����� �� ��� �������
���������
 ������ ���
��� ��� �� ��� ����������� 	���
���� ������ �� ����
�Æ��
 �� ��
���� ��� �	� �� ���� ��
����� ���
 ���������

�� ���

������� 	� ��
� ��
��

 	��� 	� ���
�� ���� �
�������� ��&���
 ���
 � �����
� 3���� ��������� �� ���

����� 	�
��	 ���� �� � �������� �� % ������
 �� ��
� �
�����
� ���� ����� �
�� �� ���������
 �����	#�%��� ��
���
 ���� �� 	� ������ � �� ���
� �� ��� �������
�
���
	��� /� -� � � � � �H� �����
� ���� ��� ���������
 ��� �� ���
�������
�
��� #�
� 	� �	�
� 	"���� �� ����	
��

5.1 Essential definitions and lemmas
8�� ���� �������
�
��� ���� % ��� ����
�� �� ���

$ � �� 	� ����� ��� ���� � ���� ��� �������
 ����������
 ��� 	� �����
��� ��
�� ���������
 ���� ��� ���� � ���
�

 ��
���
������
����
 	��� ��� ��������� �� ���� � 	���� �

�� ���� �� ��
�������� �� ��� ���� � �������� �� ���������
����
 �� ��� ���� ����� �� ���
�� �� ���
 $� �� �
 ���	��
�� ��� �

����� ���������
������ 	��� 	� ���
�� ���� �
�������� ������
 �� ��
� � �����
�

��	����	 ���� ;�� % �� � �������
�
��� ����� $ �
�� � � � � ��� � A ��� ��� ��� ��� ��� & & & � �	�������	 �%���
 ��� ���� A ����������� ����������� � � � �
��� ���� � �
 ���
���� �
&

���������������������������������
�
��� A �

��
�

����	������	��
������� &

�������� � �����$���
% & �����	�
��

��
�

	���� % �
 �� �����
����� ��� &��� A

�
�� � �� ��
�� � � ��

�

������� ���� 8�� ��� �������
�
�������%" ��
������
�� 8����� "� � � ��������������������������� � A # ���

� A �///� /� /� /�
����������
� �///� /� /� -�

����������
�

� � �///� /� /� 0�
�����������

� �/-/� /� /� =�
����������
�

� � �/-/� -� /� =�
����������
� �/-/� "� /� =�

�����������
�

� � �/--� #� /� =�
������������

� �//-� #� /� >� & & &

�� ���
& ���� A ���

�
�����������
��� � ���

����������
���
��� � � � �

��	����	 ���� ;�� % �� � �������
�
��� ����� $ �
�� �������
 � ��
������ ���
� ��� � � �� ��
�� ����

�� ��������
 	�
��� ��&���
 ���
 � ����	
� �B ��� ���
� ' � �� ���
 ����&
����� � � � �	�������	 �%��� A ����� � � � �	�������	 �%����

�������	� (�
 % �� ��	��� ���
�� ����� 	� $ � ��
&�	 ��	
�	� �� ��������� �����')��	 �%�� �� ��	��
�� � �"��
�

�� ��������
 	�
��� ��&���
 ���
 �
����	
�$ ��
���� �� 	�' ��
���� �� 	� �"�� �
��	 �%�� A('

������� ���� 8�� ��� �������
�
�������%" ��
������
�� 8����� " ���
$A ������������������������������ �����������������
�� ���
 ����&

� ����� � � � �	�������	 �%"��� A $�

� ����� � � � �	�������	 �%"��� �������
 �9���� ��� ���
�����
������� ' �� ���
����&

���

�
�����������
��� � ���

�����������
��� � ���

������������
��� �

���

����������
���
��� � ���

�
�����������
��� � � � �

 ��
�� �������� �������
 � ����� ����9�
 �� ' ������

	��� I
���

����������
���
���

I ��� ��� �����
������� %�

6

� ����� � � � �	�������	 �%"��� A

����� � � � �	�������	 �%"����
6���� ��� ������
� ������
 �� ��
� ��� ������

 �� ���	��� ����
��	
� ���� �� �� � �������
�
���
���� % 	� ����� ��� ����
�����
 ���� ���
��
�� �� ���

������ ���
 �����$����
��� ���� ��� ��
�� %� �
 �
�������
�
��� ����� ���� �� ���
 �%��� � �%�� �

$���� ���� (�
 % �� ��	��� ���
�� �����$ $ � �� '
�� ��	��� ���
�� ����� %� A ���� ���������
 �� �"����
� � �����$����
��	 �%��� � �%�� �

+����' ��
�������� ���	
 ���������� ���� ��� ���� ����
� ������ ����
�����
� 	���� ����� �� �������� �%������
��� �� ��� ����� �� �������� �%�������� ���� ���
 �� ���

�� �����$���� �

 �� ��9� ���� ������
 �������
�
��� ����
� �� 	����
��������
 ��� �����
��� ���������

��� ���� ��� �� �����

������������
 �������
 � ������
 ���� ��� �
�� ��� ����
���������� 	��� �����
� ��
 ���� ��� �� �
�� ��� ������
�� ����������9������� �� ��� ���� �%�� ��� ���
�
�
���
�
�� �������� �� ���
�� �� ��
 � ������� �
��� ��� �����������
�� ���������
 	���� 	� ��� ������
��� ���

��
��� �� � ��	���� � ��� ���! ����� �� �����%

	�	� �������	
 �� $���� ��� �	� � ����	� �

$���� ���� (�
 % �� ��	��� ���
�� ����� 	� $ �
�� ' +�������
�
 �� A ���� ��	�� Æ��
 �� � �� �� �� "
���

�	 	� � � �� ��
 �� ����� �"��
�
 ��
�

���� �
�� �� ���	��$

��� � � $
��	 %� A ���
�

���� �
��� ���������� �� ��	���

���
�� �����' %"�
���$ ��

�� �����#�	& �����,

-! �������� � � �� �� � ��� � � � ��� � ��� � ��� $
�������� � � �� �� � ��� � � � ��� � ��� � ��� $

�! �������� � � �� �� � ��� � � � ��� � ������� � $ # �$
�������� � � �� �� � ��� � � � ��� � ������� � $ # �$

.! �� ' �%�� & �	������%�� A �	�������	 �%��'

)��	 ��� $ � � �����$����� � �� �� �%
���� � �%�� '

+����' '�� �������9�

������� ���� ��
 �9���� ��
�����
 � �
��� �� ������
��
 �	� ����
� ;�� �
 ���
���� ��� �������
�
��� ����
%" ���� 8����� "� �� 8����� # ����� �
 � +� ���������
�� 	���� ��������

������ �� �� ���
 ��� +� ���������

����� A ��
�

���� �
�� ����
 ��� ������
� 	���� � ���
���

����
 ��� ����������� ��� %"��� A ������ � ���������
�����

	���� � �� � ��� ��� ��
������ �� 8����� #� ����
 � �������

� �� &

��

-	
�����
���
��
�������� �� "	
�����

���
��
���������

���
��
���������

��/	
�����

���������
��

=	
�����
�������������

��

0	
�����
��������������

��1	
�����
����������

��

#	
�����
���������������

��
���������������

�� >	
�����

�������������

��

3 ��������� �� ��������� ����
& �(�)�

� � � A �� � �� � �����������������
�����

� � �� A � �
�����

����
�

� � ��� A � ��
 ������������������ �����

��
��� �� � "# ��������	 �� �	� �� � �& � ��& � ����

�
��� 	��
� �������� �
 � ������
� 	��� �
������
 ���
��������� ��
 �����
 ��� ���
��� �
 �� ������
� %" ���
��� �����
 ��� �
� ���
������
 �� ��� ��������
������ �
 ��
%"� ;���� 1�"
��
 ���� ��� � $ � ������������������ ����
��� $ � � �����$���&

� ������� � ���������
������ � �*"�� �

	���� � �� �
 ��
������ �� 8����� #� ��� ;���� 1�- ����
����
 ���� ��� ���
� $ �� �� �������� ���
 ����&
�*"�����A ���

���
� � ���������

�����������
���
� � ���������

������ �

5.2 Properties �����	#�%���
3����� ��� ���� �������
�
��� % ��� �
�� �� ��
������
���
 $� 	� ���� ������ ��� ���� �%�� � �� ���
 ����� 	�

��	 ��� ��������� �� ��� ���� �� ����������� �� �������

�
���
�

3

��� � �������
�
��� %� �� ���������
 ���� 	� ��� ��
������� ��� ��
������� 	��� �
������� �� ������
 ��������
���� 	
��� ���� � �������� �

���
��� �B ��� ���� � � ��

�� ���
 ���� �� �A %�� ,��� ���� ��� �����
������� ��
������
 �������� �����
���
 � ��������� �������� �� ���

�
���� ��
 	� ����������� �� ��� ������

���
�����&
� ��� �������� ����
 �� ��
��������
 ����� �����
�
� �� ��� �������� �
 ������� �� � ���� �� �
�
��� %���
	���� � ���������
 �� ��� ������� ���
���
� ��� ��������
�
 ������� �� ���
���
������� �� ���
 �
� �� ���
�
���
	��� � �����
 ����

��	����	 ���� ;�� % �� � �������
�
��� ����� 3

������� ������� �� ������
 ���� ���
�� �� ���
 	 �

����	���� #�
�
�� ��	��� ���
�� % �B ��� � � � �&
� ������ �� ��� ������ �� 	��� ���������� ��������
����
 �� ���������
 ���� ���
���
�� �� ����
�
� ��
�� A ���� � �

�
� � � � � � �

�
��� ��� ��

�
� � �

�
� � � � � � �

�
��� ��� � � � � �	�������	 �%��

��� ��� � � �� ���� A

���� � � � � � �
�
�� �

���
� � � � � � ����� �� ��� ��

�
� � � � � � �

�
�� �

���
� � � � � � ����� �� � � �

�� �	�������	 �%���� ���� ���� ��A ���� �����
 �
� ��A ���

3
 	� ���� ��
��

�� ������� 	� ��� ��� ������
��� �� �
������
�������
 ������ �� ��� ��������� ������ �� ���
��
 ��� �� ��� ������
�������
 ���� �����
��� ���������

	��
� �������� ������
 ��� � ����� ������ �� ��
�����
���������
� J�������� 	� ���
���� ��� ��� ���������
 ����

7

��� ��������� �����
��������� ��������� �� +��; ;� �� ��
�
��
�������� �
 �����
���� ��� ���
����� ��� �
 ���� �� 	� ���
��� ���� ���
����� ��
��������� 	� 	��� �� ���� ��
�

��� �� 	��� �%�� A(�

��	����	 ���� 	� ����
 � ��� ' ��� �
"

���	& �*"����	

	��� �
�� �� ���
 �B ����� ��� �	� ����� �� �������

�������
 / A ��� � ��� � & & & ��� / A ��� � ��� � & & &
��� ����
��� ���� ����9 � ' - ��� ���� � � � ��� ���	��� ���
&

� ��
�
����A����) ��

�
������A����) & & &) ��

�
����A����

� ��
�'�

�
����A����) '�

�
������A����) & & &) '�

�
����A����

� ��
�
��� �A ������ '�

�
��� �A ����

� �� � � �� � � & ��
�

�A ����� �� A ����- �� � ��

� �� � � �� � � & '�
�

�A ����� �� A ����- �� � ���

��
���� ���� �� � ��� ' ���
��������� ��������� ����
�

���� ��� ���� � ' /� � ��� ����
 ��
�
� � � � � � ��

�
����� ���

'�
�
� � � � � � '�

�
����� ��� �
� ����	�
�
��������� ����������

��	����	 ���� 3 +��; ; ������ � �
 ���� �	���	

"	��� �
"

���	& �B ��� ���� �	� ����
 � ��� '
���������
��������� 	��� �� ��� ���������� � �A �) ' �A � ���
�

$���� ���� (�
 � �� ���()(����"� #���� ���� 	�

��	
�	 ����
�� � 	� 	� ���"���	�� �� 	
���� ������
��
��	 ���� �	 � �� ��
�� ���� ��
��� ��������� ��� ��
������������� �� ����������������������')��	 � ��
�	���	
 "	��� �
"

���	&'

+����' '�� �������9�

��	����	 ��'� ;�� % �� � �������
�
��� ���� ���
��������� �
������� �� ������
 �������
�� 	��� %� ���
	� ����� ���������	 �
 ��� ������ � � ��
��� ����
��� ���� � � � ��� ���� ���� � � �	�������	 �%��
���
���
��� � ��A �� ����� �
 �� ��������� �����
���������
������
��� ���� �� ������ �� ��� ����� ��� ����
 �� ���������

��� � � � � �� � � ���� ���

� � ��A �����

� ������ ����� � ��� �

���
��� �� ���� ����������
	��
�
�� �� ���
 �
 �
����
�� �� ���� � �� �

� ���� � 	 ��� ���� ���
 ��� ������� ��� ���
 ����
������ ����
 �� ������� ���������
 ���� ��� ��B���
��� ���� ��� � � � � ���

��	����	 ��(� 8�� � �������
�
��� ���� % ��� � �
�� � �����	#�%��� �
 ���
�� �� �
�������
 �������
��
	��� ��� �������
�
��� %
��� ����

�������� �����	#�%��� �B ���������	 � ��

������� ���� �� ���
 �9����� ��� �������
 ��������� �

��
������ �� ����� ���������
 �� �������
�
��� ���� %"
���� 8����� " ��
������ �� �
������� �� +��; ; ������
�

-� +��
���� ���
������� �� ������

�� A �� A 	�+�
�� A ��-� "�
�� A ��-� "� � ��-� 0� � ��"� 0��
� � � �
	����
���� �� A �� �������������� � ��������������
��������� ���� �

�$ �	 #����
�� �������� �	 �����	�

�

�� �
��	 /���/ #� ��	�
�
#� ����	
�$ �� "	�������'
 ��

������� �
 �� �����	#�%"�"� �����
� ��� ���������

� � �� ��� � � �	�������	 �%"��
���
����� � ��A ��� �����
�9�
�
 � � ��
��� ���� ��� ��B����� ������
 ��� �� � � ���
������
 �������������� ������������� ��� ������ �� ���
���� �����
 ��
 � ��A ����� ��� A ���� ��� �� �
 ������
 ���� ��� ������
���� ���
 � ���������
 �� !�������� 1�=�

"� ��
�� �����	#�%"�/� �������
 � ������� ���������

��
������ �� �
������� �� �������� ������
 ��� A �������
	���� � �
 ��������� �����
��������� ��� � ���
 ��� ����
���� ���
 ���� ������ ��� �����
�

8�� �9����&
� A " ������������ � �������������
 ��

������� �� ������
 �
 �� �����	#�%"�/� �����
�
��� �� ��������� � � �� ��� � � �	�������	 �%"��
���
���
��� � ��A �� ��� ������ ���� A �� ���
 � ���������
 ��
!�������� 1�=�

0� ��
�� �����	#�%"�-� �������
 ���
������� �� ������
�

�� A 	�+�
�� A ��-��
�� A ��-� � ��"��
�� A ��-� � ��"� � ��0��
� � � �
	����
���� A " ������������ � � �������������
��������� ���� &������ �
�� ���� �����	�	
 ���
� 	 �	�

�� �	
�� �
���$ �
 #��� �� ���	
"��� �	����
� ���
��
��	&���

'������ �
 �� ��� ��
� -� �� ��� ��
��	� ���� ���

�������
�� ������
 �
 �� ���
�� �����	#�%"�-��

8����� ��� ���	��� ���� ����
 ���� ��� ����������� ��
��� ���������
 ���� ���
�� �����	#�%� /� ��
�Æ��
 �� ����
��� ��� ����
 %�� � � � �%�	�� � �� ������� ���	 ������
���
 �� �������� ��
�� ��� ��� ���������
 �����	#�%����
� � ��
������ ���� 	� ��� ���� �� ������ ��� ����

%�� � � � �%�	����� �� ���� �� ���
 ������� �
 ��
�� �� ���
����������� �� ��� �������
�
���% ��� ��� �����
�������
����������� �� ������� ������� ��������� � ���
� �����
���
�
��� ��� ��������� 	� ��� ���� ;���� 1�" ��� ���
���
�������� ���� ��� �������� 	

��
��� �� � ��	���� � ��� % ���! � ����	� �	�

��	���� � ��� %� ���! � �� ����	� �

	 �� ������� ���� %� �
 ������� ���� % �� �����������
�� ��
 ��������� ������� ��� �������� �� % �����
�� 	���
� �����
� �� ��������� ����
 �� ��� �������
�
��� ���
�������� �� % �
�� 8����� 1�� �� ����������� �� ��������
�
 ���� �����9 ��� �� �
 ��
������ �� ����� �� ��� ����� ��
��� ��������

8

��	����	 ��)� ;�� % �� � �������
�
��� ���� ���
������� ���� �
�� �� ���
 $ ��	
�	� �� ����� 	�������
��� ������
��	 �� ������� �	 % �B

� ���� �
 �
�������� �� �� ���
��� � � �� �
� � �����$���

� ���� �
 �
�������� �� �� ���
��� � � �� �
� ����
����� ��� ��� ��� �� %� �B � �A ���� ��� �� ��A ����
�� ���� ���
�� ���� � � �����$����

$���� ���� (�
 % �� ��	��� ���
�� ����� 	� ��������
�����	#�%� /� 	� $ ��	
�	� �� 	������� ����� ��� ����
���
��	 �� �
')��	 ��� ����� � � � �
 �����
�
,
' %�	�� �A ��	�� � %�	���� �A ��	���� �

+����' '�� �������9�

*!����� ���� (�
 % �� ��	��� ���
�� �����$ ��������
�����	#�%���$ $ ��	
�	� �� 	������� ����� ��� ������
�
��	 �� �
 	�

� �� ' �%�� , �	������%�� A �	�������	 �%��$
� �����
���� � � &�� ���� � � �� � ����
���� � $ # �$
� �����
���� � � &�� ���� � � �� � ����
���� � $ # �'

)��	 ��� ����� � � � �
 �����
�
,
�����%�	���� �A ��	���� � %�	������ �A ��	������ �

+����' '�� �������9�

6. ALGORITHM
�� ��� �������

������� 	� ����
��	� ���� �� ��� � �������

�
��� ���� %� � �������� ���������� �
�� $ ���� ����
����
 � ���
 ����

��� ��� ����������� �� ��������� %� 	�
���	 ��� ���� �
��� ���� �������� �����	#�%��� ���
�� ����������9������� � �� ��� ���� �%�� � ���� 	� ��� ����
��� ��� �������� ��� ����������� �� ��� ����
 %�� � � � �%����
�� ��� ��� ��
��

 ��	 	� ��� ��� ����������� $� � ���
�� 	���� 	� ��� ����� �� �� ��	� ��
�� $ ��� �� ����

������� ����������� ��
�� �� !�������� 1�G� �� ����
�
��� ���� �������� �����	#�%��� ��� �� ������� ����
���
�������� �� ��� ������
� ��� ����� 	� ���
����
�
���� ���
 ���� �
 ���	� ������ �� ��� ���� 	��� ��� ����
���
 ��� � ����� �������� ��� ���
�������� �� ��������
���� �� � ���
����� ����������9������� �� ��� ���� �%��
���
 ��� ���� �� ��
�
����������	���� 6���� �� ���

���
����� 	� ��
��

 ��� ��������� ���� ��	
 �
 �� ������� ���
����������9������� �� �%�� ��� ��
� �� ��� �������
�
���
����
 %
��� ���� �%�� �A(�

8�� ���
 �����
�� 	� ����� ��� ���� *%*� � 	���� ��:���

��� ������ �� �����
 ���� ��� �������� ���
���� �������
����� �� ��� ������� �� ���� *%*� ��� �� ��������
����������� ��� �� �	��
 ���
 ���� *%*� � �%�� � 8��
��� ��
� ������ ���� �� �������
�
���
 	���� �%�� �
(� ����� �9�
�
 � ��������� ���� ,
��� ���� �%�� �
- H *%*� &,�

6.1 Algorithm for computing *%*�
�� ��
� ����� ��� ���� *%*� ��� ���� ����� ���� *%*� �
�%�� �	��
 ���
�

��	����	 '��� ;�� % �� � �������
�
�������� $ � ���
 ��� �
���� � � � �
 	�
 �	 ����� �� ������� $ �B �� �
 ��
�
�� -	�� � � ������ ����������&
�
 � -	�� �
� ���-	�� � �� �������$��� & ��������Æ�� � �� � -	�� �
� ���-	�� � �� �������$��� & ��������Æ�� � �� � -	�� �

/�������� �� -�������� ��

��
��

��
��

"��������

�����������

�� ��
��
��

�������������������������

0��������

�����������

��
��
��
��
��
��
��
��
��

��

#

������������

�� ��
��
��

1��������

=
������������

���������������� >��������
������������� �� �� �� �� �� �� ��

��
F

������������

��

��
��
	

��
��
�
��
��
��
��
��
��
��
��
� !"
#$

G��������
�����������

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��
��������

��

��
��� '� ��� -	 ����
& !	 ���� �	� !�	 ���� �

�������	� (�
 % �� ��	��� ���
�� ����� 	� $ � �� '
)��	 *%*� ��	�
��
�� ��	��� � � �� �"��
�
 ��� ���
� � �� 	� ��� ������� �

� � ��
�� "
��
�	 %�$
��
	"���� �� ����	
�
�
 �� �	
�� �

� � �	 ����� �� �������
$ �� ���� �� �*"�
� �$ ��
���� �� 	�' ��
���� �� 	� �"�� �

��	 *%*� A('

������� '��� �� ��� ���� %" ���� 8����� " �� ���
����� ��� �����
 ��� ����

 ������ ������� �� 	������ �� ���
������
�� �� ��� ������
�
����
 ��� �������� ����� ��� ��
�� ��
� �	� �����
 ���� ��� �
��� ��� ��� �� ��� 	������ �

������ ����� ��� �� �� ��
� ��� ����� �
��� ���
�������
6���� �� ���
 ����&

� *%"*��� A "�

� *%"*���������������������� ���� A - ���

� *%"*��� A "�

�������	� (�
 % �� ��	��� ���
�� �����$ $ � �� '
��
�� ��
� �� �

�� �� "
��
 ������� �� ���	
���$ #�
��	�
�,
� -

	�� A �� � -	�� � ��� �� -	�� & ������� � Æ��
0
�� �

�� ��
�� "
��
�	 ��
�
 �� 	�
 �	 ����� ��
�������$ 	� ���� #����
���� ��
�	��
��	
� �

� �	
����� �� ������� $'
� -�

	�� A �� � -	�� � ��� �� -	�� & ������� � Æ��
0
�� �

�� ��
�� "
��
�	 ��
�
 �� 	�
 �	 ����� ��
�������$ 	�
� #����
���� ��
�	��
��	 ���� �

� �	
����� �� ������� $'
� !	�� 0 �����$ ���� #����
�	��
��	 ���� �

� �	 -	��

� �

� �	 �
-	�� ����
� �	
�� "
��
�	 ��'
� !�	�� 0 �����$ ���� #����
�	��
��	 ���� �

� �	
�
-	��
� �

� �	 -	�� ����
� �	
�� "
��
�	 ��'

������� '��� 8�� ��� �������
�
��� ���� %" ����
8����� "� �� ���
 ����
%"��� A "�

-	 ����
A �/� -� "� 0� 1� >� G��

-
	 ����

A �"� 0� >� G��

-�
	 ����

A �0� 1� >��

!	 ���� A ��������������������������������������

!�	 ���� A ���

8����� = ��
�����
 ���
� ����
 ��������� K ���
����
 ����

9

-	 ����
��� �������� �
 ���������� ��� ����
�����
 	��� ���
 ����

!	 ���� ���
!�
	 ����

��� �������� �
 �������� �

3
 ��� ���� ***� �
 ������������ ���������� ��� ���
�	��� ���� ���
 �� ������ ��� �����������9������� ��
�%�� ��� �� �����
 ���� �� *%*� A(� ���� �
� �%�� A(�
�� ��� ��9�
���
������� 	� ���� �����
����� ��

��� �
���
�� ��� ���� *%*� ��� ��������� ��� ����������9������� ��
�%�� �

$���� '��� (�
 % �� ��	��� ���
�� ����� 	� $ �
�� ' ��

!
	�� #

!�
	�� A $
��	 *%*� � �%�� '

+����' '�� �������9�

������� '��� �� �������
 ���� �������� 	��� .9���
�� =�- ��� ��� ���� %" �8����� "� ����
 ����

� �%"�� ' "�

� �%"����������������������� ���� ' - ���

� �%"���� ' "�

6.2 Over-approximation of �%����
6��� 	� ����
 �� ������ �� ����������9������� �� �%�� �
�
��� ��� ���� *%*� � ��
 ��
� �
 ���� ���������� ��� ���

���� ���
��
� 	� ��� ��� ����� �� ���
��� ���� � ������
�������� ��� ��������� ���
 ����� �� ��� ����� ����� ���
����������� �� ��� ����������9������� �
 ��������
��������
���	��� �� ����
������ ��
�
� ��� �� $ �
 ����
�� ��	�
�� ���� ����
�� �� �
���
�Æ��
 �� ����� ��� ��
��������
����&

1�� ��� ��	��� ���
�� %
�� "
��
�	 %� &�	��
�� ��
�������� �"	� #�
� ������

�
�� ��������� ����� $$
��	 ���
����� � � �
�� "
��
�	 %��� &�	��
�� &�	
�� ���
�"	�' 2�	�� �
 �����
�
 �%�� � �'1

 ��
 �����
 ��� ��9� ��
�������� ���� ��� ��
� ��Æ��� ��
�
�� ������� ��� ����������9������� �� �%�� �
 ��� $ A ��
�	��� � ���
 ��� ��
�������� 6���� 	� ����������� ��
���
 ��
� ���� 3�� ����� ���
���� ���
��
� ��� �� ���
������ �������� ��� ��������� �� ����������9������� ��
�%���� � ��� �� �� �������� ���� ��� �� ������� ��� ��
�
��������� �
�� �������
�
���
� J���� ���
 ��������
���
���
 ��� ���� ���� ���� ��� ����� ���
�������� �� ���
������ ���������

8��� ��	 ��� 	�
����
� ����

� ����� �������
�
��� % ���
 !	�� #
!�
	�� A $�

� �� ��� ����� ��� ����
����� ���� ���
��������
� 	��� ���
�������� ��
 �� ��
� ��� �� ��

����
 �� � ���� ��
�������

 ��
� ���������
 ��� ���� 	��� ��� ������ ����
 �	����
���� �����
�
 ��� ��
���
�

��������� ��
� ����
���
��
���

�������	� (�
 % �� ��	��� ���
�� �����$ $ ��
 ��
����� 	� � � -	�� ')��	 �
�� �� ����
 ��
������
�������
�� � ��
�� ��
 ��� ����	�	����� �� �
�� ��
�� "
��
�	
��
�
 �
�
 �	
�� �

� �$ �	��� �	 �

� �� � -�

	�� $ 	�
	�	� ��
���� �	
��	� �

�� �� �	 -	�� '
%�� � � ��� ����	�	����� #� ��	�
� ��"�����"�
�� ���
*"�	��
�
 ���"�
� ���� � �
�� ������	&
�� �

�� 	� ��
����
�
 �	 	�
 �� "��� ��� ��	����	��
��	 #�
�
�� ��������
	� ��� ���.�	�	����� ��	�
��
�� ��
 ���"�����"� � � �
��� ����	�	�������

������� '��� 8�� ��� �������
�
��� ���� %" ����
8����� " ��� ���	��� ���
&

-
	 ����

A �"� 0� >� G�

��� ����	�	 ���� �"� A �"� ������������ #� ������������� 1��

��� ����	�	 ���� �0� A �0� ������������ =� ������������� >��
��� ����	�	 ���� �>� A �>� ������������ =� ������������� >��
��� ����	�	 ���� �G� A �G� ������������ F� ������������� 0��

��� ���.�	�	 ���� �"� A ���������������������������
��� ���.�	�	 ���� �0� A ��� ���.�	�	 ���� �>� A

� ���������������������������
��� ���.�	�	 ���� �G� A ���������������������� �����

�������	� %�� ��	��� ���
�� ����� % 	�
�� ��
 $$

�� "
��
�	 �� ���
���
��
�
�� �

��
�
 �� �	 -	�� ��
��	�
�� ��'

������� '��� 8�� ��� �������
�
�������%" ���� 8���
��� " ��� $ A �� � ��� ��������� �� �������
 �
����
 ���
������ �� 8����� = ��� �� �������
 ��� ��� ����
�����
 	����
��� �������� �
 �� �

�������	�)�� �"���
 �� -
	�� ������� ����
�� �	�
��

�

� �� �� �� ��	�
�� -���		�� '

������� '�'� 8�� %" �
 ��� �������
�
��� ���� ����
��� 8����� "� -���		 ����

A �"� 0�� 8����� =
��	
� ����

���
�
����
 ��� ��� ���
����
 �� -
	 ����

�������� ����

��� ������
���� ��� ��� ����
�����
 ������� �� �

��	����	 '��� ;�� % �� � �������
�
��� ���� ��� $
�� �
�� ��� � �� -

	�� � ��
�� �� ��9��� ����
 �� � ����
��
������
������� �� �� ������� ���	�	������ �
 ���
�� ��
� ��9��� ����
 ���� � 	���� �� ��� ������� �
���� ����
-
	�� ��� 	���� �� ��� ������� ���
���� �	����

;�� � � ���	�	����� ���
��� � �� -
	�� � ���� ����
� ����

��
����
 �� ��� ���� �� ���� 	���� ����� ���� ���� �������
� ��� ���
 ���
����
 ���� ������ ����� �� ���
�� -	��

�� �� ��� ����� �� -	�� ��� ���
�������� �� �
���� ���
�������� �� -	�� � ��
 ����
� �
 �
������� ��
����
 ���
�������� �� -	�� 	��
�
����

�� �� � �����
 �� -	�� �
8�� � � �� �� /����0����	����� ������
 �
��
�� �� ���

�� �����
� � � � ���	�	������� 	���� �������
 ��� ���
��9���
�������
�
;��/����0����	�� A

�
��!�����

���
/����0����	������

������� '�(� 8�� ��� �������
�
��� ���� %" ��������
�� 8����� " �� ���
&
�����
� � � � ���	�	 ���� �"�� A �#��
�����
� � � � ���	�	 ���� �0�� A �=< =� F��
/����0����	 ���� �"� A �#��

/����0����	 ���� �0� A �=� F��
/����0����	 ���� A �#< =� F��

 �� ���	��� ���� �������
 �	� ������������
� �� ��
�
��� �������
 ���� ������� �����
������ � ������ ��� �����
��
� �� ��� �� ����� ���
���
������ ������ ��
 ����
��������� �
 �����
���� 6�	���� �� �� �
 ��� ������ �%� A(
���� ���� �����
� ��
����� ������������
������
 ���
�������� ��� �� ���� �� 	������� �� ����

����

$���� '��� (�
 % �� ��	��� ���
�� ����� �"��
�
,

� �� � -
	����

� � A ��������������� � ��� ����	�	���� ���

10

���� � -
	����

������� �	 �� ����
�� �

� ���� 	� �� �

��� ����	�	��
�
�� & ��"�����"� A ���"�����"�

� �� � -	����
$ ��� �� � ��� ����	�	���, ��
 �

� �� ��

�� �*"�
� ��
 �

� �� ��'

)��	
�%���� � - H *%*��� &

	
��#�$�%&��
������

����

#���� ��� ��	�
��
�� 	"���� �� �

�� �	 �'

+����' '�� �������9�

������� '�)� 8�� ��� �������
�
��� ���� �%"����
���� 8����� " �� ���
 %"��� A "� /��0����	 A

�#< =� F� �
�� .9���� =�0� =�>� ��� ���

�
��� ���
 ����
���������
 �� ;���� =�"� ��
 ;���� =�- ��� ;���� =�"
����

" � �%"���� � - H "&�- H "� A >�

 �������� ��� ��� �������
�
��� ���� �%"������� ����
.9���� 1�0 �� ���

�%"������� � >�

7. CONCLUSIONS AND FUTURE WORK
 �� ����� ���������
 ��� �������� �� ��� ����������� �� ���
�����
�
���
� �� �
 ��
�� �� ������� � ���� �� 	���� �����
�����
 ���� �� ��� �9������ �������� �
 ��� ������� �� ���

�
��� 	��� �

 ���� � ������� ���������
� �� 	� �	��

��� �� ���
�
���� �� ������ ��	 ���� ������� ������
����
 ��� ����� �� �� �
�� ������ ��
 �9�������� ��
 ��
��
�
 ��

��� �����
 �� ��� �

�������� ���� ������� ������
����

���� � ������ ����� 	���� ����
 ����� ���������
����������� 7�
���
 ��� �����
 �� ��� �����
�����
 ���
���
������ ���
 ��
��� 	� �
� ���
��� ��� ��������� ��� ��
������
��������
 ��� ������� ��� �����9������� �� ��

��� ��������� �
 �������� ��� ��� �� ��� ����������� ��
�������
�
���
� �� ��� �� ���� ����� �
� ������ ����
���� �� � �������
�
���� �����
� �� ��� �� �
�� �� �����
���� ��� ���� ���
 ��� ���� ��� ������������ ���������
��������� �� ��� ���
�
��� �
�� $-"% ��� ��
��

��� �� ���
��
�� ���
 ��
�� �
� ����������� ��
���� ���������
� �� ������
������ ����� ��� ������ �� �����
 ���� ��� ��
����� �� �
��������� ��� �� ������
�����

�� ������� 	� ��� �� ���
� ������������� �� ��� ��������

��� �9���� ���� �
� �� ���� ������ ����
 �� ������� ����
�
� �� �
� ��� �� ���������� ���
�� �� ���������
 ���
��������� ��� �������� ��������� �� ����
��� ��
�
����
��
�

8. REFERENCES
$-% @� 3�L����� 3����

��� M��������)�����
� ��

*���������� �� '���	��� +��������
� �� �3+4� ����

#FK1=� "//=�

$"% � 7� ��� '� N� 5�?������ 3���������� *��������
 ������ '�����)��������
 �� ���������
� (��
"��
3�
�� �	 ����"
�� ����	��� "/1>&-/0H� "//-�

$0% @� 7������ ;� 7���� �� O+���L��)� J�������)� 5�O�����
���)� O'���O���� !����� � 3 �� ��� !�
��������
*����������� �� +���' ��
�� -5
� �	
��	
��	�
��	����	�� ���/�6� ����� #-## �� (3��� ����

">GK"G-� '�������� "//=�

$#% � 7����
� ;� 6������ ��� .� J�������� 7���������
����
 ��� ����������� ���������
� �� +�������	&� ��

�� �+�3 ���7 ��������� ����
 -1#K-G/� '��
8�����
��� M'3� 3���
� "//1� ;,+' '��������*�����

$1% ;� 7���� �� O+���L��)� *�O�����L�� ��� 7� P���������
+�������������������� 3������� �
 �
*������������������� +���������7�
�� '�
���
'������������ �� +�������	&� �� ������/�7� ����

0-K0G� ;�
����)������� '�������� "//1�

$=% .� J� +����� �� 2�������� ��� !� 3�)���� 8����
������	&� �� J�)��

� M'3� @������ "///�

$>% @� +������� J� !	���� ��� @� 6����B� .9���

���
�������� ���������
 �� �������
�
���
& ��
7������ '����������� �������� "///�

$G% 8�)�
� ��� '� *�
���
��� 7������� �������
 ���

���	��� ���������
� �999)�	��
��	� �	 ���
#��
9	&�	����	&� "G�--�&-/1=K-/>=� ,������� "//"�

$F% 3�)����� �� ������� ���� �� �������
� ��
+�������	&� ��
�� -5
� �999 �������"� �	
��
%�"	�
��	� �� ����"
�� ����	��� ����
 #=K1>� �...
+������� '������)��

� -F>>�

$-/% 3� 5��
���� L3� '������� ��� !� *���L�� J���
+������� 2���� ���
���������
& 3 +������
�� ��
 	� 3��������
� �� 6� .����� 2� .���
�
8�)���
��)��
����� ��� 2� 5�4������� ������
�
�	
��	
��	� ��	����	�� �	 :���)�	�����
��	�
���:)!� ����� 0"1= �� (��
"�� 3�
�� �	 ����"
��
����	��� ����
 ""=K"#-� '��������*����� "//#�

$--% �� O+���L��)� *�O�����L�� ��� 7� P���������
+�������������������� 3������� J������
;�������� ������� 5����� 8�JM�5'�"//=�/G�
J�
���� M�����
���� 8����� �� ����������
� 7����
+4��� 5������� ������� "//=�

$-"% 7� P���������)� *�O�����L�� ,� 7���O
� �� O+���L��
;� 7���� ��� @� '������)�� �����	 �����	�	

8�����	& 9�����, ������	& ���
#�� �����	�	

8������ ������� +�������������������� 3�������
3������� �+����� � ������ �� ;,+'� "//>�

11

APPENDIX
A. DEFINITIONS
�� ��� ���	���� ��� ��� ��� ��� ����� ��������� �� ���
������
�
�	��
��	 ���� D� ������ �������� �� !�����
���� 0�0�

�������	� (�
 � A ���� ��� � � � � ��� �� 	�	���
� ��
 �� �	�

�&��� #�
� ���& & &���$ 	� ��
 �� �� ��
 ��� ��� � � �'
)��	 E����� ��	�
��
�� ��

����� � ��� � � � � � ���� � �� � �-� � � � � �� & ��� � �����

%�� 	� � � �$ ��� ��	�
�� �"	�
��	 ��� & E����� � ��
�"��
�
 ������������ A ��'

��	����	 ���� ;�� � A ����� ��	�� Æ��
�� ����������� ��
� ����� �����
���
�� �� ��������������������� ���������
 ��� ��� ������
�
�	��
��	 ���� ��� � �
 D� A D���� �
D������ 	����
D���� A ���������������� � �����
���'�� ������������� �����
� ���������������

��������
����Æ� � ���������� ������������

����
D����� A ���������������� � �����
���'�� ������������������ �����
� ����������������������

����Æ� � ����� ����������
������� ��

����Æ�� �

� � ������������ ������������
����

B. PROOFS
 ��
 �������9 �������
 ��� ������ 	��� ��� �����
 ��� ���
����
 ���
����� �� ��� ��9��

+����' (��� 7'� 7����
� ��
�

���� �
�� �
 ������ ��� ��� �

� � �� ��� ��
���� ������ ���� %� �
 � �������
�
���
���� �� � �������� �� ���������
 �� ��� ��������� �� ���
�����
�
��� �����
 � ����� ���� -�� "� ��� 0� �����
 �%��� � �%�� ��
�Æ��
��
��	 ����

�(��� �(�)���
	��

	�� �	

�
�����(��� �(�)���

	��

	�� �	

�
����

���

�� ����� ���� ��� ���� � ' �%�� �� �
 �����

�(��� �(�)���
	��

	�� �	

�
�����(��� �(�)���

	��

	�� �	

�
����

���

��� �����
� ���	
 ���������� ���� ������������ 0�� 8��
� 1 �%�� �� ��� A ����� ��

�
����

�
� ������

�
� �� �� ���

�
� ��

�
����

�
� ������

�
� �� �� ���

�� �
������� ���� �(��� �(�)���
	��

	�� �	

�
���� ��� ��� ������

�
������� ������� ���� ��� ��

��
������� ������
 �������� ��� ��� ��������� ���

�� �������� ������� ������
 ���� ���
 �� �����$�����
�� �9����� ������
 �� ��� ��������� � 	���� ���� ���
���� �� ������������� �������� ��� ��������� ��

��
������� �� ����
 �� ���
����
 	���� ����
����
 ��
��� ��������� ���

8����� ��� A 	����� ��
�
� ������

�
� �����	���

�
� ��

�
� ������

�
� �������� 	���� ���

�������� & �
 ������&

	������������ A

�

�

�

*� ���� � �
���� �

���������� ���������%�������� �� �
���� �

����������� ���������%�������� �� ���� �

����������� ����������

�

�

�

8��� ��� ������������ �0� �� ���	
 ���� ����� ��
 �� �9�
�
� ���� �� � �(��� �(�)���

	��

	�� �	���
���
����� ������ ��� A

�� �� ��� �
 � ����9 �� ��� 7����
� � ' �%�� � !�����
���� 1�" ����
 ���� � ���� ��	�� � �	�������	 �%�	�� �
���

���� ����� A �
�	��
��� ��
� �9�
��)�����������
 -� ��� "�

���� ���� �� �
 ��

��� �� ���
����� ���� ��� ���� ��	�

������
�� �� ���
���
 ��� �� ��� ��� �
������� ���	�� �

�(��� �(�)���
	��

	�� �	����

��
��� ���� ������ A �
��	��
��� � �

+����' (��� 7'. 7� ��������� ��
�������� �� ��� �������

� � A ����& 8��	
 ������� ���� !�������� 1�#�
� � A �� ���& 3�������� �� �6� �� ��� �� ��� ���������
�����
���������� ;�� 2 ��� ' ��
��������� ���������
����
 	��� �� ��� 2 �A �) 2 �A �� � 2 �A ��)
' �A �� � ' �A ��) ' �A ��

� � A ���& 3�������� �� �6� � �
 ��������� �����
����
������� ;�� 2 ��� ' ��
��������� ��������� ����
 	���
�� ��� 2 �A �) 2 ��A ��) ' ��A ��) ' �A ��

� � A ����������� � ����������& ��
 �����
 � �����
��
�
 ���������� �� ;���� 1�0� 3�������� �� �6� ��
��� �� ��� ��������� �����
���������� ;�� 2 ��� ' ��

��������� ��������� ����
 	��� �� ��� 2 �A �)
�-� & ��� �� & 2

� �A ����� � 2� �A �� ��� �"� & ����
� & 2� �A �� � 2� �A �������� 3�������� ��
���������
���������� �� 2 ��� ' ���
��������� ���������� �� ��
��� ��� ��� ��������� �-� �
 ��������� �� ��� ���������

�-�� & ��� � �� & '
�� �A ����� � '�

�

�A ��� J��������
��� ��������� �"� �
 ��������� �� ��� ��������� �"�� &

������ & '�
�

�A �� � '�
�

�A ������� ����
 ���	
 ����
��� ����� ����������� �� !�������� 1�#��)������ ���
�
�	� �����������
 ��������� 	� ������� ���� 2 �A �)
�-� � �"�) �-�� � �"��) ' �A ��

� � A �� � ��& 3�������� �� �6� �� ��� �� ��� ���������
�����
���������� ;�� 2 ��� ' ��
��������� ���������
����
 	��� �� ��� 2 �A �) �� � �� & 2� �A
�� � �� � � & 2� �A ��� 3�������� �� !�������� 1�#�
�� � �� ��� ��9��� ����9
��� ���� �� � �� ���
�� �
� ���
& 2 �A �) ��� � �� & 2

�� �A �� � �� � �� &
2� �A ��� '���� 2�� ��� '�� ���
��������� ����������
2�� �A ��) '�� �A ��� 7� �
����� �������� 	� ���

����� ���� �� � �� & 2
� �A ��) ��� � �� & '

�� �A ���
)������ ��� ��
��
 �������� 	� ������ ���� 2 �A �)

������ & '
�� �A �� � ��

���� & '
�� �A ��) ' �A �� �

+����' (��� 7'; 8��
���� ���
��
 ��
������� � ����

�%�� � 3

��� ���� %��� ��A ���� � ;�� ��� ��� � � ��
'��� � �	�������	 �%���� �� � ����
��� ���� '��� ��A ���� �
 ��� ��������� �� !�������� 1�"� ����� �9�
�
 �
�������
���� �	�������	 �%��

(������ ��
�
� ������

�
� ������

�
� ��

�
� ������

�
� �������

��� ���� '������ A '���� � 3 ���� '���� A

���� ������
�
� ��

���
�

������
���
�

������
�
� ������

�
� ��

���
�

������
���
�

��������

�	���� ����� � � � � � ����� ��� ������
����
 �� �������� �����
� � � � ����� �
 ������
� �� ���
�� �	�������	 �%����� 8��� ���

���� ���� '������ A '���� �� ���	
 ���� ����� ��� �	� �����

�� �������
�������
 / A ��� � ��� � & & & ��� / A ��� � ��� � & & &

��� ���� ��� ���� ����9 � ' /&

� ��� ���� � �
�
����

�� �
����
 �� ��� ��������� ��

����'
���������� � � � � ����'

��������� � -�� ���
����'

����������� � � � � ����'
���������� � -��
���
�� �A 3���

�� ���� �� ����
���
�� ���
� ���
 �'�� ����� � � � ��'

�� ����� � "� ���
�'��� ����� � � � ��'

��� ����� � "� ��
�
����

��
� ���
 �������

�
�����(

���������� ��� �������
�
�����(

�����������

���� � ������������� 	���� ������
 ��� ��������
��� �	�������	��

�
�����	�������	��

�
���� 	����

	����

�
�� � ����

� ����

�

 ��
 ��������� �� !��������
 1�= ��� 1�>� '���� ��A ���� � '�
���
����� ��������� �� ��� !�������� 1�0 �����
 '� ��A ��
��� ��� ���������� �
 ������� �

12

+����')������ 7'- 8��
���� ���
��
 ��
������� � ����

�%�� � '����
� ����

%����� ��A ������ �
���� �� �

�Æ����� �� ����� ���� ����� �9�
�
 � ���� ' �
�	�������	 �%������� 	���� ���
 ���
���
�� ������ ��� 	��
�
����
�����
 �� ��� ������ �����
 	��� ����
 ����� ����
� H�� �� ���� %��� ��A ���� ���� ���	
 ����������
���� ���
����� ��������� �� ��� !�������� 1�0�
8��
�� 	� ����� ��	 �������
�
���
 %�� %��� �� ���
 �����
���� �

�
�� � � � � �

�
� ��� +� �������� ��� ��� � � � � �� 	��� �������

��������� ����

��� ���� ��� �����

��� � ����
�
��������������� ����������

�
 � �������
�
��� ����� �� ��?������ ���� ���
��
�-� � � � ��� �� ���
�� � 	���� �����
����
 �� ���
 ������
��� 	� �� ������� ��
;�� %� �� � �������
�
��� ����

��� � ����
�
��������������� �����������

	����

����������
�����������������������������
������������������� �

������
�����������������������������
���������� ��������� �

������
�����������������������������
��������������

!������
�
��� ����
 %� ��� %�� A ���� ����������� ���

�� �� ���
 $ ��� ���
�� $ � A �����$� ������������������

���
�� ������������
 �� ;���� 1�" ���
 �%���� � �%���� �
7����
� %� A %��� ��� ���� � � �� �� ���
 � A �%�� A �%����
��� ���
 �%���� � ��
;�� %����� ��A ������ � ���� !�������� 1�= ��� ��� ��
�
��������� ���� !�������� 1�0 ���� ���� ����� �9�
�
 �
��
������

� A ���� � � � � � �
�����
� �� ��� ��

�
� � � � � � �

�����
� �� ��� � � �

�� �	�������	 �%������ ��� �
�������� � �� ������ ������

��� ���� � ��A � ��� ��� ��� ��� ������ � ���
 ��� ���
���� �������� ������� ���������
 	��� �������� ����

����� ���� ��
8�����
 ������� ��� � ����� �������� � ����
 �� ����
������
 �� ��� �������� � 	� �� ������� ����� ��� �����
���� 	� ������ �
�������
����� ������

�
� ������

�
�����

�����
�

����������
�
� ������

�
� ������

�
�����

�����
�

����������

�� �	�������	 �%
�
����� 	���� ����������� �
 � ��� �	������	�����

��� ���� 	����

����
���

� ��� �����

���� ������������

��� ����������

����
���

�� �
 ���� ���� ���� ��A ���� ��� ������ ����������
� ��
���
 %���� ��A ���� ��� %���� ��A ����������
 �� ������ ���� ���
 ��� ������ �����
� �
 ��������� �����

���������� J������� �
������� �� ������
 ���� A ��������
�
 �� ���
�� �����	#�%�� /� ��� $ � �������
 � ���
 ����
�

��� ��� ����������� �� ������
 ��������� +��
�������
;���� 1�" ����
 %�� ��A ������� '� �� �9�
�
 �
�������
'�� � �	�������	 �%

�
��
��� ���� '

�
� ��A ��� A �����

 ��� ��� ��� ���� ����'�� � �	�������	 �%����� 	���� ��� �

������ �����
�� �� ��� �������� � ���
 ����'�� ��A ����
���� ���
��� ���
��
 �
 �� �������
 ����� �� ;���� 1�#�� �

+����' (��� 6'- ;�� � � � ��� ��	���� � �	�������	 �%�	�����
�� ��������� ��� �9��� 8��� ��� ��������
��� �� �
 ���� ����

�
������� ��	�� � �	�������	 �%�	�� �
���
����� �
�	����
��� A

�
�	��
��� ��
� �9�
�� 8�� ���� � � � ����
�����
 �� %� ���
�	��� ���
��
 -	�� ��� �
 -	�� ���� � ����������
���� �� � ����� 	���� ������
 �������� 	�� �������
 ��
������ ���� $� '� ���� ��� ��������� �� ��	���� ��� ��	��

�� ���	
 ���� ����� �9�
� �	� ����� �� �������
�������

/ A ��� � ��� � & & & ��� / A ��� � ��� � & & &
��� ���� ��� ����
����9 � ' /&
� ���
 �'�	�� � ����� � � � ��'

�	�� � ����� � "� ���

�'��	�� � ����� � � � ��'
��	�� � ������"� �� ��� �����
����

�� � ������������� ���� � ��� �� �����$����
� �������

�
�����(

���� ��������� ��� �������
�
�����(

����� ��������� ���
���
 ���� �����$��� �$ ��� ��������
�	�������	��

�
�����	�������	��

�
����

	���� &��� A � ��� � �� � ��� &��� A � �����	�
��
'���� !	�� #

!�
	�� A $ ��� �� ���� ���� �%�� �����
 ���

�� �� �
 -	�� ��� ���
���� �� ��� ���� ��	�� � ���
���

�������� ��
� ��� ��� ��� ���� ��	���� � ��
 ��� �� �����
����� � � � ��� ��	���� � �	�������	 �%�	����� ��� ������
�� ���������
� 	���� ��� �� �
-	�� ������ ��� ���� �
 ��
��
� �%�� � �

+����' (��� 6'� 8�� � � 4� -	 ��� 3��	��� A �����
�� �
 ����� �+������� �����+�������� �
 ���
�� ��
����

�� � -�

	 ��� � �� ��
���������
��� ���� ����� �
 � ����
�� ��� ��������� �� ��� ���������� ���
���� �	���� ����
������� �
���� ���� -���		 �
 ��� ���� ��
�
���� ����
��

��� �� ��� ���
���� �� ��� J�������� �� �������� ��
� ������ �� ����������
 �� ���
���� �� �� /��0����	
��� �+��� �������� A

�
���+

�����

�������� ,�	 	� ���

����� ��	 ��
������ � ���� � �	��� �� ��������� ����
��� �� ������� ���������
� �� � ���� �� 	���� �� ��
�
- H *%* &

�
��#�$&��
��

��� ���������
 ��� �������� ���

���� ���� ��� ���
���� �� � -���		 � �+��� �������� A
�/��0����	������ �� ���� �� ��� ����� ���	
 ���� ���
���� ���� ��
�Æ��
 �� ��� 	��� �� ��
� �+��� ��������&
% ���������
 ��
������ ��� ��������� �� ��� ������
�� ���������
 	���� ������ ����� ���
����
 �����
����

����+��������

8��
�� �� �

����
� ���� � �������
 ������� ���� �9��
������
 �� � ���� ��
������� �� �
 ���� ���
������� �����
������ ��������� �� ���
������� �� ����
�����
 �� �� ;��

	 A �

� �� �� ��� ��
� ��� ���
������� ����
����� ��

�� �� 	 �
 � ���� �� � ���� ��
������� �� �
 �9������ ��
�� �
 	�� �����	�
� �� �� � -�

	 �� �
����
��� ����
����+������� �
 ��� ������
�� ����+���� � ���������� ���

���� �� �� �

 ���� �+��� �������� ���
����
 �� ����
������
 ��� �� ����+�������� ���� 	 ��� �� �������
����
���� �� ��
���� ��� ��������� �9������� 	 �
 ���	 ���
���� �� �+��� �������� ���������
 ��	�� ��
������ �
����
����� ����� ���
����
 ���� ����+�������� �����	�
�
��� ��
� �+��� �������� ���
����
 �� ���������
 ��� ��
����+��������� �� �� �������� ��
�� �� ��������� 	� ���
����� ��� ����
����� �� � ����
����� �� ��� �� �+��� ��������
���������
 	��
� ���
���� �
 	����� ���
�� ����+��������
 �� ���������

 �� ���

�������� ���	
 ���� ��� ���� ����
��� ������ �+��� �������� �����
 � ��

��� ��
������
��
��� ����
 	����� ���
����
 �� ����+��������

�� � �������
 � ����� ������ �� �9�������
 �� ��� ���� ��

������� ���� ��
�Æ��
 �� ����� �� �� ��� �����
������� ��
����
 ��
������ �
 �������� �� � ��� ���� �� �� � ������
���� �� �9����� � ��� ���
��� ��� ���� ��
������ ��������
 � ����� �9�������
 �� ����
 ��
������
 �� � 	� ��� �
� ��
��
� *%* &

�
��#�$&��
��

��� ���������
 �
�� ��� �������

���������� ��� � ������������ �9������� �� � ��� ���
���
��� ���� ��
������ ��� ��
������� �� ��� �9��� ������
����� �

13

14

Plan-Directed Architectural Change For Autonomous
Systems

Daniel Sykes, William Heaven, Jeff Magee, Jeff Kramer
Department of Computing
Imperial College London

{das05, wjh00, j.magee, j.kramer}@imperial.ac.uk

ABSTRACT
Autonomous systems operate in an unpredictable world, where
communication with those people responsible for its soft-
ware architecture may be infrequent or undesirable. If such
a system is to continue reliable operation it must be able to
derive and initiate adaptations to new circumstances on its
own behalf. Much of the previous work on dynamic recon-
figurations supposes that the programmer is able to express
the possible adaptations before the system is deployed, or
at least is able to add new adaptation strategies after de-
ployment. We consider the challenges in providing an au-
tonomous system with the capability to direct its own adap-
tation, and describe an initial implementation where change
in the software architecture of an autonomous system is en-
acted as a result of executing a reactive plan.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures

General Terms
Management, Design, Reliability

Keywords
Self-adaptive, self-healing, software architecture, dynamic
reconfiguration, autonomous systems

1. INTRODUCTION
If the goal of highly reliable autonomous systems is to be
realised, then the software used to control such systems
must itself be reliable and highly adaptable. Furthermore
it should be able to cope with failures in its components.

In this context, we consider adaptation as a modification—
at runtime—of the configuration of the software components
which make up the system. However we do not preclude
other forms of adaptation, such as changing component pa-
rameters, or changes at the language level. Architectural
change has the advantage of permitting widespread, if not

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Specification and Verifica-
tion of Component-Based Systems (SAVCBS 2007), September
3-4, 2007, Cavtat near Dubrovnik, Croatia.
Copyright 2007 ACM ISBN 978-1-59593-721-6/07/0009 ...$5.00.

total, change, while keeping the consistency and safety is-
sues present at lower levels to a minimum. Thus we are
concerned with medium to large-scale adaptations. Much
previous work has focused on systems where each configura-
tion is a self-contained and often predefined entity, or where
repair strategies describe how to change between configura-
tions. However, in an autonomous context, it is not feasible
to consider every possible scenario beforehand, and in ef-
fect pre-program the system to cope with all circumstances
which may require an architectural change.

In order to effect this arbitrary change, there must be mech-
anisms in place to enable the autonomous system to de-
rive a new configuration. This requires some notion of a
goal which drives the selection process. This may take the
form of a functional goal whereby components are selected
on the basis of what operations they perform. Alterna-
tively, the goal may be implicit in constraints on the con-
figuration, which may describe architectural, functional, or
performance-related restrictions.

In our initial work in this area, we have developed a system
which permits arbitrary dynamic reconfiguration by exploit-
ing the presence of a reactive plan which determines the
system’s behaviour. Reactive plans are generated with a
planning tool from high-level goals given by the user. The
behaviour of the system is defined by the set of condition-
action rules given in the plan. These rules indicate what
components will be required to execute the plan.

In Section 2 we discuss some existing work in the area of
dynamic component configuration before giving an example
that motivates our approach in Section 3. Our approach
is then outlined in more detail in Section 4. The paper
concludes with a discussion and mention of interesting future
work in Section 5.

2. RELATED WORK
Many previous authors have described approaches which as-
sume adaptation can be specified and analysed before the
system is deployed. Unfortunately, this is not always the
case with autonomous systems.

Zhang, Cheng et al. [15] apply formal techniques to show
how the safety of a transition from one steady-state program
(which may be thought of as an architecture) to another can
be guaranteed. They assume that the adaptive transitions
are specified by the designer which requires a worst case of

15

Motors

Transmitter Location
Service1

Fetch
Controller

Sensors

Gripper

Figure 1: An initial component configuration for the
“fetch” task

N2 transitions for N configurations.

Garlan and Schmerl [5] achieve dynamic change by describ-
ing an architectural style [4] for a system and a repair strat-
egy. The repair strategy is a script which modifies the
architecture in response to changes in the monitored sys-
tem properties breaking their associated constraints. Con-
straints may be on the architecture of the system (as in
the usual notion of style) or on the performance of the sys-
tem. This is a closed-adaptive [10] system since the repairs
are specified before deployment. Moreover, this system does
not allow architectural change to result from a change in the
system’s goals.

Dashofy et al. [3] use an architectural model and design
critics [14] to determine whether a set of changes (an archi-
tectural “diff”) is safe to apply. They do not directly address
when the changes should be applied, but they do allow for
an extensible set of repair strategies. Again, these strate-
gies are provided by the user and not derived by the system
itself.

Oreizy et al. [11] also use an architectural model to ensure
changes are valid before they are reflected back into the run-
ning implementation. Here descriptions of reconfigurations
are provided various parties such as the application vendor.

3. MOTIVATING EXAMPLE
To demonstrate the limitations of current approaches, we
consider an example where a mobile autonomous system is
deployed and performing a “fetch” operation which requires
that it locate, pick up, and return a known object. The
software architecture for such a system may resemble that
in Figure 1.

The Fetch Controller is responsible for providing operations
such as moving to particular locations (while avoiding ob-
stacles), and picking up the object. The Location Service in
this case informs the system of its location by communicat-
ing with a satellite via the Transmitter.

If at some point during operation, the system’s battery no
longer has enough power to drive the motors, the system
must switch modes in order to use a Beacon component
which transmits the system’s location in the hope that it
will be rescued by another autonomous vehicle, which may
have the ability to refuel it. This configuration is shown in

Transmitter Location
Service1

Beacon

Provided by

satellite

Figure 2: Component configuration following power
failure

Transmitter Location
Service2

Beacon

Provided by

internal map

Figure 3: Component configuration following loss of
satellite connection

Figure 2.

At this point, the connection to the satellite may be lost (if it
moves below the horizon). This prevents the original Loca-
tion Service (1) from being used, and so the system must find
some alternative method for deriving the location. Location
Service (2) provides location information based on local in-
formation, such as comparing short-range sensor readings
to a map of the environment (this may be unreliable). This
results in Figure 3. Note in this configuration there is no
need for a connection between Location Service (2) and the
Transmitter.

One can imagine designing repair strategies for each of these
events in isolation, but as the number of possible changes
increases it becomes increasingly unlikely that the situation
will have been foreseen. Indeed in the worst case nm − 1
repairs must be designed where m is the number of compo-
nents that can change and n is the number of alternatives.

Hence, we would like to avoid pre-programming repair strate-
gies by having the system derive changes itself.

4. APPROACH
We are experimenting with an approach that derives its own
component configurations from reactive plans [8]. In the ini-
tial planning step, a plan is automatically generated from
high-level user goals. This plan describes the behaviour of
the system in terms of actions which lead from an initial
state to a goal state, without explicit reference to architec-
tural concerns. In particular, there is no correspondence be-
tween plan states and configurations. The plan is then sub-
mitted to an architecture manager which determines which
components are necessary to perform the plan, and instanti-
ates the configuration. The plan interpreter iterates through
the rules of the plan to completion, unless a situation is de-
tected which requires reconfiguration or replanning. A brief
introduction to reactive plans and their generation is neces-
sary before discussing the derivation of component configu-
rations.

16

4.1 Generating Reactive Plans
A linear STRIPS-style plan [8] specifies a sequence of actions
that are intended to lead from an initial state to a goal
state. However, such a plan is not well suited to a non-
deterministically changing environment in which a change in
the environment may cause an action to lead to a state other
than that expected at the time the plan was generated. If
this happens, a plan must be regenerated taking into account
the changed environment.

A reactive plan, on the other hand, is a plan that accom-
modates a non-deterministically changing environment by
prescribing an action towards a given goal for each state
from which that goal is reachable. Execution of such a plan
proceeds by determining the current state of the environ-
ment, selecting the action prescribed for that state by the
plan, performing it and then determining the new state etc.
By covering all states from which the goal is reachable, it
does not matter if the new state following an action is the
“expected” state or not. As long as the goal is reachable
from this state, execution of the plan may continue.

In our system, reactive plans are generated using planning-
as-model-checking technology [6]. A domain description is
specified in SMV [13], comprising state predicates and pre-
and postcondition constraints on the actions that may be
performed. This description is submitted to the Model-
Based Planner tool (MBP) [12] along with a specification
of the initial state I and a goal G, typically expressed in
CTL [2].

The output of MBP is a set of condition-action rules such
that each condition corresponds to a state in the environ-
ment from which the goal is achievable and each action is an
action that may be performed in that state. Formally, this
reactive plan is a partial map

P : S → A

where S is the set of states in the state space described by
the predicates of the domain description and A is the set of
actions specified in the domain description. A state s ∈ S is
represented as a set of predicates {P1, P2, . . . , Pn}.

If a reactive plan P is considered alongside the domain de-
scription from which it was generated, it can be represented
as a labelled transition system

PLTS = {I, SP , SG, T}
where I is the initial state submitted to the planning tool,
SP is the domain of P , SG ⊆ SP is the set of states that
satisfy G, and T ⊆ SP × A × SP is a transition relation
with transitions labelled with actions in A. T is constructed
from P and the domain description so that for all states s
in the domain of P there is a state s′ such that (s, a, s′) ∈ T
if and only if a = P (s). In other words, the transition
relation simply picks up the information about what state an
action may lead to—which is missing from the information
provided by a reactive plan alone—from the postcondition
specifications of actions in the domain description.

As a small example, Figure 4 shows a reactive plan for the
given domain description. LTS A represents a domain de-
scription with start state in the top left corner and goal state

A B

Figure 4: Example plan (B) generated from a do-
main description (A).

...
VAR
object1_location : {loc1, loc2};
rover1_location : {loc1, loc2};
rover1_has : {object1, 0};
rover1_no_power : boolean;
...
INIT
object1_location=loc1 &
rover1_location=loc2 &
rover1_no_power=0 &
rover1_has=0
...
action: {

rover1_replenish_battery,
rover1_move_to_loc1,
rover1_move_to_loc2,
rover1_pickup,
rover1_drop,

};
...
ASSIGN next(rover1_location) :=
case
(action = rover1_move_to_loc1) : loc1;
(action = rover1_move_to_loc2) : loc2;
1 : rover1_location;
esac;
...
ASSIGN next(rover1_has) :=
case
(action = rover1_pickup)

& rover1_location=object1_location : object1;
(action = rover1_drop) : 0;
1 : rover1_has;
esac;
...
-- etc

Figure 5: Example domain description fragment in-
put to MBP.

17

-- case 1 (satisfies goal)
(case (and (= object1_location loc2))

(done))
...
-- case i
(case (and

(= object1_location loc1)
(= rover1_location loc1)
(= rover1_has object1)
(= rover1_no_power 0))

(action rover1_move_to_loc2))
...
-- case j
(case (and

(= object1_location loc1)
(= rover1_location loc1)
(= rover1_has item1)
(= rover1_no_power 1)

(action rover1_replenish_battery))
...
-- case k
(case (and

(= object1_location loc1)
(= rover1_location loc1)
(= rover1_has 0)
(= object1_no_power 0))

(action object2_pickup))
...
-- etc

Figure 6: Example reactive plan fragment output by
MBP.

in black. LTS B represents a reactive plan which includes
all states from which the goal is reachable. Where there are
multiple paths to the goal, the shortest is selected. Paths
which do not lead to the goal are pruned.

An example domain description, as submitted to MBP, is
partially shown in Figure 5. The syntax here is that for
the SMV model checker (the back end to MBP). However,
the relevant elements of this example are on the whole self-
explanatory. The section headed VAR list the predicates
used to describe the state space. For instance, predicates
include object1 location, which specifies whether object1 is
in loc1 or loc2. It should be noted that the locations in
a domain description are symbolic and are mapped to real
locations when the system executes. The section headed
INIT defines an initial state. Next, the domain description
lists the performable actions. Actions are specified through
SMV ASSIGN blocks, which describe the transitions be-
tween states that the system can make. Each block take the
form of a case statement. To the left of the colon in each
case is the precondition (for technical reasons, actions are
treated as part of the precondition) and to the right is the
corresponding postcondition. For instance, in the first case
of the block describing how the predicate rover1 location can
evolve, the postcondition for the action rover1 move to loc1
is rover1 location=loc1.

This domain description is submitted to MBP along with
a goal. Consider, for example, the specified objective for a
rover rover1 to fetch an object object1 from location loc1
and bring it to loc2. This objective can be captured by a
goal stating that in some future state the location of object1

S2S1

S1’ S2’

Figure 7: Refinement of an action between states S1
and S2 by a subplan.

is loc2. In CTL we capture this as follows:

EFobject1 location=loc2

(where EF may be read “there exists some future state such
that ..”). Submitting the domain description shown in Fig-
ure 5 together with this goal to MBP, we get the plan par-
tially shown in Figure 6. Each case of the plan describes a
state from which the goal is reachable and maps that state
to an action from the domain description.

As with all model-checking technology, the size of the state
space—here determined by the number of predicates in the
domain description—becomes a problem in all but the most
trivial cases. To address this issue, we organise our domain
description into a hierarchy of partial descriptions, generat-
ing subplans for each. In this way, each subplan addresses
only a part of the overall goal and need only be generated
from a partial description of the domain, reducing the num-
ber of predicates–and thus size of state space—in each plan
generation.

A detailed description of this process is beyond the scope of
this paper. However, the core idea is that some of the actions
specified in the domain description are “primitive actions”
and others are “compound actions”. Primitive actions can
be performed directly by the system, i.e., it is assumed that
they are directly implemented by some component. Com-
pound actions, on the other hand, are abstractions of more
complex tasks that require planning. As such, when a plan
is being executed and a compound action is encountered,
a subplan is generated on the fly for the compound action.
The plan is generated with the current state as initial state,
postcondition of the compound action as the goal, and a
reduced domain description relevant to the performance of
the compound action.

Formally, the LTS representing the subplan generated for
a compound action is a refinement of the transition repre-
senting that action in the original plan. This relationship
is depicted in Figure 7, where the transition between states
S1 and S2 at the top is refined by the LTS below. The set

18

LTS1

LTS2

LTS3

A1

A2

LTS4

A3

Plan Tree

Figure 8: An example plan hierarchy

of predicates describing S1’ (resp. S2’) implies the set of
predicates describing S1 (resp. S2). The dotted arrow and
box depict this refinement relationship and will continue to
do so in the sequel.

When executing a hierarchical plan of this kind, the system
will request the generation of a subplan when a compound
action is encountered, execute this subplan, and then jump
back to and continue executing the original plan. As such,
plan execution can be thought of as resembling depth first
traversal of a tree. This is illustrated in Figure 8, which
shows an example subtree in the planning hierarchy. It is
assumed that the LTS containing actions A1 and A2 is itself
a refinement of some transition above it in the plan tree.
Here, it can be seen that action A1 has at least two possi-
ble refinements, LTS1 and LTS2. Though both are shown
here, during execution the planning tool will pick only one
alternative at a time and execution will jump to whatever
subplan is first chosen. Only if this subplan fails will a re-
quest for an alternative be issued by the system. In this
case, traversal of the tree would backtrack and execution
will jump to LTS2, which in turn contains an action A3
which is refined by LTS4. Again, the dotted lines and boxes
depict refinement relationships.

It is possible for execution of a reactive plan to go into a
cycle and never reach a goal state. If execution falls into
a cycle, we trigger a timeout and have the system request

C1

A1

A2

A3

A4

C2

C4

C5C6

C3

Figure 9: Example component configuration deter-
mined by actions of a plan

a different plan. The new plan will typically be generated
without the action that caused the cycle, since it is likely
that the environment has changed in such a way that the
actual effect of this action is no longer accurately modelled
by the current domain description.

The new plan will be generated from the point in the hier-
archy that the previous plan had been, i.e., unless the plans
are at the root of the hierarchy, both new and old plans
should be alternative refinements of the same transition in
a common parent plan. If no new plan can be generated
with the current domain description then the system must
backtrack and request a new plan from a node further up
the tree.

4.2 Deriving Component Configurations
Since reactive plans are composed of condition-action rules,
we are able to use the actions of the plan to derive the func-
tional requirements of the system’s architecture. For exam-
ple, the presence of a move operation in the plan clearly
indicates that the configuration must include a component
which provides a suitable implementation of this action. We
assume that the component responsible for the architectural
change (which we call the architecture manager) is aware of
the components which provide implementations of actions.
For the purposes of deriving component configurations, we
do not regard the manager as part of the architecture. Ac-
tions may be associated with particular interface types, and
the manager selects components which implement the rele-
vant interface. The mapping from actions to interfaces need
not be fixed, and could be extended as new components be-
come available.

Given the set of components required for their functionality,
the manager can then construct a complete configuration by
considering the required interfaces of those components. For
example, the component implementing the move operation
may require motor and sensor controllers, or a component
which provides mapping information. These must also be
instantiated and connected to the relevant ports of the ac-
tion component. In the case where a component is already
instantiated, it should be reused. Figure 9 shows a reactive
plan and a corresponding architecture. Actions A1 and A3
may be implemented by C1 and actions A2 and A4 may be
implemented by C2. The remaining components are found
by considering the requirements of C1 and C2.

It may be the case that multiple components provide the
same functionality, but have differing non-functional proper-
ties. For example, some implementations may require more
CPU attention or provide unreliable results. We hope to
develop a mechanism whereby the “best” alternative can be

19

Figure 10: Overview of dynamic changes driven
by automatic generation of plans. The two sub-
plans represent alternative refinements of an action
in the original LTS. Different component configura-
tions are derived from each alternative.

selected in a given situation.

There is a trade-off to be made in terms of the number of
actions a particular component can perform against how of-
ten the architecture needs to change. Clearly this depends
on particular component implementations and the level of
abstraction the plan designer has built into the plans. In
our early implementation, components were selected and
changed at every step in the plan on the assumption that
a component implements only one action. However, this is
clearly detrimental to efficiency. Hence, we are moving to-
ward a system whereby a particular plan can be scanned
before starting, to construct a configuration that contains
components which will implement all the required actions.
This is a more natural approach since the architecture is ex-
pected to be able to perform the task without changing in
the absence of problems.

The exception to this principle is that the architecture may
be required to change when a particular abstract action is
decomposed into a subplan, since the (concrete) actions con-
tained in the subplan were not known when the parent plan
was generated. Furthermore, an abstract action may be de-
composed into different subplans in different circumstances.
This leads us to the diagram in Figure 10 wherein each plan
and subplan has an associated architecture. The top-level
plan contains an action which has two possible refinements,
resulting in two potential configurations.

We do not employ a verification mechanism for configura-
tions because we regard them as correct in the sense that
they must at least provide sufficient functionality to perform
the actions of the current plan. Furthermore it is reasonable
to assume that the mapping between concrete actions in the
plan and their implementations is correct. In other words,

the two following constraints are relevant:

∀a ∈ plan.∃i ∈ arch.(a ∈ i) ∧ ∃c ∈ arch.prov(c, i)

∀c, i ∈ arch.req(c, i) −→ ∃c2 ∈ arch.prov(c2, i)

Where arch denotes the set of components and interfaces in
the current configuration, plan denotes the current plan (re-
duced to a set of actions) and prov(c, i) and req(c, i) denote
that component c provides (respectively requires) interface
i. An interface i is regarded as containing a set of (names
of) actions a. The first constraint states that for all actions,
there should be a component for the corresponding inter-
face, and the second constraint is simply that all component
requirements are satisfied. We do not (at this point) em-
ploy further structural, compatibility, or performance con-
straints.

The mechanisms described so far account for the first con-
figuration change required in the example of Section 3. The
Fetch Controller provides the functionality needed for ac-
tions in the fetch plan (Figure 6), and the other components
in the initial configuration are requirements of the Fetch
Controller. The plan checks the rover1 no power predi-
cate which causes a rover1 replenish battery action. When
this action is encountered, a subplan is generated which en-
ables a rescue beacon which cycles, transmitting the cur-
rent location, until the battery is refuelled. As discussed
in the previous section, this subplan is a refinement of the
rover1 replenish battery action. In this case, the Beacon
component is selected because it provides that functional-
ity, and the Location Service (1) and the Transmitter are
retained as dependencies of the Beacon, giving Figure 2.

The second case requires the system to cope with entirely
unexpected faults. Our approach is to allow the manager
to request replanning without using the actions associated
with the component that has failed (detected by some suit-
able mechanism). Of course, planning comes at some cost, so
there is a trade-off to be made between that and allowing the
manager to perform low-level changes independently, such as
substituting a component which implements the same inter-
faces for the one which failed. It is this latter case which is
most appropriate to arrive at Figure 3. The Beacon merely
cares about getting location information, and if an alterna-
tive implementation is available, it should be used without
replanning.

Our implementation of this approach is built upon the Back-
bone system [9] which allows us to construct arbitrary con-
figurations of components, which are implemented as Java
classes. A number of problem domains have been described
and executed on a set of Koala robots running a JVM.

5. DISCUSSION AND FUTURE WORK
We have described an initial scheme which addresses the
problem of arbitrary dynamic reconfiguration. Reconfigura-
tion is driven by a plan which dictates what functionality
the current configuration must provide. Component selec-
tion works within the limitations of the current environment
which may prevent certain components from being used.

Currently, non-functional and structural constraints on the
architecture are not supported. For example, one can imag-

20

ine a situation where the autonomous system must avoid us-
ing components which result in the hardware drawing large
amount of power, or where components must be distributed
in a particular manner to meet some load balancing con-
straint.

It remains to be seen whether such constraints can be com-
bined with the reactive plan which at present only prescribes
the system’s behaviour; the architecture is a consequence of
that.

Indeed, another approach would be to employ an explicit
architecture plan [1], or include reconfiguration operations
within the behavioural plan. One disadvantage of following
this path is that the state space for planning becomes larger,
with the concomitant reduction in performance.

Other issues we seek to address are those regarding the
safety of the adaptation procedure. Clearly if some com-
ponents are to be replaced, then their dependants must not
initiate communications with them for the duration of the
change. This is the notion of quiescence [7]. It is especially
important for an autonomous system to be able to keep the
unaffected parts of the architecture running while reconfig-
uration is taking place. For the same reasons, components
may require special shut down procedures before they are
removed from the architecture. For example, any motor
control system must ensure those motors are halted before
control is released.

6. ACKNOWLEDGEMENTS
The work reported in this paper was funded by the Systems
Engineering for Autonomous Systems (SEAS) Defence Tech-
nology Centre established by the UK Ministry of Defence.

7. REFERENCES
[1] N. Arshad, D. Heimbigner, and A. L. Wolf.

Deployment and dynamic reconfiguration planning for
distributed software systems. Software Quality
Journal, 2003.

[2] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, 1999.

[3] E. M. Dashofy, A. van der Hoek, and R. N. Taylor.
Towards architecture-based self-healing systems. In
WOSS ’02: Proceedings of the first workshop on
Self-healing systems, pages 21–26, New York, NY,
USA, 2002. ACM Press.

[4] D. Garlan, R. Allen, and J. Ockerbloom. Exploiting
style in architectural design environments. In
SIGSOFT ’94: Proceedings of the 2nd ACM
SIGSOFT symposium on Foundations of software
engineering, pages 175–188, New York, NY, USA,
1994. ACM Press.

[5] D. Garlan and B. Schmerl. Model-based adaptation
for self-healing systems. In WOSS ’02: Proceedings of
the first workshop on Self-healing systems, pages
27–32, New York, NY, USA, 2002. ACM Press.

[6] F. Giunchiglia and P. Traverso. Planning as Model
Checking. 5th European Conference on Planning, 1999.

[7] J. Kramer and J. Magee. The evolving philosophers
problem: Dynamic change management. IEEE Trans.
Softw. Eng., 16(11):1293–1306, 1990.

[8] Malik Ghallib, Dana Nau, Paolo Traverso. Automated
Planning: Theory and Practice. Morgan Kaufman,
2005.

[9] A. McVeigh, J. Kramer, and J. Magee. Using
resemblance to support component reuse and
evolution. In SAVCBS ’06: Proceedings of the 2006
conference on Specification and verification of
component-based systems, pages 49–56, New York,
NY, USA, 2006. ACM Press.

[10] P. Oreizy, M. M. Gorlick, R. N. Taylor,
D. Heimbigner, G. Johnson, N. Medvidovic,
A. Quilici, D. S. Rosenblum, and A. L. Wolf. An
architecture-based approach to self-adaptive software.
IEEE Intelligent Systems, 14(3):54–62, 1999.

[11] P. Oreizy, N. Medvidovic, and R. Taylor.
Architecture-based runtime software evolution. In
Proceedings of the 1998 (20th) International
Conference on Software Engineering, pages 177–186,
1998.

[12] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, P.
Traverso. MBP: A Model-Based Planner. Proc. of
IJCAI’01 Workshop on Planning Under Uncertainty
and Incomplete Information, 2001.

[13] P. Bertoli, A. Cimatti, M. Pistore, M. Roveri, P.
Traverso. NuSMV 2: An Open Source Tool for
Symbolic Model Checking. Proc. of International
Conference on Computer-Aided Verification, 2002.

[14] J. E. Robbins, D. M. Hilbert, and D. F. Redmiles.
Using critics to analyze evolving architectures. In
Joint proceedings of the second international software
architecture workshop (ISAW-2) and international
workshop on multiple perspectives in software
development (Viewpoints ’96) on SIGSOFT ’96
workshops, pages 90–93, New York, NY, USA, 1996.
ACM Press.

[15] J. Zhang and B. Cheng. Modular model checking of
dynamically adaptive programs. Technical report,
Michigan State University, 2006.

21

22

Reachability Analysis for Annotated Code

Mikoláš Janota
School of Computer Science

and Informatics
University College Dublin
Belfield, Dublin 4, Ireland

mikolas.janota@ucd.ie

Radu Grigore
School of Computer Science

and Informatics
University College Dublin
Belfield, Dublin 4, Ireland

Michał Moskal
Institute of Computer Science

University of Wrocław
ul. Joliot-Curie 15

50-383 Wrocław, Poland
mjm@ii.uni.wroc.pl

ABSTRACT
Well-specified programs enable code reuse and therefore
techniques that help programmers to annotate code cor-
rectly are valuable. We devised an automated analysis that
detects unreachable code in the presence of code annota-
tions. We implemented it as an enhancement of the ex-
tended static checker ESC/Java2 where it serves as a check
of coherency of specifications and code. In this article we
define the notion of semantic unreachability, describe an al-
gorithm for checking it and demonstrate on a case study that
it detects a class of errors previously undetected, as well as
describe different scenarios of these errors.

Categories and Subject Descriptors
D.2.1 [Requirements/Specifications]: Tools; D.2.4
[Software/Program Verification]: Formal Methods

General Terms
Verification

Keywords
JML, ESC/Java2

1. INTRODUCTION
Program annotations are logic specifications embedded in

the actual program code [16]. They enable programmers to
express the intended functionality. Variants of a weakest
precondition or a strongest postcondition calculus are used
to statically determine whether a program code conforms to
its annotations. The extended static checker ESC/Java2 [18]
is a tool that attempts to verify annotated Java programs
following this approach (Section 2.1).

Empirical evidence shows that automated sanity check-
ing of annotations is desirable [6]. In particular, Leav-
ens et al. [22] propose as one of the challenges for software
verification the following: “Provide assistance in specifying

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2007), September 3-4, 2007, Cavtat
near Dubrovnik, Croatia.
Copyright 2007 ACM ISBN 978-1-59593-721-6/07/0009 ...$5.00.

libraries of classes.” In this article we focus on a particular
sanity check — code reachability. Code is unreachable if it is
not executed for any possible input. Unreachable code, also
known as dead code, is often a bug. For example, the Java
compiler tries to prevent bugs by disallowing code following
a return statement.

/*@ requires x > 10;
@ ensures
@ \result == 1;*/

int withPre(int x) {
if (x < 10) {
// not checked
return 2;

}
return 1;
}

/*@ requires i >= 10;
@ ensures
@ \result == i;
@ ensures
@ \result < 10;
@ modifies
@ \nothing;*/

int libraryFunc (int i);

int useLibraryFunc() {
int r = libraryFunc (11);
return 1/0;
}

Figure 1: Examples of code that is unreachable once
the annotations are taken into account.

Annotations provide extra information about the pro-
gram, so the notion of code unreachability needs to be ex-
tended. Consider the examples in Figure 1. The precondi-
tion of the method withPre, expressed by the requires clause,
restricts the value of the parameter x to be greater than 10
and the postcondition, expressed by the ensures clause, re-
stricts the return value to be always 1. The return statement
in the “then” branch of the if statement appears to be vio-
lating the postcondition. Nevertheless, because of the pre-
condition, this code conforms to its annotation and a static
checker like ESC/Java2 will not produce a warning. The
fact that a method contains code that is unreachable from
the point of the specification is likely to be a bug, either in
the specification or in the program code.

The method libraryFunc illustrates a method for which
we do not have an implementation (for example because the
implementation is proprietary) and we need to rely on its
specification. In ESC/Java2 all the methods in the stan-
dard Java API are treated in this way. Unfortunately, the
specification is inconsistent as it requires the return value
to be at least 10 and at the same time to be less than 10.
The repercussions of this inconsistency are demonstrated by
the useLibraryFunc. The return statement in this method
seems wrong and yet the extended static checker does not
give a warning. The reason for this behavior of the checker

23

is less obvious than in the previous example and we will ex-
plain it in more detail later. Intuitively, as the specification
of libraryFunc is inconsistent, from the point of view of the
checker the call to that function never terminates and there-
fore the checker ‘believes’ that the return statement is never
executed.

Hence, the problem we address in this article is how to
detect unreachable code in the presence of annotations and
how we can benefit from such analysis in extended static
checking. More specifically, the contributions of the arti-
cle are as follows: (1) we introduce the notion unreacha-
bility for annotated code, (2) we identify several types of
unreachable code categorized by their root cause, (3) we
present an efficient algorithm for detecting unreachable
code, (4) we present an evaluation of the analysis on an ex-
isting code base, and (5) an implementation, which is part
of ESC/Java21.

2. BACKGROUND
Programmers reduce development time dramatically by

reusing components that are well documented [20]. In the
Java world this is achieved by using javadoc, which sup-
ports a form of structured documentation [15, 19]. The Java
Modeling Language [21] (JML) was designed to allow more
formal documentation. Tools can statically check if code
and JML-annotations agree. When static checking fails (for
example because the code is too complex), the annotations
can be compiled into runtime checks. Moreover, unit tests
can be generated automatically [5].

The leading static checker for JML-annotated Java is
ESC/Java2. Spec# has a similar architecture and works
for annotated C# programs [2].

2.1 ESC/Java2 Architecture
JML annotations are embedded in Java code as a spe-

cial form of comments. They are used to specify the be-
havior of classes and methods in terms of preconditions,
postconditions, invariants, and other higher-level constructs.
ESC/Java2 checks if code and annotations agree and if there
are no runtime exceptions. Methods are checked one at a
time, ignoring other methods’ implementation and relying
on their specification.

For a given JML-annotated method, ESC/Java2 gener-
ates a formula, called a verification condition (VC), us-
ing a strongest postcondition calculus. Further, it tries to
prove the verification condition by using an automated the-
orem prover. If the VC is not proven valid, the checker
produces warnings derived from the counterexamples pro-
vided by the prover. These warnings describe how the pro-
gram may violate its JML specification, or in what way the
specified program might cause runtime exceptions (such as
NullPointerException).

ESC/Java2 performs the translation of JML-annotated
Java code to a VC in several stages. This process is schemat-
ically depicted in Figure 2.

Given a JML-annotated Java program, the front-end pro-
duces an abstract syntax tree (AST), which is translated
into an intermediate representation called guarded com-
mands (GC) [25]; this representation captures both the Java
code and its JML annotation. The components that infer in-

1http://kindsoftware.com/products/opensource/
ESCJava2/cvs.html

Java code

AST

GC

desugared GC

DSA

RA queries

unreachable code

VC

bugs

Java parsing

GC generation

loop desugaring

passivization

reachability
analysis

proving

VC generation

proving

invariant
generation

Figure 2: ESC/Java2 architecture

variants [17, 13] work on this representation. Subsequently,
loops are translated into structurally simpler commands by
a process called loop desugaring. ESC/Java2 supports two
modes of loop desugaring: One mode is called loop unrolling
and does not require loop invariants, but it is unsound (see
Section 4.3 for more details); the other mode is called safe
desugaring and treats loops in accord with Hoare logic [16],
but requires loop invariants.

There is an obvious tradeoff between loop unrolling and
safe desugaring. The loop unrolling mode may miss some er-
rors as it does not reason about all possible execution traces
of the program. The safe loop desugaring does not suffer
from this deficiency but it leads to spurious warnings if a
strong-enough loop invariant is not provided. Loop invariant
generation techniques are used to infer invariants automati-
cally and hence alleviate the annotation burden imposed on
the user [10, 13, 23, 17]. Nevertheless, these techniques are
computationally expensive and they do not always succeed
in finding the proper invariant. In ESC/Java2 loop unrolling
is the default loop desugaring mode, since the alternative is
not yet practical.

After loop desugaring, the desugared GC is translated into
an assignment-free form, or passive form, called dynamic
single assignment (DSA). This is done by ensuring that each
variable is assigned-to at most once, which often requires
additional variables, and by replacing assignments with as-
sumptions. The main purpose of this particular transforma-
tion is to avoid the exponential explosion in the size of the
generated VC (see [14] for details).

After the DSA form is generated, the VC is generated
from it and sent to a theorem prover. Finally, the output of
the prover is processed to provide feedback to the user.

The process described above represents the skeleton of
ESC/Java2 and additional analyses can be ‘hooked’ in this
architecture to facilitate the application of the tool. This is
the case of the reachability analysis presented in this paper,
which is applied on the DSA representation and uses a the-
orem prover. Since this particular analysis slows down the

24

http://kindsoftware.com/products/opensource/ESCJava2/cvs.html
http://kindsoftware.com/products/opensource/ESCJava2/cvs.html

C N(P, C) W(P, C)
skip P false
assume f f ∧ P false
assert f f ∧ P P ∧ ¬f
C1 8 C2 N(P, C1) ∨N(P, C2) W(P, C1) ∨W(P, C2)
C1; C2 N(N(P, C1), C2) W(P, C1) ∨W(N(P, C1), C2)

Figure 3: Strongest postcondition transformers.

checker, it is disabled by default and can be enabled by the
switch -era.

2.2 VC Generation from DSA
As we explained in the previous section, DSA is the input

of the reachability analysis and thus it deserves special at-
tention. Hence, in this section we formally define the DSA
language and how a VC is obtained from a DSA program.

Before we proceed, we make several assumptions. In the
rest of the paper we assume a first-order logic language for
formulas and a theory T for the context of validity. We
write T |= f to denote that f is valid in the context of the
theory T . The theory T expresses the background predicate,
a (partial) axiomatization of the Java semantics.

We use f to denote a predicate represented as a logic for-
mula where the free variables correspond to the predicate’s
arguments. In the following, by DSA we understand the
language defined by the following grammar:

cmd := skip | assume f | assert f | cmd 8 cmd | cmd; cmd

Additionally, we will use the following shorthands:

if C then B1 else B2 ≡ (assumeC; B1) 8 (assume¬C; B2)

if C then B ≡ if C then B else skip

Informally, the purpose of the assume f command is that,
once the execution reaches this command, f can be as-
sumed; if an execution trace reaches this command and f
does not hold, that execution trace blocks. The purpose of
the assert f command is that, once the execution reaches
this command, f is checked and if it is invalid, an error oc-
curs. The command C1 8 C2 represents a nondeterministic
choice between the two commands and the command C1; C2

represents a sequence.
To formally define the semantics of DSA, we introduce two

strongest postcondition predicate transformers — N and W.
The predicate N propagates the normal behavior and the
predicate W propagates the wrong behavior. Their semantics
are captured by the following definition.

Definition 1. For the predicate transformers N and W de-
fined as in Figure 3, we define the following:

1. For a precondition P and a command C, we say that
C goes wrong if and only if W(P, C) is satisfiable, i.e.,

T 2 ¬W(P, C)

2. The verification condition for a program C is the fol-
lowing formula:

¬W(true, C)

3. The program C conforms to its specification if and only
if its verification condition is valid:

T |= ¬W(true, C)

Intuitively, the verification conditions expresses that no
possible execution breaks any of the assertions.

An important property of this semantics is that a com-
mand with an unsatisfiable precondition does not go wrong.

Observation 1. If T |= ¬P , then T |= ¬W(P, C), for
all predicates P and all commands C.

This observation is not surprising since an unsatisfiable
precondition states that the command in question should
never be run according to its specification. What is less
obvious is that this fact also comes into effect for a subcom-
mand in a sequence of commands. For example, consider
the sequence C1; (C2; C3). We can say that the postcon-
dition of C1 is a precondition of C2; C3. In particular, if
N(true, C1) is unsatisfiable, the whole sequence cannot go
wrong because of C2 or C3. In other words, C2 and C3 are
not checked. In such situations, an analysis relying on a
strongest postcondition calculus does not provide any useful
information about these subcommands. Moreover, such a
scenario is most likely unintentional.

3. DEFINITION OF UNREACHABILITY
Informally, a command is unreachable if all the execution

traces leading to it have an unsatisfiable normal behavior.
To express this idea formally, this section defines the notion
of unreachability in the context of the normal behavior (the
predicate transformer N) and an acyclic control flow graph.
Let C denote the subset of the DSA language consisting of
the commands skip, assume f , and assert f .

Definition 2. A control flow graph is a tuple
〈V, E, I, O,L〉, where V is the set of nodes, E ⊆ V × V is
the set of edges, I ⊆ V is the set of entry nodes and O ⊆ V
is the set of exit nodes. Nodes are labeled with commands
by the function L : V → C. Additionally, we require that
entry nodes do not have parents, exit nodes do not have
children, the graph is acyclic, and the set of nodes is finite.

The DSA maps to a subclass of control flow graphs, called
series–parallel graphs [27], constructed as follows.

1. If C is one of skip, assume f or assert f , then it maps
to 〈{n}, {}, {n}, {n}, [n 7→ C]〉, where n is a fresh node

2. If C1 maps to 〈V1, E1, I1, O1,L1〉 and C2 maps to
〈V2, E2, I2, O2,L2〉 then,

(a) C1; C2 maps to

〈V1 ∪ V2, E1 ∪ E2 ∪ (O1 × I2), I1, O2,L1 ∪ L2〉

(b) and C1 8 C2 maps to

〈V1 ∪ V2, E1 ∪ E2, I1 ∪ I2, O1 ∪O2,L1 ∪ L2〉

25

Once we have the control flow graph, the definition of
unreachability is straight forward.

Definition 3. We define the parents and the precondition
of a node in a control flow graph G ≡ 〈V, E, I, O,L〉 as
follows:

parentsG(n) ≡ {p ∈ V | 〈p, n〉 ∈ E}
preG(n) ≡

true, if n ∈ IW
p∈parentsG(n) N(preG(p),L(p)), otherwise

Definition 4. Node n is semantically unreachable in a
control flow graph G if and only if T |= ¬ preG(n).

Whenever we use the term ‘unreachable’ (and ‘reachable’)
we refer to semantic unreachability as defined above, not to
the graph-theoretic notion.

3.1 How Unreachability Corresponds to DSA
To better understand the definition of semantic unreach-

ability (Definition 4), we explore how the DSA command
corresponds to its control flow graph. First observe that the
DSA semantics (see Figure 3) has the following properties,
where B is either N or W.

B(P, (C1 8 C2); D) = B(P, (C1; D) 8 (C2; D)) (1)

B(P, D; (C1 8 C2)) = B(P, (D; C1) 8 (D; C2)) (2)

B(P, C1 8 (C2 8 C3)) = B(P, (C1 8 C2) 8 C3) (3)

B(P, C1; (C2; C3)) = B(P, (C1; C2); C3) (4)

By applying these equalities, any command can be rewrit-
ten into the choice between all its possible execution traces:

(C1
1 ; C1

2 ; . . . ; C1
l1) 8 . . . 8(Cm

1 ; Cm
2 ; . . . ; Cm

lm)

where each Cj
i is neither the choice nor the sequence, while

preserving the behaviors’ semantics. The paths in the graph
obtained from the process described above correspond to
these execution traces. For both the normal and the wrong
behavior, each behavior is a disjunct of the behaviors of these
traces (see Figure 3); in particular the whole command goes
wrong if and only if at least one of its traces goes wrong.

Let us consider a node n labeled with the command C.
Then each of the paths going through n correspond to an
execution trace of the form Cpre; C; Cpost, where Cpre is a
prefix of the pertaining execution trace. Let Pre be the set
of all these prefixes, then the function preG(n) (see Defi-
nition 3) returns the disjunct of normal behaviors of the
prefixes, i.e.,

W
Cp∈Pre N(true, Cp).

Hence, Definition 4 captures our intuition that a command
is unreachable if all the paths leading to it have an unsatisfi-
able normal behavior. In particular, if C is an assertion, the
whole program cannot go wrong because of that assertion if
it is unreachable as none of the traces leading to C can go
wrong because of C (see Observation 1).

4. SCENARIOS OF
UNREACHABLE CODE

In this section we discuss typical scenarios that result in
unreachable code. In Section 6 we present how often these
scenarios appear in practice. We start by showing several
typical cases of discrepancies in the code or specifications.
The last two subsections discuss unreachable code in the
presence of loops.

4.1 Incoherence of Specification and Code
We present three kinds of unreachable code in Figure 4.

The unreachableCode method contains unreachable code in
the classic sense: the division by zero is not checked. It is
most likely a bug in the user code. More subtle problems
arise when we take into account annotations as well, as in the
withPre method from Figure 1. An extreme example of an
inconsistency in specifications is the method badSpec which
has an unsatisfiable precondition. Such methods always pass
extended static checking without reachability analysis.

A common case of unreachable code is related to the use of
JML’s modifies clause. Consider the methods modA, which
promises to modify only a, and modAB, which can also mod-
ify b. Therefore, modAB should not be called from modA.
ESC/Java2 models this by inserting an assert false before
the call to modAB. This causes the rest of the assertions to
be unreachable. This scenario is a specific instance of a gen-
eral issue where an unsatisfiable asserted expression gener-
ates one warning and hides other warnings. (Assertions that
are merely invalid but satisfiable do not hide other checks.)

In the introduction we have already mentioned that spec-
ifications of methods for which an implementation is not
available are a common source of inconsistencies. Consider
again the methods libraryFunc and useLibraryFunc in Fig-
ure 1. The body of the method useLibraryFunc is translated
to DSA as follows:

C1: assert 11 ≥ 10;
C2: assume r1 = 11 ∧ r1 < 10;
C3: assert 0 6= 0;
C4: assumeRES = 1/0

Here, the command C1 represents the check for the pre-
condition of libraryFunc and C2 represents its postcondition.
This is a general approach of translating method calls, pre-
conditions are translated as asserts and postconditions as as-
sumes. If the called method can modify the program state,
the variables whose values may change need to be reset. The
technique for reseting values of variables is called havocking
and we will briefly describe it in Section 4.2. Neverthe-
less, in this particular case the modifies \nothing; clause in
the specification of libraryFunc guarantees that it does not
modify anything. The command C3 checks that the divi-
sion by 0 will not occur and the command C4 stores the
result of the division in a special variable RES modeling
the method’s return value. Apparently, the normal behav-
ior (11 ≥ 10) ∧ (r1 = 11 ∧ r1 < 10) of C1; C2 is unsatisfi-
able. Recalling Definition 4, the commands C3 and C4 are
unreachable. Hence, the method uselibraryFunc cannot go
wrong because of the assertion C3, i.e., it is not checked.

Because ESC/Java2 is a modular checker, method calls
are always checked with respect to the specification of the
called method and its implementation is ignored. This
means that the situation described above would occur even if
we did have an implementation for the method libraryFunc .
If we had the implementation, however, we would uncover
that the postcondition is not satisfiable during the check of
that implementation (as an unsatisfiable postcondition can-
not be established). See [6] for a detailed discussion about
the pitfalls of specifications without implementation.

4.2 Safe Loop Desugaring
As we have described in Section 2, ESC/Java2 supports

two modes of loop desugaring. In this section we discuss

26

//@ requires x > 0;
//@ requires x < 0;
int badSpec(int x, int y) {

return 1/0;
}

//@ modifies a, b;
void modAB() { ... }

int unreachableCode(int x) {
if (x > 10)

if (x < 5)
return 1/0;

return 0;
}

//@ modifies a;
int modA() {

modAB();
return 1/0;

}

Figure 4: Examples of different types of unreachable code.

what information the reachability analysis provides in the
safe desugaring mode. Please recall that the loop safe mech-
anism relies on loop invariants.

Since the reachability analysis does not depend on the way
loops are desugared, we do not provide full account of this
process. We illustrate the behavior on examples instead.
Consider the following method where the user provided the
invariant i ≥ 5:

//@ requires i >= 5;
void infiniteLoop (int i) {
//@ loop_invariant i >= 5;
while (i >= 0) i = 5;
//@ assert false;

}
In the loop safe mode this method is desugared as follows:

C1: assume i0 ≥ 5;
C2: assert i0 ≥ 5;
C3: assume i1 = i′;
C4: assume i1 ≥ 5;
C5: ((assume i1 ≥ 0;assume i2 = 5;

assert i2 ≥ 5;assume false)
8(assume¬(i1 ≥ 0));

C6: assert false

The command C1 represents the precondition and C2

checks for the validity of the loop invariant before the loop.
The command C3 resets the value of i to a fresh value. This
is called havocking and it models the fact that for an arbi-
trary iteration we do not know anything about the variables
modified in the loop body except for what is in the loop in-
variant. In other words, havocking discards the information
about these variables that was available before the loop. The
command C4 corresponds to the fact that the loop invariant
holds before any iteration (knowing that it was established
before the loop). The command C5 represents a choice be-
tween termination of the loop and the loop body. More
precisely, the left branch of the choice command models an
arbitrary iteration of the loop, checks the loop invariant af-
ter the iteration, and blocks. The right branch of the choice
command conditions further execution by the negation of
the loop’s guard.

Now we observe that the conjunct of the invariant and
the negation of the guard (i ≥ 5) ∧ ¬(i ≥ 0) is unsatisfi-
able. Therefore, the reachability analysis detects that the
assertion at the end is unreachable.

The example above illustrates that the reachability anal-
ysis discovers that a loop does not terminate but only if the

loop invariant is strong enough. Thus, it would be beneficial
to combine the reachability analysis with techniques for loop
invariant generation [10, 17, 23]. For example, consider the
following excerpt of code:

int sum = 0;
for (int i = 0; i < 10; j++) sum += i;
//@ assert false;

The loop above does not terminate. If a technique for loop
invariant inference is used, the user is likely to expect that
the invariant 0 ≤ i ∧ i ≤ 10 will be automatically inferred.
Instead, however, the invariant i = 0 is inferred and the rest
of the method is unchecked. Hence, the reachability analysis
provides a warning about this bug.

4.3 Loop Unrolling
Apart from the safe desugaring discussed in the previous

section, ESC/Java2 supports an unsound handling of loops
called loop unrolling. This technique is parameterized by
a constant L and reasons only about the scenarios when a
given loop terminates in 0, 1, . . . , L iterations. By following
this approach, ESC/Java does not detect errors that may
only happen when a loop is executed more than L times.
The following schematically describes the result of an un-
rolling for L = 2:

while (C) {
B

}
⇒

if C then B;
if C then B;
if C then assume false;

Execution traces that do not terminate in L iterations
are modeled as blocking in the loop by the command
assume false.

Loop unrolling contains a significant pitfall. If for all pos-
sible inputs the analyzed loop does not terminate within L
iterations, the checker does not reason about the code fol-
lowing the loop.

Consider the following translation of a Java code to its
DSA representation (for L = 2):

int i = 0;
while (i < 10)

i++;
return 1/0;

⇒

C1: if 0 < 10 then
assume i1 = 0 + 1;

C2: if i1 < 10 then
assume i2 = i1 + 1;

C3: if i2 < 10 then
assume false;

C4: assert 0 6= 0;
C5: assumeRES = 1/0

27

We note that T |= ¬N(true, C1; C2; C3). From Observa-
tion 1, it follows that T |= ¬W(N(true, C1; C2; C3), C4; C5).
Therefore, the assertion C4 cannot cause the program to
go wrong since from the point of view of the checker that
assertion is unreachable.

The analysis presented in this article detects that the code
following the loop is not checked. Once the user is informed
about it, he or she may either instruct ESC/Java2 to un-
roll the loop more times or may provide appropriate loop
invariants and instruct ESC/Java2 to use safe desugaring.

5. THE ALGORITHM
We are given a directed acyclic flow graph in which we

want to detect semantically unreachable nodes. An efficient
algorithm is needed to make the analysis usable in practice.
For that we need to (1) compute small prover queries, and
(2) call the prover only a few times. Experimental data
shows that the response time of the automated theorem
prover used in these experiments (Simplify [12]) sharply in-
creases when the size of the query exceeds a certain limit,
which motivates (1). A prover call is on average hundreds
times slower than any reasonable manipulation of the flow
graph, which motivates (2).

The precondition of each node can be computed from Defi-
nition 3. If the implementation is memoized then the precon-
dition will be represented as a directed acyclic graph (DAG)
with n − 1 nodes for ∨ and m nodes for ∧, where n is the
number of nodes and m is the number of edges in the flow
graph. (Note that N(preG(p),L(p)) may introduce at most
one ∧ operator, according to Figure 3.) Unfolding the DAG
naively into a tree to send it to a prover often yields queries
with exponential size. A simple way to obtain precondi-
tions that produce queries with linear size is to introduce an
auxiliary variable for each precondition, and then use it to
express subsequent preconditions. But auxiliaries increase
the query size. We can minimize the size of the formula by
introducing auxiliaries only for subformulas of size S when
they appear in P places and PS − P − S ≥ 2. This trans-
formation reduces the size of the queries dramatically: On
our benchmarks it reduced by 90% the number of queries
that are too big for the prover to process. This transforma-
tion exploits the series–parallel structure of the flow graph.
Hence, the queries are roughly the same size as the normal
behavior computed directly on the DSA as in [14].

The auxiliary variables can be defined using equivalence.`
a ⇔ f(b)

´
∧ g(a, b) (5)

Here b is a set of variables, a is the auxiliary variable, f(b)
is its definition, and g(f(b), b) is the original formula. Now
consider the alternative:`

a ⇒ f(b)
´
∧ g(a, b) (6)

It can be shown that (5) is satisfiable if and only if (6)
is satisfiable, provided that g is monotonic in a, that is,
g(false, b) ⇒ g(true, b). We can make sure that that is
the case by eliminating sharing only below the operators ∧
and ∨. (Note that ∧ and ∨ are the only operators intro-
duced by the N predicate.) In practice, replacing (5) by (6)
reduces the proving time to two thirds.

We say that the nodes of the flow graph that can be
tracked back to Java code are interesting. The details of
how to keep track from where in the Java code a DSA com-
mand comes from are outside the scope of this paper and

can be found elsewhere [24]. For typical Java code there
are less than 20 interesting nodes in most cases. Processing
them takes negligible time, which is why later we shall con-
centrate on minimizing the number of prover queries. We
contract the graph by keeping only the interesting nodes; we
have an edge (u, v) in the contracted graph if in the original
one there was a path from u to v with no other interesting
node. This can be done in O(mn) time with a slight mod-
ification of a DFS-based solution to the transitive closure
problem. The contracted graph has a unique inital node
denoted by i.

The key observation that allows us to have fewer prover
calls than interesting nodes is that the information about
node reachability can be propagated in the flow graph ac-
cording to these rules: (1) we can infer that u is unreach-
able if all paths from i to u contain an unreachable node,
and (2) we can infer that u is reachable if it dominates a
reachable node v, that is, if all paths from i to v that do
not contain unreachable nodes go through u. These rules
are expressed in terms of paths, implying that we can use
the propagation algorithm (Figure 5) on the original graph
as well as on the contracted graph.

Propagate-Unreachable(u)

label u as unreachable
for each child v of u

such that v has only unreachable parents
do Propagate-Unreachable(v)

Propagate-Reachable(u)

label u as reachable
if u has an immediate dominator d

then Propagate-Reachable(d)

Figure 5: Reachability propagation.

Reachability-Analysis()

while there are unlabeled nodes
do choose an unlabeled node u that has

a maximal number of unlabeled dominators
if the prover says that

the precondition of u is satisfiable
then Propagate-Reachable(u)
else use binary search with prover queries

to identify the farthest
unreachable dominator d of u

Propagate-Unreachable(d)
Recompute-Dominators
if d has an immediate dominator d′

then Propagate-Reachable(d′)

Figure 6: The algorithm implementing the analysis.

We compute dominators ignoring nodes already marked as
unreachable using the simple algorithm of Cooper [8], which
works in O(mn) time for DAGs. The critical part that makes

28

our implementation fast in practice is the heuristic used to
decide for which node we query the prover.

In the case that all nodes are reachable and interesting
the greedy algorithm (Figure 6) is optimal, because the
prover must be called for all the leafs of the (immediate)
dominator tree. In practice the performance is good. We
have run ESC/Java2 on its front-end (javafe) which con-
tains 1890 methods and is one of the largest coherent set
of JML-annotated code available. The total running time is
31589 seconds (almost 9 hours), out of which 34.8% is spent
in the reachability analysis, out of which 99.8% is spent in
the prover. The total number of leafs in the dominator trees
is 3256 and the number of prover calls is 3351. The aver-
age number of nodes in the flow graph is a few hundred and
in the contracted flow graph it is 10. For this benchmark
we used the default loop desugaring in ESC/Java2, which is
unrolling once.

6. CASE STUDY
As described in the previous section, we have tested the

analysis on the ESC/Java2 front-end, the javafe package.
The package contains 217 classes.

We have found 5 inconsistencies in the specifications of the
JDK that are not reported without the reachability anal-
ysis. More details can be found in the ESC/Java2 bug-
tracker2 under the bugs #595, #550, #568, #549, #545.
We found one more inconsistency in the JDK specification
which was due to the incorrect handling of a JML feature
informal comment by ESC/Java2. ESC/Java2 treats an
informal comment as true, this is harmless in most cases
(such as requires (* is upper-case *)) but for example,
ensures \result <=> (* is upper-case *) likely results
in an unintended specification (see bug #547).

ESC/Java2’s repository contains handcrafted tests to de-
tect inconsistencies in the JDK specifications. These tests
did not detect the problems uncovered by the reachability
analysis because they are not exhaustive. We should note
that fixing these problems involved a tedious process of nar-
rowing down the set of inconsistent annotations. This effort,
however, was justified by the wide usage of these specifica-
tions.

In 1 case a catch-block was unreachable because it was
catching an exception that was not declared in any of the
specifications of the methods called in the try-block (see
documentation for the signals_only pragma).

An incorrect use of the modifies clause (as in Figure 4)
hiding the rest of the potential warnings appeared 9 times.
Warnings hiding subsequent code appeared 6 times. The
case of unreachable code resulting from loop unrolling, as
discussed in Section 4.3, appeared 4 times. In 9 cases the
informal comments indicated that the author was aware that
the code is unreachable. The user can mark such code with
the unreachable pragma and then the analysis does not
warn about it. We detected only one case of unreachable
code in the classical sense.

In several cases the unreachability was due to the un-
sound modeling of the modifies \everything; pragma.
This pragma is the default annotation if no modifies

clause is provided. Whenever a method with the modi-

fies \everything; annotation is called, ESC/Java2 does
not consider the potential state change. Therefore, the

2http://sort.ucd.ie/tracker/?group_id=97

code that we have found is actually executed. Neverthe-
less, ESC/Java2 does not check that code, thus the warnings
provided by the analysis are not spurious.

In the remaining 12 cases we were not able to precisely
identify the source of the problem. Nevertheless, we suspect
that the source lies in inconsistent specifications of classes
inside the javafe package. Such inconsistencies are very
hard to pinpoint as they involve object invariants in a class
hierarchy.

7. RELATED WORK
Traditionally, unreachable code is detected by techniques

based on data flow analysis or abstract interpretation [9].
These techniques are generally known under the term dead
code elimination [26] and are used for code optimization. To
our knowledge, automated theorem proving is not used in
mainstream compilers. Interactive theorem proving, how-
ever, is used to show properties of code optimizations. For
example, Blech et al. [3] applied the higher-order theorem
prover Isabelle/HOL to mechanically prove that a code op-
timization based on dead code elimination is semantics pre-
serving.

Another stream of research related to our work is focused
on reasoning about specifications for which there is no im-
plementation available. Chalin [6] describes an enhancement
of ESC/Java2 that checks ‘definedness’ of specifications.
An example of a partial specification is requires a.x == 0;
since it does enforce a to be non-null . As in the case of our
work, this technique is fully automated.

Bouquet et al. [4] use a constraint solver to animate spec-
ifications. Basically, specification animation provides a way
to debug specifications without implementation. The an-
imating system maintains an abstract state and the user
can ask the system what happens to that state if a certain
method is called. Using this technique, it is possible to un-
cover that a sequence of method calls necessarily lead to an
inconsistent state.

The term reachability analysis is used in related areas in
a slightly different sense. In model checking it denotes the
analysis that searches for reachable states of the given state
space [1]. In heap analysis the reachability analysis is done
on the reference graph [7].

8. SUMMARY AND FUTURE WORK
We devised the theoretical underpinnings of reachability

analysis for annotated code, implemented it efficiently, and
classified the bugs that it helps to find. We intend to adapt
it for BoogiePL [11], whose flow graphs are not necessarily
series–parallel.

We pose two open problems related to this analysis.
Provide better warnings. As the case study shows, al-

though our analysis uncovers real bugs, they are often hard
to track down. The warning message should also pinpoint
the likely locations causing code to be unreachable, not only
the location of the unreachable code. Even better, the warn-
ing should also classify the problem, for example by saying
that it is a ‘loop unrolling’ problem if that is the case.

Optimize VCs and prover queries. The reachability anal-
ysis suggests that one VC per method might not be optimal,
for example because it includes all the unreachable code. In
general, what is an optimal strategy for querying the prover
for the correctness of a method, given its flow graph?

29

 http://sort.ucd.ie/tracker/?group_id=97

9. ACKNOWLEDGMENTS
This work is funded by Science Foundation Ireland un-

der grant number 03/CE2/I303-1, “LERO: the Irish Soft-
ware Engineering Research Centre” and by the Information
Society Technologies programme of the European Commis-
sion, Future and Emerging Technologies under the IST-
2005-015905 MOBIUS project. The article contains only
the authors’ views and the Community is not liable for any
use that may be made of the information therein.

10. REFERENCES
[1] P. Abdulla, P. Bjesse, and N. Een. Symbolic

reachability analysis based on SAT-solvers. Tools and
Algorithms for the Analysis and Construction of
Systems (TACAS), 2000.

[2] M. Barnett, K. Leino, and W. Schulte. The Spec#

programming system: An overview. In Proceeding of
CASSIS 2004, volume 3362 of Lecture Notes in
Computer Science. Springer–Verlag, 2004.

[3] J. O. Blech, S. Glesner, and J. Leitner. Formal
verification of dead code elimination in Isabelle/HOL.
In SEFM ’05: Proceedings of the Third IEEE
International Conference on Software Engineering and
Formal Methods, 2005.

[4] F. Bouquet, F. Dadeau, B. Legeard, and M. Utting.
Symbolic animation of JML specifications. In
Proceedings of Formal Methods, International
Symposium of Formal Methods (FM 2005), Lecture
Notes in Computer Science. Springer–Verlag, 2005.

[5] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry,
G. T. Leavens, K. Leino, and E. Poll. An overview of
JML tools and applications. International Journal on
Software Tools for Technology Transfer, Feb. 2005.

[6] P. Chalin. Early detection of JML specification errors
using ESC/Java2. In Proceedings of the Workshop on
the Specification and Verification of Component-Based
Systems (SAVCBS). ACM Press, Nov. 2006.

[7] S. Chatterjee, S. Lahiri, S. Qadeer, and Z. Rakamaric.
A reachability predicate for analyzing low-level
software. In Proceedings of the 13th International
Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 2007.

[8] K. D. Cooper, T. J. Harvey, and K. Kennedy. A
simple, fast dominance algorithm, 2001. Available
online at www.cs.rice.edu/~keith/EMBED/dom.pdf.

[9] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In
Conference Record of the Fourth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 238–252, Los Angeles,
California, 1977. ACM Press.

[10] P. Cousot and N. Halbwachs. Automatic discovery of
linear restraints among variables of a program. In
Conference Record of the Fifth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. ACM Press, 1978.

[11] R. DeLine and K. R. M. Leino. BoogiePL: A typed
procedural language for checking object-oriented
programs. Technical report, Microsoft Research, 2005.

[12] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: a
theorem prover for program checking. Journal of the

Association of Computing Machinery, 52(3):365–473,
2005.

[13] C. Flanagan and S. Qadeer. Predicate abstraction for
software verification. In POPL ’02: Proceedings of the
29th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. ACM Press,
2002.

[14] C. Flanagan and J. B. Saxe. Avoiding exponential
explosion: Generating compact verification conditions.
In Conference Record of the 28th Annual ACM
Symposium on Principles of Programming Languages,
pages 193–205. ACM, Jan. 2001.

[15] L. Friendly. The design of distributed hyperlinked
programming documentation. IWHD, 95:151–173,
1995.

[16] C. A. R. Hoare. An axiomatic basis for computer
programming. Communications of the ACM,
12:576–580, 1969.

[17] M. Janota. Assertion-based loop invariant generation.
In Proceedings of the 1st International Workshop on
Invariant Generation (WING ’07), June 2007.

[18] J. R. Kiniry and D. R. Cok. ESC/Java2: Uniting
ESC/Java and JML: Progress and issues in building
and using ESC/Java2 and a report on a case study
involving the use of ESC/Java2 to verify portions of
an Internet voting tally system. In Construction and
Analysis of Safe, Secure and Interoperable Smart
Devices: International Workshop, CASSIS 2004,
volume 3362 of Lecture Notes in Computer Science.
Springer–Verlag, Jan. 2005.

[19] D. Knuth. Literate programming. The Computer
Journal, 27(2):97–111, 1984.

[20] C. Krueger. Software reuse. ACM Computing Surveys,
24(2), 1992.

[21] G. T. Leavens, A. L. Baker, and C. Ruby. Behavioral
Specifications of Business and Systems, chapter JML:
A Notation for Detailed Design, pages 175–188.
Kluwer Academic Publishing, 1999.

[22] G. T. Leavens, K. R. M. Leino, and P. Müller.
Specification and verification challenges for sequential
object-oriented programs. Formal Aspects of
Computing, 19, 2007.

[23] K. R. M. Leino and F. Logozzo. Loop invariants on
demand. In Proceedings of The Third Asian
Symposium on Programming Languages and Systems
(APLAS 2005), volume 3780 of Lecture Notes in
Computer Science. Springer–Verlag, 2005.

[24] K. R. M. Leino, T. Millstein, and J. B. Saxe.
Generating error traces from verification-condition
counterexamples. Science of Computer Programming,
55(1-3):209–226, 2005.

[25] K. R. M. Leino, J. B. Saxe, and R. Stata. Checking
Java programs via guarded commands. Technical Note
1999-002, Compaq SRC, May 1999.

[26] F. Nielson, H. R. Nielson, and C. Hankin. Principles
of Program Analysis. Springer–Verlag, 1999.

[27] J. Valdes, R. E. Tarjan, and E. L. Lawler. The
recognition of Series–Parallel digraphs. Proceedings of
the eleventh annual ACM symposium on Theory of
computing, pages 1–12, 1979.

30

Faithful mapping of model classes to mathematical structures

Ádám Darvas
ETH Zurich

adam.darvas@inf.ethz.ch

Peter Müller
Microsoft Research

mueller@microsoft.com

Abstract
Abstraction techniques are indispensable for the specification and
verification of functional behavior of programs. In object-oriented
specification languages like JML, a powerful abstraction technique
is the use of model classes, that is, classes that are only used for
specification purposes and that provide object-oriented interfaces
for essential mathematical concepts such as set or relation.

While the use of model classes in specifications is natural and
powerful, they pose problems for verification. Program verifiers
map model classes to their underlying logics. Flaws in a model
class or the mapping can easily lead to unsoundness and incom-
pleteness.

This paper proposes an approach for the faithful mapping of
model classes to mathematical structures provided by the theorem
prover of the program verifier at hand. Faithfulness means that a
given model class semantically corresponds to the mathematical
structure it is mapped to.

Our approach enables reasoning about programs specified in
terms of model classes. It also helps in writing consistent and
complete model-class specifications as well as in identifying and
checking redundant specifications.

Categories and Subject Descriptors D.2.1 [Software Engineer-
ing]: Requirements/Specifications—Methodologies; D.2.4 [Soft-
ware Engineering]: Software/Program Verification—Formal meth-
ods, Programming by contract

General Terms Verification

Keywords specification, verification, abstraction, model classes,
isomorphism, Java Modeling Language

1. Introduction
Abstraction is indispensable for the functional specification and
verification of object-oriented programs. Without abstraction, types
with no implementation (i.e. interfaces or abstract classes) cannot
be specified. Abstraction is also necessary to support subtyping and
information hiding.

One way of expressing data abstraction in specification lan-
guages is by relating implementations to corresponding mathemati-
cal structures such as sets and tuples. This approach was pioneered
by the Larch project [10], which advocated two-tiered specifica-
tions consisting of a contract and a theory providing the mathemat-
ical structures.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
Sixth International Workshop on Specification and Verification of Component-Based
Systems (SAVCBS 2007), September 3-4, 2007, Cavtat near Dubrovnik, Croatia.
Copyright c© 2007 ACM ISBN 978-1-59593-721-6/07/0009. . . $5.00

package java.util;
//@ import org.jmlspecs.models.JMLObjectSet;

public interface Set extends Collection {
//@ public model instance JMLObjectSet _set;

/*@ also

@ public normal_behavior

@ ensures contains(o);
@*/

public boolean add(Object o);

/*@ also

@ public normal_behavior

@ ensures \result == _set.has(o);
@*/

/*@ pure @*/ public boolean contains(Object o);

// other constructors and methods omitted
}

Figure 1. Specification of type Set using model class
JMLObjectSet defined in JML’s model library. JML annota-
tion comments start with an at-sign (@). Keyword also expresses
that the given specification extends the specification given in
supertype Collection. The import declaration allows one to refer
to the model class. We omit nullable annotations for brevity.

The Java Modeling Language (JML) unifies these tiers to sim-
plify the development of specifications [4]. Instead of using a sep-
arate language to describe mathematical structures, JML describes
them in an object-oriented manner through model classes. These
classes contain only pure (side-effect free) methods. Therefore,
they can be used in specification expressions.

Figure 1 shows the use of model class JMLObjectSet for the
specification of the interface Set. The model class, through its
pure methods, provides access to a mathematical set that contains
objects. In order to use the model class, a model field set is
declared. This field is used for specification purposes only and is
supposed to represent the abstraction of an instance of type Set.

One can specify Set’s method contains in an abstract way
using the model field and pure method has declared in model
class JMLObjectSet. Given a concrete implementation of Set one
would define the relation (using JML’s represents clause) be-
tween the public model field set and the private internal structure.

While model classes are useful for specification purposes, they
pose problems for verification. Program verifiers have to encode
model classes in the underlying theorem prover. This can be done
by encoding pure methods and their contracts as uninterpreted
function symbols and axioms, respectively [6, 5, 12]. However,
this approach is not optimal for model classes because the tactics
of theorem provers are optimized for the prover’s theories rather
than encodings of JML model classes. Moreover, it is difficult to

31

ensure soundness of such encodings, especially in the presence of
recursive specifications [6].

To overcome these problems, previous work [3, 13, 14] pro-
poses to map model classes and their pure methods directly to
theories of the theorem prover at hand. For instance, a method
contains of a model class could be mapped to the ∈ operator of
the theorem prover. However, the existing work only discusses the
mapping of method signatures, but ignores their contracts. With
this approach, the meaning of contains is given by the defini-
tion of ∈, and not by its contract. This is problematic if there is
a mismatch between the contract and the semantics of the oper-
ation given by the theorem prover: static program verifiers might
produce results that come unexpected for programmers relying on
the model class contract. The results may also vary between differ-
ent theorem provers, which define certain operations slightly dif-
ferently. Moreover, runtime assertion checking might diverge from
static verification if the model class implementation used by the
runtime assertion checker is based on the model class contract.

In this paper, we show how model classes can be mapped to the-
orem provers without semantic mismatches. The main contribution
of our work is a technique for proving that the mapping of a model
class to a mathematical structure defined by the theorem prover is
faithful. Faithfulness means that the model class and the structure
indeed correspond to each other in their properties. To show faith-
fulness, we prove formally that the mapping is consistent and com-
plete. Consistency means that everything that can be proved using
the contracts of the model class can also be proved using the cor-
responding structure of the theorem prover. Completeness means
that everything that can be proved using the structure defined by
the theorem prover can also be proved using the contracts.

Our approach leads to important results beyond semantical cor-
respondence. Model class contracts are complex and can easily get
inconsistent, which can lead to unsound reasoning. Showing that a
model class can be mapped consistently to a mathematical structure
proves that the model class contract itself is consistent (provided
that the structure is well-defined). In fact, our case study discov-
ered an inconsistent specification in one of the most basic model
classes of JML.

This shows that proving faithfulness of mappings helps in writ-
ing better specifications for model classes by making them consis-
tent and complete. Our approach can also be used to identify redun-
dant parts of specifications as well as to check whether specifica-
tions marked as redundant are indeed derivable from non-redundant
specifications. These capabilities further improve the quality of
model-class specifications.

Throughout the paper we will use JML [15] as specification lan-
guage and Isabelle [18] as target theorem prover. This choice was
made due to the characteristics of the static program verification
tool JIVE [16] that we are working on. However, the presented ap-
proach is applicable to any combination of specification languages
and theorem provers, for instance, Eiffel [21] and Coq [1].

Our approach does not yet have tool support. All steps in the
case study were performed manually. In Section 6, as future work
we briefly mention areas where tool support could greatly help.

The rest of the paper is structured as follows. Section 2 intro-
duces model class JMLObjectSet, the class we use throughout this
paper to illustrate our approach. Section 3 presents our solution
for the faithful mapping of model classes to mathematical struc-
tures defined by a theorem prover. Section 4 presents a case study
we performed on model class JMLObjectSet. Section 5 gives an
overview of related work and in Section 6 we conclude.

2. Running example
As running example, we take model class JMLObjectSet, which
is part of the model library of the JML distribution. It models a set

of objects. That is, it provides the usual operations of mathematical
sets, and equality of elements is based on Java’s reference equality
(“==”). Figure 2 presents the class with the constructors and meth-
ods that we discuss in this paper.

The class and, thus, all its methods are pure. Methods that return
JMLObjectSets (for instance, union) do not mutate their receiver
objects but return newly created JMLObjectSets. In accordance
with the JML semantics, all reference type arguments and return
values are considered to be non-null.

The class is specified by an equational theory and by method
specifications:

1. The equational theory is an object invariant expressed in terms
of the static pure model method equational theory which
has to return true for every non-null JMLObjectSet instance
s2, and objects e1 and e2. The method has a large normal
behavior specification case containing equations written in the
style of algebraic laws. Figure 2 shows a sample equation defin-
ing method union.

2. Method specifications consist of pre- and postconditions at-
tached to constructors and methods of the model class. Modifies
clauses are not needed since all methods are pure. As an exam-
ple, the specification of method union is given on Figure 2.

We follow the proposal of Leavens et al. [13] and Charles [3],
and consider model classes to be final and unrelated to Java’s type
hierarchy rooted in type Object. This prevents problems related to
inheritance, method overriding, and dynamic dispatch. In the realm
of model classes, these restrictions seem acceptable since model
classes are supposed to describe elementary mathematical concepts
and to be used only for specification purposes.

3. Faithful mappings
In this section we present our solution for proving that the mapping
of a model class M to a structure S (defined by some datatype
or theory) is faithful. That is, there is a semantic correspondence
between M and S, namely, they are isomorphic.

The process consists of three stages. In the first stage, we specify
the mapping of M to S by a new JML clause, mapped to. Then we
prove consistency and completeness of the specified mapping in the
second and third stages, respectively. In this section we present the
details of these stages.

3.1 Specifying the mapping
In the first stage, one has to decide how to map model class M .
That is, one has to specify (1) to what structure S is the model class
mapped; and (2) to which function symbols of S are the methods
of the model class mapped.

Figure 2 demonstrates a possible mapping of model class
JMLObjectSet. The model class is mapped to Isabelle’s HOL/Set
theory [19], specifically to type “’a set”. In Isabelle, ’a is a type
variable which gives rise to polymorphic types [18]. This mapping
is specified by the new specification construct mapped to. The
first parameter specifies the target environment, the second the tar-
get context, and the third the specific type in the context to which
the model class is mapped.

The mapped to clause attached to the class determines the con-
text and type to which the methods of the model class will get
mapped. The mapping of the methods is specified by mapped to
clauses attached to the methods. For instance, method has is
mapped to Isabelle’s set membership “:”. The first parameter is
again the target environment, the second specifies the way the
model class method is mapped to some term in the target con-
text. The second parameter typically mentions function symbols of
the target context as well as parameters (including the receiver) of

32

package org.jmlspecs.org;

//@ mapped_to("Isabelle","HOL/Set", "’a set");
public final /*@ pure @*/ class JMLObjectSet {

/*@ public invariant

@ (\forall JMLObjectSet s2; s2 != null;
@ (\forall Object e1, e2; ;
@ equational_theory(this, s2, e1, e2)));
@*/

/*@ public normal_behavior

@ ensures \result <==>
@ (s.union(s2)).has(e1) ==
@ (s.has(e1) || s2.has(e1));
@ also

@ ...
@ static public pure model boolean

@ equational_theory(JMLObjectSet s,
@ JMLObjectSet s2, Object e1, Object e2);
@*/

//@ mapped_to("Isabelle","{}");
public JMLObjectSet();

//@ mapped_to("Isabelle","{e}");
public JMLObjectSet (Object e);

//@ mapped_to("Isabelle","elem : this");
public boolean has(Object elem);

//@ mapped_to("Isabelle","this = s2");
public boolean equals(Object s2);

//@ mapped_to("Isabelle","this = {}");
public boolean isEmpty();

public int int_size();

//@ mapped_to("Isabelle","this <= s2");
public boolean isSubset(JMLObjectSet s2);

//@ mapped_to("Isabelle","this < s2");
public boolean isProperSubset(JMLObjectSet s2);

//@ mapped_to("Isabelle","SOME x. x : this");
public Object choose();

/*@ public normal_behavior

@ ensures

@ (\forall Object e; ;
@ \result.has(e) <==>
@ this.has(e) || (e == elem));
@*/

//@ mapped_to("Isabelle","insert elem this");
public JMLObjectSet insert(Object elem);

//@ mapped_to("Isabelle","this - {elem}");
public JMLObjectSet remove(Object elem);

/*@ public normal_behavior

@ ensures

@ (\forall Object e; ;
@ \result.has(e) <==>
@ this.has(e) || s2.has(e));
@*/

//@ mapped_to("Isabelle","this Un s2");
public JMLObjectSet union(JMLObjectSet s2);

}

Figure 2. Model class JMLObjectSet containing the signatures
of members we consider in this paper. The proposed mapping of
the class and its members to Isabelle is given by the mapped to
clause. The object invariant, a fragment of the equational theory and
two sample method specifications are given too. Other specification
elements are omitted.

the method being specified. Note, however, that we permit arbitrary
terms of the target context; this flexibility allows us to specify map-
pings even if the target theorem prover does not provide a structure
that directly corresponds to the model class being mapped.

To support multiple theorem provers, multiple mapped to
clauses may be attached to the model class and its methods. This
is needed since different theorem provers provide different theories
with different function symbols and syntax for the same function-
ality. Thus, the isomorphism proof has to be carried out in every
target theorem prover specified in mapped to clauses.

Important to note is that the mappings need not be specified by
programmers who are typically not familiar with theorem provers
and their theories and syntax. The mappings can be specified by
the author of a model class or by the team which performs the
verification.

3.2 Consistency
Once the mappings are specified, their faithfulness has to be
proven. For each theorem prover, this proof needs to be carried
out only once. Afterwards, any verification system can make use of
the specified mappings to handle model classes in specifications. In
this section, we describe how to prove consistency of the mapping,
that is, we prove that the properties of model class M (as specified
by its contracts) can be derived from the properties of structure S
(as defined by axioms, definitions, theorems etc.).

In order to prove consistency, one has to encode the method
specifications and invariants of M in the language of S based on
the mapped to clauses and prove the resulting formulas using the
properties of S. In fact, not all method specifications have to be
translated and proved but only the ones that specify the normal
behavior of a given method [15]. Other method specifications de-
scribe situations when the method might throw exceptions which is
not of interest for the isomorphism proof.

In the sequel, we use the term relevant specification element
to refer either to an invariant or to a normal-behavior method
specification of a model class. Every relevant specification element
sM in M needs to be translated and proved as follows:1

1. (a) If sM is a method specification of some method m with
precondition pre and postcondition post then it is treated as a
formula of the form “pre ⇒ post” which is universally quanti-
fied over all parameters (including the implicit receiver) of m.
(b) Occurrences of every method call to some method m have
to be replaced by the term prescribed in the mapped to clause
of method m. For simplicity, we assume that JML’s logical
operators are also method calls with implicit mappings to the
underlying theorem prover (e.g., JML’s ==> operator is mapped
to logical implication).2

(c) If sM is a method specification of some method m, then in
the postcondition all occurrences of \result (and this if m
is a constructor) have to be replaced by the term prescribed in
the mapped to clause of method m.

2. The formula has to be turned into a lemma and proved in the
theorem prover specified by the mapped to clause using the
axioms, definitions, theorems, etc. of S.

We demonstrate this process on JMLObjectSet’s insert method.
Its method specification is presented on Figure 2.

1 We ignore ghost fields in this paper. They can be handled by mapping a
model class M with n ghost fields to a n + 1-tuple, where the first compo-
nent represents the structure for M and the other components represent the
state of the ghost fields [17].
2 Proving correspondence of logical operators is out of the scope of this
paper.

33

In step 1(a) the postcondition gets universally quantified over
the parameters of insert: this and elem. In step 1(b) the two
method calls on has get replaced by Isabelle’s set membership
operator “:” as prescribed by the mapped to clause of has in
Figure 2. This yields terms “e : \result” and “e : this”.
Additionally, the logical operators \forall, <==>, ||, and == get
replaced by the corresponding Isabelle operators ∀, =, ∨, and =,
respectively. Step 1(c) replaces \result by “insert elem this”
as prescribed by the mapped to clause of method insert. This
yields the following formula:

∀ this, elem. ∀e.
(e : (insert elem this)) = ((e : this) ∨ (e = elem))

In step 2 the formula is turned into a lemma in Isabelle. Its proof
can be completed automatically by the auto tactic. This is not
surprising since theorem provers like Isabelle are typically well-
equipped with theorems over elementary structures.

Completing this stage successfully for every relevant specifica-
tion element in model class M gives us the guarantee that whatever
can be proven using the properties of M can be proven using S,
too.

An important consequence of this result is that the specification
of M is consistent (i.e., free of contradictions) provided S is con-
sistent. Since structures like Isabelle’s Set are defined using con-
servative extensions and have been reviewed by many people, it is
rather unlikely that they contain inconsistencies. In other words, in
this stage we prove that Isabelle’s Set theory is a model for model
class JMLObjectSet. By exhibiting this model we prove that using
JMLObjectSet’s specification does not lead to unsoundness.

This is also an interesting result concerning the use of pure
methods in specification expressions. As we have shown earlier
[6], the use of pure methods in specifications can easily lead to
unsoundness. The solution we proposed in our earlier work [6] to
prevent unsoundness is to exhibit a witness for showing that the
specification of the method is satisfiable. However, the solution
is not applicable for recursive specifications. With the approach
presented above, recursive specifications do not pose any problems.

As the example of method insert suggests, proving this stage
may be fully automated: (1) the lemma was generated following
three simple steps performing syntactic replacements based on
mapped to clauses, and (2) the lemma was proved without any user
interaction using a powerful tactic of Isabelle.

3.3 Completeness
In the third stage, we complete the isomorphism proof by showing
completeness of the mapping, that is, that the properties of structure
S can be derived from the properties of model class M . The proof
procedure is as follows:

1. Each member m of M is turned into a function symbol m̂ and
its signature is declared based on m’s signature.

2. Each relevant specification element sM in M is turned into an
axiom as follows:
(a) If sM is a method specification with precondition pre and
postcondition post attached to method m then it is treated as
formula “pre ⇒ post” universally quantified over all parame-
ters of m.
(b) Occurrences of method calls on some method m have to
be replaced by function applications of the corresponding func-
tion symbol m̂. Additionally, JML’s logical connectives have to
be replaced by the corresponding connectives of the theorem
prover.
(c) If sM is a method specification of some method m, then in
the postcondition all occurrences of \result (and this if m

is a constructor) have to be replaced by function applications of
function symbol m̂.

3. A lemma is generated from every axiom and definition sS of S
by replacing all occurrences of function symbols in sS by the
corresponding function symbols declared in step 1. Correspon-
dence is based on the mapped to clauses.

4. The lemma has to be proven using the axioms generated in
step 2.

As an example, we show this procedure for Isabelle’s definition of
proper subsets. In the first step, the signature of ˆisProperSubset
is declared based on the signature of method isProperSubset:

ˆisProperSubset : ′a set × ′a set ⇒ bool

The second step is based on the specification of the method. For
demonstration purposes, this time we take the specification pre-
scribed by the invariant, i.e. the equation given in the specification
of method equational theory:

s.isProperSubset(s2) == (s.isSubset(s2) && !s.equals(s2))

Since the equation is part of the method specification of method
equational theory, first it gets quantified over its parame-
ters: s, s2, e1, and e2. Then method calls on isProperSubset,
isSubset and equals are turned into the function applications

ˆisProperSubset(s, s2) ˆisSubset(s, s2) and ˆequals(s, s2), re-
spectively. Additionally, the logical operators are mapped. The re-
sulting formula is turned into the following axiom:

∀ s, s2, e1, e2. ˆisProperSubset(s, s2) =

(ˆisSubset(s, s2) ∧ ¬ ˆequals(s, s2))
(1)

In step 3, we take the definition of proper subsets from Isabelle’s
theory [19]:

psubset_def: "A < B == (A::’a set) <= B & ¬ A=B"

and translate it to the following lemma:3

∀ A, B. ˆisProperSubset(A, B) =

(ˆisSubset(A, B) ∧ ¬ ˆequals(A, B))

In step 4, the lemma needs to be proven using only the axioms
defined in step 2. The proof is trivial since axiom (1) (derived from
the equational theory) is equivalent to the lemma.

Note that theorems of S need not be turned into lemmas since
theorems are properties that are derived from definitions and ax-
ioms of S. However, it is important that all axioms and definitions
are turned into lemmas, including the ones that do not appear in the
textual representation of S. For instance, Isabelle supports induc-
tively defined sets for which the tool generates fixed point defini-
tions and proves several lemmas about them [18]. In such cases the
artefacts introduced “under the hood” need to be turned into lem-
mas too. Theorem provers typically make these artefacts available
for users, for instance, Isabelle can be queried to show them and
PVS [22] generates separate files for them.

Proving this stage guarantees that whatever can be proved using
the axioms, definitions and theorems of Isabelle’s Set, can also be
proved using JML’s JMLObjectSet. An interesting consequence
is that we have proved that the axiom system extracted from the
specifications of JMLObjectSet is complete relative to Isabelle’s
theory of Set. Since Isabelle structures like Set are heavily used

3 Isabelle definitions are implicitly universally quantified over variables that
are not bound by quantifiers that appear explicitly.

34

in formalizations and proofs, one can be sure that they contain the
most important properties of the structure.

The generation of lemmas (step 3) for this stage is not as trivial
as for the consistency proof. The mapped to clauses specify the
mappings from M to S, which is the opposite direction of this
stage. The mapping from S to M is not necessarily unique. For
instance, the = operator of S is typically used in the mapped to
clauses of several methods of M , which makes it difficult to choose
automatically the appropriate mapping.

Furthermore, proving the lemmas (step 4) is also less trivial than
in the consistency proof. First, even the application of automated
tactics typically requires one to manually select the set of axioms
to be used for proving a given lemma because selecting all axioms
might cause the tactic to loop. Second, the specifications of the
model class may be too weak to verify some axioms or definitions
of the structure. In this case, the missing specifications need to be
identified and added to the model class. Thus, it seems that the
automation of this stage can, in general, only be partial and manual
intervention is needed for its completion. However, the effort is
justified by the increased quality of the model class specification.

3.4 Summary
Successful completion of the three stages described above guar-
antees that model class M and structure S are isomorphic. This
property confirms that the mappings prescribed by the mapped to
clauses were semantically correct.

The most important property from the consistency proof is that
the axiom system extracted from the model class is consistent, thus
its usage cannot lead to unsoundness. This is obviously a crucial
property for every verification system. For this stage, the generation
and proving of lemmas seem to be automatable. Failing to prove a
lemma most probably indicates an error in the model class contract.

The most important result of the completeness proof is that the
model class expresses the properties of the mathematical structure.
This is important in order to prevent mismatches between the prop-
erty one wants to express in a specification and the property one
actually proves during the verification process. As noted above, the
generation and proving of lemmas is not as trivial as for consis-
tency.

Once both directions are successfully proved, method calls can
be directly translated to the corresponding function applications
without being worried about soundness issues or differences in the
semantics of related methods and function symbols.

An interesting side-effect of the proposed proof technique is that
redundant specifications can be discovered in the model class. If an
axiom is never used in the completeness proof then the specification
element from which the axiom was derived is redundant in the
model class.

4. Case study
In this section, we demonstrate our approach for the model class
JMLObjectSet by describing in detail the process of proving faith-
fulness with Isabelle’s HOL/Set theory. We highlight the interest-
ing observations and results of the case study.

We considered 17 members of the model class: 2 constructors,
9 query methods, and 6 methods that create new JMLObjectSet
instances. These were all the members that remained after the sim-
plifications described in the next section. All proofs were carried
out in Isabelle. The proof scripts contained a total of ca. 380 LOC
without comments and empty lines. Consistency of the mapping
was proven in ca. 100, completeness in ca. 110 LOC. Equivalence
of the equational theory and the method specifications (see Sec-
tion 4.5) was proven in ca. 170 LOC. All proof scripts were written
manually.

4.1 Simplifications
Since we were interested in the mapping of JMLObjectSet and
its methods to an Isabelle theory, we first removed all methods
that provided object-oriented features irrelevant for the mapping
of the model class. These methods included, for instance, clone,
singleton, hashCode, and toString. In our opinion, such meth-
ods need not be part of model classes if one thinks of them as math-
ematical structures.

As a next step we removed all implementation details. This in-
cluded all method bodies, and members and specifications not vis-
ible for clients. Additionally, we removed all public members that
were only used in informal specifications or provided only syntactic
sugar. As mentioned in Section 3.2, only method specification that
describe normal behavior need to be treated by our approach. Thus,
we removed all other method specification cases. In order to keep
our case study comprehensible, we removed ghost fields from the
model class together with all specification expressions that referred
to them.

To focus on the main ideas of this paper, we decided not to
handle members that referred to non-primitive types other than
JMLObjectSet. For instance, constructors that take as argument a
node of a singly-linked list from which a JMLObjectSet is created,
or methods that convert JMLObjectSets to other model or non-
model types. The handling of these kinds of members is possible
once one has provided a mapping for the types mentioned in their
signatures.

4.2 Division of specifications
We analyzed the specification of JMLObjectSet and found that the
equational theory and method specifications contained a lot of re-
dundancy. Many properties of the model class were attempted to
be expressed both by the equational theory and by method specifi-
cations. We illustrate this by method union. The equation defining
the method in the equational theory and its method specification is
given on Figure 2. It is easy to see that after proper substitutions
the two specifications express the same property.

Thus we decided to split specifications into two parts: one con-
taining only the equational theory and the other containing only the
method specifications. This allowed us to analyze their relation, as
discussed in Section 4.5.

We note that it is not always necessarily the case that the equa-
tional theory of a model class and its method specifications con-
tain so much redundancy. There are, for instance, JML model
classes that specify the behavior of the class in great majority by
method specifications (e.g., JMLObjectToObjectRelation and
JMLValueValuePair). Thus, in general, faithfulness of a model
class to some structure should be proven using both the equational
theory and the method specifications together.

4.3 Specifying the mapping
The next step was the specification of the mapping of the model
class and its methods. The resulting mapping to Isabelle’s higher-
order set theory HOL/Set is shown in Figure 2.

The mapping of the different methods of the model class was
mostly straightforward. Here we mention three interesting cases.
Method choose yields an arbitrary element of the set in case it is
not empty. This directly corresponds to Hilbert’s ε-operator, written
as “SOME x. P (x)” in Isabelle, denoting some x for which P (x) is
true, provided one exists [18].

Another interesting case to mention was the mapping of method
remove that takes an object elem as argument. Isabelle’s theory
contains no operation that removes a single element from the set.
Thus, remove had to be mapped to two other set operations: cre-
ation of a singleton set and set difference: this - {elem}.

35

Finally, we mention method int size, which yields the num-
ber of elements the set contains. The method cannot be mapped
to any term in the target theory since the theory does not define
set cardinality. We discuss the consequences and solutions of such
cases in Section 4.7.

An important issue of the mapping is the handling of equal-
ity. In general, we use reference equality for objects [3]. However,
instances of model classes are treated as terms of a mathemati-
cal structure; therefore, the equality of this structure applies. We
achieve this by overloading Isabelle’s = operator. Instances of non-
model classes are represented in Isabelle by a designated sort. The
= operator on this sort denotes reference equality. Consequently, we
simply map Java’s == operator to Isabelle’s = operator when applied
to instances of non-model classes, in particular, to the elements
stored in a JMLObjectSet. Instances of model classes are repre-
sented in Isabelle by the sort specified in the mapped to clause of
the model class. When applied to instances of model classes, we re-
place the == operator by a call to equals. This call is then mapped
to Isabelle as prescribed by the mapped to clause for equals. For
instance, == operator on JMLObjectSet instances is mapped to set
equality in Isabelle.

4.4 Consistency
We proved that the specifications of the model class are implied by
the properties of Isabelle’s Set theory. The proof was performed as
described in Section 3.2.

We found one unsound equation in the equational theory. This
equation intended to describe a relation between methods remove
and insert as follows:

s.insert(e1).remove(e2).
equals(e1 == e2 ? s : s.remove(e2).insert(e1))

where s is a JMLObjectSet instance, and e1 and e2 are two
objects. The specification expresses that if e1 and e2 refer to the
same object then inserting and removing the object in and from set
s yields a set equivalent to s; otherwise, the order of performing
the two operations is interchangeable.

Although this might look correct at first sight, the attempt to
formally prove its correctness reveals that it is incorrect in case s
contains e1, and e1 and e2 refer to the same object. In this case,
the insertion yields some set s′ that contains the same objects as s
and the remove operation yields some set s′′ that contains the same
objects as s′ except the object referenced by e2 (and e1). Thus, this
set cannot be equivalent to s.

This problem was directly pointed out by Isabelle via the open
goal that remained after applying the automatic tactic auto on the
corresponding lemma. The open goal was: e2 : s ⇒ False,
expressing that the property does not hold in case s contains e2.

The buggy equation could be easily patched after the problem
was caught and all specifications of the equational theory and
the method specifications could be proven trivially using the auto
tactic of Isabelle. As a consequence, we proved that the (patched)
specifications of the model class are consistent.

4.5 Equivalence of equational theory and method
specifications

While it was easy to notice the large overlap of properties specified
by the class invariant and by the method specifications, it was not
trivial to see whether they are equivalent. Thus, after having proved
that the specifications are consistent, we proved their equivalence
formally using Isabelle.

The procedure of proving the equivalence was the following.
First, we declared signatures of function symbols the same way as
described in Section 3.3. When proving that the equational theory
implies the method specifications, we stated axioms based on the

equational theory and generated lemmas based on the method spec-
ifications. Finally, we attempted to prove the lemmas by using the
axioms. The other direction was proved analogously.

We found that the equational theory and the method specifi-
cations were not equivalent and none of them contained stronger
specifications than the other. That is, while proving either direction,
some lemmas could not be proven without strengthening some of
the axioms or adding new ones. Four additional equations had to
be added to the equational theory and one postcondition had to be
strengthened in the method specifications in order to prove their
equivalence. Here we give one example for each direction.

The equational theory contains two specifications that mention
method isEmpty:

new JMLObjectSet().isEmpty() and
!s.insert(e1).isEmpty()

These express that a newly allocated set is empty and that a set in
which an element is inserted is not empty.
These specifications do not imply the property stated in the post-
condition of method isEmpty:

\result == (\forall Object e; ; !this.has(e))

That is, isEmpty returns true if and only if the set does not contain
any object. The postcondition could not be proven using the two
equations because those just express properties of isEmpty (after
construction and insertion) while the postcondition gives the defi-
nition of isEmpty.

Adding this definition to the equational theory (and thus to the
set of axioms used in the proofs) solved the problem. In fact, the
two original specifications could as well be removed since the new
one (together with other properties) implies them.

The example where the method specifications had to be strength-
ened is the postcondition of JMLObjectSet’s constructor which
takes an object e as argument and yields a set that contains e.
The original postcondition “this.has(e)” was not sufficient to
prove two specifications from the equational theory, for instance,
the equation that relates the two constructors of the class:

new JMLObjectSet(e1).
equals(new JMLObjectSet().insert(e1))

The weakness of the constructor’s postcondition was again revealed
by the open goal while proving the above equation and suggested
us to strengthen the postcondition to express that object e is the one
and only object contained by the set after construction:

(\forall Object e1; this.has(e1) <==> (e == e1))

The strengthened postcondition allowed us to prove the two re-
maining specifications in the equational theory.

To make sure that the added and strengthened specifications do
not introduce unsoundness, we proved their consistency the same
way as in Section 4.4.

The result of having proved the equivalence of the equational
theory and the method specifications is that one can use either one
or the other. For instance, one only needs to prove isomorphism of
the method specifications and theory HOL/Set while the equational
theory can be marked as redundant.

An interesting side-effect of this proof technique is that one can
check whether specifications marked as redundant are indeed re-
dundant. For instance, to check if a method specification marked
as redundant is indeed implied by other method specifications, one
needs to generate a lemma out of the specification marked as redun-
dant and axioms from the non-redundant method specifications. If
the lemma is provable, the specification is indeed redundant.

36

4.6 Completeness
As the last step we proved that the definitions of Isabelle’s Set the-
ory are implied by the (corrected and strengthened) specifications
of JMLObjectSet. The proof was performed both for the equa-
tional theory and for method specifications and was carried out as
described in Section 3.3. We note that due to the equivalence proof
sketched above, it would have sufficed to perform this step either
for the equational theory or for the method specifications. We car-
ried out the proofs for both of them in order to gain more experience
with our approach.

The most interesting part in this step was the mapping of Is-
abelle definitions to the signatures of the model class. Specifically,
many of the definitions in Isabelle’s Set theory use set compre-
hension. This is a construct that cannot be expressed by a method
in the model class. However, probably for this reason, JML sup-
ports set comprehension on the syntax level [15]. The JML Ref-
erence Manual does not give a concrete definition for the seman-
tics of the construct, thus we used the same meaning that Isabelle
defines. This (1) ensured that we did not introduce unsoundness
(provided the Isabelle definition is sound), and (2) gave a connec-
tion between mathematical set comprehension and the methods of
JMLObjectSet since the Isabelle definition refers to set member-
ship which corresponds to the has method of the model class.

With the help of set comprehension, most Isabelle definitions
could be easily mapped back to the “language” of the model class.
The corresponding lemmas could be proven both by the corrected
and strengthened equational theory and by the strengthened method
specifications. This means that both kinds of specifications are
strong enough to imply the elementary properties of sets.

However, there were definitions that could not be mapped back
to the model class in a straightforward way. An example is function
image which takes a function f and a set A as parameters, and yields
the image of set A under f. The model class does not provide such
functionality and it cannot be expressed by the use of other methods
of the class. Such cases lead us to the notion of observational
faithfulness, discussed in the next session.

4.7 Mismatches between model class and structure
So far we only dealt with situations where each method of M had
a direct correspondence in S and vice versa. However, this is not
necessarily the case. If there is no direct correspondence, one can
try to express the operation in terms of other operations (either of
M or of S) that could already be mapped (directly or indirectly). As
an example, in Section 4.3 we mentioned JMLObjectSet’s remove
method, which could be expressed in terms of two functions of
Isabelle’s Set. In such cases the isomorphism result still holds.

However, there might be situations when no mapping exists and
the operation cannot be expressed in terms of other ones. In such
cases, there is a mismatch between M and S that cannot be bridged,
that is, M and S are not isomorphic. However, the “direction” of
the mismatch makes a difference in the consequences.

If a method of M cannot be translated to S then we can-
not be sure that specifications referring to the method are indeed
consistent and that the method semantically corresponds to some
mathematical operation. An example for this situation is method
int size in JMLObjectSet. It has no counterpart in Isabelle’s
HOL/Set theory and cannot be expressed by other methods of the
model class. This means that if we use theory HOL/Set we can nei-
ther guarantee consistency of specifications mentioning the method
nor that the semantic meaning of the method is the intended one,
namely set cardinality. In such situations, one needs to pick a dif-
ferent target theory where the mapping is possible. In our case Is-
abelle’s HOL/Finite Set could be picked as it provides function
card to express set cardinality.

The situation is better if an operation of S cannot be translated
to M . In this case the consistency of all methods in M can still be
shown and the mappings prescribed by the mapped to clauses can
be safely used. That is, although isomorphism of M and S cannot
be proven, isomorphism of all operations accessible in M and the
corresponding operations in S can be shown. We call this kind of
isomorphism observational faithfulness which is a sufficient result
for the sound use of mapped to clauses.

As mentioned above, HOL/Set’s function image cannot be
mapped to JMLObjectSet. This means that the model class and
the theory are not isomorphic. However, they are observation-
ally faithful since isomorphism can still be shown for all methods
of JMLObjectSet that may appear in specifications (apart from
method int size, as mentioned above).

5. Related work
The idea of using function symbols that are understood by the
backend theorem prover directly on the specification level was
already present in ESC/Java [9]. The special construct \dttfsa
(Damn The Torpedos, Full Speed Ahead!) allowed users to refer to
function applications on the level of Simplify, the theorem prover
of ESC/Java. The corresponding function symbols were defined
directly on the level of the prover. While this construct was a
powerful means for specification, one had to be careful with its
usage since on the specification level the definitions of the function
symbols were hidden. The verification system did not give support
for showing that the definitions were free of inconsistencies.

The Caduceus tool is a static verification system for C programs
[7]. For specification and verification purposes the tool allows one
to declare types and predicates as well as to define or axiomatize
these predicates on the C source level. One can also define “hybrid”
predicates, predicates that refer both to elements of the C program
and elements of these specification-only types and predicates. Def-
initions of predicates can also be postponed on the source level and
given directly in Coq, the backend prover of the tool. This con-
cept eases the task of specifying and verifying programs since, for
instance, it prevents the use of method calls in specifications and
leads to definitions that are more suitable for provers than JML
specifications. Case studies demonstrate the power of this approach
[8, 11]. The drawback of the approach is the lack of consistency
proof for definitions and axioms given on the source or prover level.
This might lead to soundness issues.

Leavens et al. [14] identify the problem of specifying model
types as a challenge for the specification and verification of pro-
grams. As a solution they propose the direct translation of model
classes to mathematical theories, however, their proposal does not
include details on how the translation would work and the issue of
faithfulness is not mentioned.

Schoeller [20] roughly sketches the idea of the faithful mapping
of model classes to mathematical structures. However, no details
are given on how one would prove faithfulness.

Schoeller et al. developed a model library for Eiffel [21]. They
address the faithfulness issue by equipping methods of model
classes with specifications that directly correspond to axioms and
theorems taken from mathematical textbooks. A shortcoming of
this approach is that the resulting model library has to follow ex-
actly the structure of the mimicked theory. This limits the design
decisions one can make when composing the model library and it
is unclear how one can support multiple theorem provers. Further-
more, user-defined model classes cannot be supported since there
is no corresponding theory. Our approach allows more flexibility in
the construction of model classes and libraries by using mapped to
clauses that can go beyond direct mappings since arbitrary terms of
the target context can be specified. In turn, our approach requires
one to prove faithfulness of the mapping.

37

Charles [3] proposes the introduction of the native keyword
to JML in the context of work on the program verifier Jack [2].
The keyword can be attached to methods with a similar meaning
to ESC/Java’s \dttfsa construct: methods marked as native
introduce uninterpreted function symbols and their definitions can
be directly given on the level of Coq, the backend prover of Jack.
Charles carries the idea over to model classes: the native keyword
may also be attached to types with the meaning that such types get
mapped to corresponding Coq datatypes. The mapping of native
types is defined on the Coq level, too. This approach differs mainly
in two ways from ours. First, our approach ensures faithfulness
of the mappings. There is no attempt to do so in the work of
Charles. Second, the mapped to clause we propose in this paper
allows one to specify the mappings on the specification language
level. Furthermore, properties of model classes are specified in JML
which typically provide easier understanding (for programmers)
of the semantics than definitions given directly on the level of a
theorem prover.

6. Conclusion
For the static verification of programs, model classes have to be
mapped to mathematical structures of the underlying theorem
prover. In this paper, we proposed an approach to show that this
mapping is faithful by proving isomorphism between the model
classes and the structures.

The proposed approach improves on previous work in three
ways. First, previous work that proposed the direct translation of
model-class methods to functions of a theorem prover does not en-
sure any actual semantic relationship between the mapped entities.
This can easily lead to semantic mismatch between what was in-
tended to be specified and what was actually verified.

Second, our approach leads to better specifications for model
classes by ensuring their (relative) consistency and completeness.
The identification and checking of redundant specifications further
improves the quality of the specifications.

Third, previous work for ensuring the consistency of specifi-
cations of pure methods does not provide a satisfying solution in
the presence of recursion [6]. The solution proposed by this paper
solves this problem: by proving that a certain mathematical struc-
ture is a model for the specifications of a model class, we get the
guarantee that the specifications are consistent. This result is inde-
pendent of the presence of recursion.

To demonstrate our approach, we did a case study with a model
class from JML’s model library and a theory from Isabelle’s library.
The case study was successful in that observational faithfulness
could be proved (except for method int size) and interesting ob-
servations could be made on the model class: an incorrect specifi-
cation was revealed, missing specifications were identified, and a
precise relation between its equational theory and method specifi-
cations was identified.

Future work. Future work remains to provide tool support for
the proposed mapping process described in this paper. Tools could
support the typechecking of mapped to clauses; the (partial) gen-
eration of proof scripts for faithfulness proofs; and the actual use
of the mappings for static verification of programs.

For a better understanding of the strengths and weaknesses
of our approach, further case studies with more complex model
classes need to be done. In particular, it would be interesting to see
how well our approach works for model classes that do not have a
directly corresponding theory in the theorem prover, e.g., a stack.

Acknowledgments. We are grateful to Vijay d’Silva and Farhad
Mehta for interesting discussions, and to the reviewers for helpful
comments. Müller’s work was done at ETH Zurich and was funded
in part by the Information Society Technologies program of the

European Commission, Future and Emerging Technologies under
the IST-2005-015905 MOBIUS project.

References
[1] Y. Bertot and P. Castran. Interactive Theorem Proving and Program

Development. Coq’Art: The Calculus of Inductive Constructions.
Texts in Theoretical Computer Science. Springer, 2004.

[2] L. Burdy, A. Requet, and J.-L. Lanet. Java applet correctness: A
developer-oriented approach. In FME, volume 2805 of LNCS, pages
422–439. Springer, 2003.

[3] J. Charles. Adding Native Specifications to JML. In Formal
Techniques for Java-like Programs, 2006.

[4] Y. Cheon, G. Leavens, M. Sitaraman, and S. Edwards. Model
variables: cleanly supporting abstraction in design by contract:
Research articles. Softw. Pract. Exper., 35(6):583–599, 2005.

[5] A. Darvas and K. R. M. Leino. Practical reasoning about invocations
and implementations of pure methods. In FASE, volume 4422 of
LNCS, pages 336–351. Springer, 2007.

[6] A. Darvas and P. Müller. Reasoning About Method Calls in Interface
Specifications. JOT, 5(5):59–85, 2006.

[7] J.-C. Filliâtre, T. Hubert, and C. Marché. The Caduceus verification
tool for C programs. Tutorial and Reference Manual. 2007.

[8] J.-C. Filliâtre and C. Marché. Multi-prover verification of C programs.
In ICFEM, volume 3308 of LNCS, pages 15–29. Springer, 2004.

[9] C. Flanagan, K. R. M. Leino, M. Lillibridge, J. B. S. G. Nelson, and
R. Stata. Extended static checking for Java. In PLDI, volume 37,
pages 234–245. ACM Press, 2002.

[10] J. V. Guttag and J. J. Horning. Larch: Languages and Tools for
Formal Specification. Texts and Monographs in Computer Science.
Springer-Verlag, 1993.

[11] T. Hubert and C. Marché. A case study of C source code verification:
the Schorr-Waite algorithm. In SEFM. IEEE Comp. Soc. Press, 2005.

[12] B. Jacobs and F. Piessens. Verification of programs with inspector
methods. In Formal Techniques for Java-like Programs, 2006.

[13] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok. How
the design of JML accommodates both runtime assertion checking
and formal verification. Science of Computer Programming, 55(1–
3):185–205, 2005.

[14] G. T. Leavens, K. R. M. Leino, and P. Müller. Specification and
verification challenges for sequential object-oriented programs.
Formal Aspects of Computing, 2007. To appear.

[15] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok,
P. Müller, and J. Kiniry. JML Reference Manual. Iowa State
University, Last revised February 2007.

[16] J. Meyer, P. Müller, and A. Poetzsch-Heffter. The JIVE system—
implementation description. 2000.

[17] M. Miragliotta. Specification model library for the interactive
program prover JIVE. ETH Zurich, Semester Thesis, 2004.

[18] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof
Assistant for Higher-Order Logic, volume 2283 of LNCS. Springer,
2002.

[19] T. Nipkow, L. C. Paulson, and M. Wenzel. Theory HOL/Set from
“The Isabelle Library”. isabelle.in.tum.de/library/HOL/
Set.html, 2005.

[20] B. Schoeller. Strengthening Eiffel contracts using models. In Formal
Aspects of Component Software, 2003.

[21] B. Schoeller, T. Widmer, and B. Meyer. Making specifications
complete through models. In Architecting Systems with Trustworthy
Components, volume 3938 of LNCS. Springer, 2006.

[22] N. Shankar, S. Owre, and J. M. Rushby. A Tutorial on Specification
and Verification Using PVS (Beta Release). Technical report,
Computer Science Laboratory, SRI International, March 1993.

38

Proof-Transforming Compilation of
Programs with Abrupt Termination

Peter Müller
Microsoft Research, USA

mueller@microsoft.com

Martin Nordio
ETH Zurich, Switzerland
Martin.Nordio@inf.ethz.ch

ABSTRACT
The execution of untrusted bytecode programs can produce
undesired behavior. A proof on the bytecode programs can
be generated to ensure safe execution. Automatic techniques
to generate proofs, such as certifying compilation, can only
be used for a restricted set of properties such as type safety.
Interactive verification of bytecode is difficult due to its un-
structured control flow. Our approach is verify programs on
the source level and then translate the proof to the byte-
code level. This translation is non-trivial for programs with
abrupt termination. We present proof transforming compi-
lation from Java to Java Bytecode. This paper formalizes the
proof transformation and present a soundness result.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Program Verification—Cor-
rectness proofs; D.3.4 [Programming Languages]: Pro-
cessors—Compilers; F.3.1 [Logics and Meanings of Pro-
grams]: Specifying and Verifying and Reasoning about Pro-
grams

General Terms
Verification, Languages

Keywords
Trusted Components, Proof-Carrying Code, Proof-Transforming
Compiler

1. INTRODUCTION
Proof-Carrying Code (PCC) [8, 9] has been developed with

the goal of solving the problems produced by the unsafe exe-
cution of mobile code. In PCC, the code producer provides a
proof, a certificate that the code does not violate the security
properties of the code consumer. Before the code execution,
the proof is checked by the code consumer. Only if the proof
is correct, the code is executed.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2007), September 3-4, 2007, Cavtat
near Dubrovnik, Croatia.
Copyright 2007 ACM ISBN 978-1-59593-721-6/07/0009 ...$5.00.

The certificate proves the properties that are satisfied by
the bytecode program. With the goal of generating certifi-
cates automatically, Necula [9] has developed certifying com-
pilers. Certifying compilers are compilers that take a pro-
gram as input and produce bytecode and its proof. Unfortu-
nately, certifying compilers only work with a restricted set
of provable properties such as type safety.
Another approach to solve the problem caused by mobile

code is interactive verification of bytecode. This approach is
applicable to a wide range of properties, but is difficult due
to the bytecode’s unstructured control flow. Contrary, source
verification is simpler, but does not generate a certificate for
the bytecode program.
The approach we propose here is the use of a Proof - Trans-

forming Compiler (PTC). PTCs are similar to certifying com-
pilers in PCC, but take a source proof as input and produce
the bytecode proof. Figure 1 shows the architecture of this
approach. The code producer develops a program. A proof
of the source program is developed using a prover. Then,
the PTC translates the proof producing the bytecode and
its proof, which are sent to the code consumer. The proof
checker verifies the proof. If the source proof or the transla-
tion were incorrect, the checker would reject the code.
An important property of Proof-Transforming Compilers is

that they do not have to be trusted. If the compiler produces
a wrong specification or a wrong proof for a component, the
proof checker will reject the component. This approach has
the strengths of both above mentioned approaches.
If the source and target languages are close, the proof

translation is simple. However, if they are not close and
the compilation function is complex, the translation can be
hard. For example, proof-transformation from a subset of
Java with try-catch, try-finally and break statements to
Java Bytecode is not simple. Compiling these statements in
isolation is simple, but the compilation of their interplay is
not.
A try-finally statement is compiled using code duplica-

tion: the finally block is put after the try block. If try-
finally statements are used inside of a while loop, the
compilation of break statements first duplicates the finally
blocks and then inserts a jump to the end of the loop. Fur-
thermore, the generation of exception tables is also harder.
The code duplicated before the break may have exception
handlers different from those of the enclosing try block.
Therefore, the exception table must be changed so that ex-
ceptions are caught by the appropriate handlers. In this pa-
per, we present the first PTC that handles these complica-
tions.

39

Figure 1: General architecture.

Outline. The source language and its Hoare-style logic are
introduced in Section 2. We present the Bytecode language
and its logic in Section 3. In Section 4, we define the proof
transformation. Section 5 illustrates proof transformations
by an example. Section 6 states a soundness theorem. Re-
lated work is discussed in Section 7. Section 8 summarizes
and gives directions for future work.

2. SOURCE LANGUAGE AND LOGIC
The source language we consider is similar to a Java sub-

set. Its definition is the following:

exp ::= literal | var | exp op exp

stm ::= x = exp | stm; stm | while (exp) stm

| break ; | if (exp) stm else stm

| try stm catch (type var) stm

| try stm finally stm | throw exp ;

To avoid return statements, we assume that the return
value of every method is assigned to a special local variable
named result (this is the only discordance with respect to
Java). Moreover, we assume that the expressions are side-
effect-free and cannot throw exceptions.
The subset of Java is small, but the combination of while,

breaks, try-catch and try-finally statements produces an
interesting subset especially from the point of view of com-
pilation. The code duplication used by the compiler for try-
finally statements increases the complexity of the compi-
lation and translation functions, specially the formalization
and its soundness proof.
In our technical report [7], the source languages also in-

cludes object-oriented features such as cast, new, read and
write field, and method invocation. In this paper, we only
present the most interesting features.

2.1 Method and statement specifications
The logic is based on the programming logic introduced

in [6, 12, 13]. We have modified it and proposed new rules
for while including break and exceptions, try-catch and
try-finally. In [13], a special variable χ is used to capture
the status of the program such as normal or exceptional
status. This variable is not necessary in the bytecode proof
since non-linear control flow is implemented via jumps. To
eliminate the χ variable, we use Hoare triples with two or
three postconditions to encode the status of the program
execution. This simplifies not only the translation but also

the presentation.
Properties of methods are expressed by Hoare triples of

the form {P} T.m { Qn , Qe } , where P , Qn , Qe are
first-order formulas and T.m is a method m declared in class
T . The third component of the triple consists of a normal
postcondition (Qn), and an exceptional postcondition (Qe).
We call such a triple method specification.
Properties of statements are specified by Hoare triples of

the form {P} S {Qn ,Qb ,Qe} , where P , Qn , Qb , Qe are
first-order formulas and S is a statement. For statements, we
have a normal postcondition (Qn), a postcondition after the
execution of a break (Qb), and an exceptional postcondition
(Qe).
The triple {P} S {Qn ,Qb ,Qe} defines the following

refined partial correctness property: if S ’s execution starts
in a state satisfying P , then (1) S terminates normally in a
state where Qn holds, or S executes a break statement and
Qb holds, or S throws an exception and Qe holds, or (2) S
aborts due to errors or actions that are beyond the seman-
tics of the programming language, e.g., memory allocation
problems, or (3) S runs forever.

2.2 Rules
Figure 2 shows the rules for compositional, while, break,

try-catch, and throw statements. In the compositional state-
ment, the statement s1 is executed first. The statement s2
is executed if and only if s1 has terminated normally.
In the while rule, the execution of the statement s1 can

produce three results: either (1) s1 terminates normally and
I holds, or (2) s1 executes a break statement and Qb holds,
or (3) s1 throws an exception and Re holds. The postcondi-
tion of the while statement expresses that either the loop
terminates normally and (I ∧ ¬e) ∨ Qb holds or throws an
exception and Re holds. The break postcondition is false,
because after a break within the loop, execution continues
normally after the loop.
The break rule sets the normal and exception postcondi-

tion to false and the break postcondition to P due to the
execution of a break statement.
In the try-catch rule, the execution of the statement s1

can produce three different results: (1) s1 terminates nor-
mally and Qn holds or terminates with a break and Qb

holds. In these cases, the statement s2 is not executed and
the postcondition of the try-catch is the postcondition of s1;
(2) s1 throws an exception and the exception is not caught.
The statement s2 is not executed and the try-catch finishes
in an exception mode. The postcondition is Q ′′

e ∧ τ(excV) 6¹
T , where τ yields the runtime type of an object, excV is a
variable that stores the current exception, and ¹ denotes
subtyping; (3) s1 throws an exception and the exception is
caught. In the postcondition of s1, Q ′

e ∧ τ(excV) ¹ T
specifies that the exception is caught. Finally, s2 is executed
producing the postcondition. Note that the postcondition
is not only a normal postcondition: it also has to take into
account that s2 can throw an exception or can execute a
break.
Similar to break, the throw rule modifies the postcondi-

tion P by updating the exception component of the state
with the just evaluated reference.
To define the rule for try-finally, we have to treat a

special case, illustrated through the example in Figure 3.
The exception thrown in the try block is never caught.

However, the loop terminates normally due to the execution

40

compositional
{P} s1 {Qn ,Rb ,Re}
{Qn} s2 {Rn ,Rb ,Re}
{P} s1; s2 {Rn ,Rb ,Re}

while
{e ∧ I} s1 {I ,Qb ,Re}

{I} while (e) s1 {((I ∧ ¬e) ∨ Qb), false,Re}
break

{P} break {false,P , false}
try-catch

{P} s1 {Qn ,Qb ,Q}
{Q ′e [e/excV]} s2 {Qn ,Qb ,Re}

{P} try s1 catch (T e) s2 {Qn ,Qb ,R}
where
Q ≡ ((Q ′′e ∧ τ(excV) 6¹ T) ∨ (Q ′e ∧ τ(excV) ¹ T))

R ≡ (Re ∨ (Q ′′e ∧ τ(excV) 6¹ T))

throw

{P [e/excV]} throw e {false, false,P}

Figure 2: Rules for composition, while, break, try-
catch, and throw.

void foo () {
int b = 1;
while (true) {

try { throw new Exception(); }
finally { b++; break; }

}
b++;

}

Figure 3: The exception raised in the try block is
not handled, yet the method terminates normally.

of the break statement in the finally block. Thus, the value
of b at the end of foo is 3.
If an exception occurs in a try block, it will be re-raised

after the execution of the finally block. If both the try
and the finally block throw an exception, the latter takes
precedence. The following table summarizes the status of
the program after the execution of the try-finally:

finally
normal break exc2

normal normal break exc2

try break break break exc2

exc1 exc1 break exc2

We use the fresh variable eTmp to store the exception
occurred in s1 because another exception might be raised
and caught in s2. In this case, we still need to have access to
the first exception of s1 because this exception is the result
of that statement [13]. We use the fresh variable XTmp to
store the status of the program after the execution of s1.
The possible values of XTmp are: normal , break , and exc.
Depending on the status after the execution of s2, we need to
propagate an exception or change the status of the program
to break . The rule is the following:

{P} s1 {Qn ,Qb ,Qe}
{Q} s2 {R,R′b ,R′e}

{P} try s1 finally s2 {R′n ,R′b ,R′e}

where

Q ≡
(

(Qn ∧ XTmp = normal) ∨ (Qb ∧ XTmp = break) ∨(
Qe [eTmp/excV] ∧ XTmp = exc ∧ eTmp = excV

)
)

R ≡
(

(R′n ∧ XTmp = normal) ∨ (R′b ∧ XTmp = break) ∨
(R′e ∧ XTmp = exc)

)

Furthermore, the logic contains language-independent rules
such as the rule of consequence. Due to space limitations,
we do not present them here.

3. BYTECODE LANGUAGE AND LOGIC
The bytecode language consists of classes with fields and

methods. Methods are implemented as method bodies con-
sisting of a sequence of labeled bytecode instructions. Byte-
code instructions operate on the operand stack, local vari-
ables (which also include parameters), and heap. The byte-
code instructions used to compile the source language are:
pushc v , pushv x , pop x , binop , goto l , brtrue l , and athrow.
pushc v pushes constant v onto the stack. pushv x pushes the
value of a variable x onto the stack. pop x pops the topmost
element off the stack and assigns it to the local variable x .
binop removes the two topmost values from the stack and
pushes the result of applying binop to these values. goto l
transfers control to the point l . brtrue l transfers control
to the point l if the topmost element of the stack is true
and unconditionally pops it. athrow takes the topmost value
from the stack, assumed to be an exception, and throws it.
To simplify the translation of source programs, we assume
the bytecode language has a type boolean.
The bytecode logic is a Hoare-style program logic which

allows one to formally verify that implementations satisfy
interface specifications given as pre- and postconditions. We
use the bytecode logic developed by Bannwart and Müller [1].

3.1 Method and Instruction Specifications
To make proof transformation feasible, it is essential that

the source logic and the bytecode logic are similar in their
structure. In particular, they treat methods in the same
way, they contain the same language-independent rules, and
triples have a similar meaning.
Analogously to the source logic, properties of methods are

expressed by method specifications of the form form {P}
T.mp {Qn , Qe}. Properties of method bodies are expressed
by Hoare triples of the form {P} comp {Q}, where P, Q
are first-order formulas and comp is a method body. The
triple {P} comp {Q} expresses the following refined partial
correctness property: if the execution of comp starts in a
state satisfying P, then (1) comp terminates in a state where
Q holds, or (2) comp aborts due to errors or actions that
are beyond the semantics of the programming language, or
(3) comp runs forever.
The unstructured control flow of bytecode programs makes

it difficult to handle instruction sequences, because jumps
can transfer control into and from the middle of a sequence.
Therefore, the logic treats each instruction individually: each
individual instruction Il in a method body p has a precon-
dition El . An instruction with its precondition is called an
instruction specification, written as {El} l : Il .
The meaning of an instruction specification {El} l : Il

cannot be defined in isolation. {El} l : Il expresses that if
the precondition El holds when the program counter is at
position l , the precondition El′ of Il ’s successor instruction
I ′l holds after normal termination of Il .

41

3.2 Rules
All the rules for instructions, except for method calls, have

the following form:

El ⇒ wp1
p (Il)

A ` {El} l : Il

where wp1
p (Il) denotes the local weakest precondition of in-

struction Il . Such a rule specifies that the precondition of
Il has to imply the weakest precondition of Il with respect
to all possible successor instructions of Il . The definition of
wp1

p is shown in Table 1.
Within an assertion, the current stack is referred to as

s and its elements are denoted by non-negative integers:
element 0 is the topmost element, etc. The interpretation
[El] : State × Stack → Value for s is

[s(0)]〈S , (σ, v)〉 = v and
[s(i + 1)]〈S , (σ, v)〉 = [s(i)]〈S , σ〉

The functions shift and unshift define the substitutions
that occur when values are pushed onto and popped from
the stack, respectively:

shift(E) = E [s(i + 1)/s(i) | ∀i ∈ N]
unshift = shift−1

Il wp1
p (Il)

pushc v unshift(El+1[v/s(0)])

pushv x unshift(El+1[x/s(0)])

pop x (shift(El+1))[s(0)/x]

binop (shift(El+1))[s(1) op s(0)/s(1)]

goto l ′ El′

brtrue l ′ (¬s(0) ⇒ shift(El+1)) ∧ (s(0) ⇒ shift(El′))

Table 1: Definition of function wp1
p .

4. PROOF TRANSLATION
Our proof-transforming compiler is based on two transfor-

mation functions, ∇S and ∇E , for statements and expres-
sions, respectively. Both functions yield a sequence of byte-
code instructions and their specification. The PTC takes a
list of classes with their proofs and returns the bytecode
classes with their proofs.
The function ∇E generates a bytecode proof from a source

expression and a precondition for its evaluation. The func-
tion ∇S generates a bytecode proof and an exception table
from a source proof. These functions are defined as a com-
position of the translations of its sub-trees. The signatures
are the following:

∇E : Precondition × Expression × Postcondition ×
Label → BytecodeProof

∇S : ProofTree × Label × Label × Label × List [Finally] ×
ExcTable → [BytecodeProof × ExcTable]

In ∇E , the label is used as the starting label of the transla-
tion. ProofTree is a derivation in the source logic. In ∇S , the
three labels are: (1) lstart for the first label of the resulting
bytecode; (2) lnext for the label after the resulting bytecode;
this is for instance used in the translation of an else branch

Type Typical use

Precondition ∪ Postcondition P ,Q ,R,U ,V
ProofTree (for source language only) TS1 ,TS2 ,Treei

ProofTree (for finally only) TFi

List [Finally] f
ExceptionTable eti
ExceptionTable (for finally only) et ′i
BytecodeProof BS1 ,BS2

InstrSpec bpushc, ..., bbrtrue
Label lstart , lnext , lbreak ,

lb , lc , ..., lg

Table 2: Naming conventions.

to determine where to jump at the end; (3) lbreak for the
jump target for break statements.
The BytecodeProof type is defined as a list of InstrSpec,

where InstrSpec is an instruction specification. The Finally
type, used to translate finally statements, is defined as a
tuple [ProofTree,ExcTable]. Furthermore, the ∇S takes an
exception table as parameter and produces an exception ta-
ble. This is necessary because the translation of break state-
ments can lead to a modification of the exception table as
described above. (more details are presented in Section 4.3).
The ExcTable type is defined as follows:

ExcTable := List [ExcTableEntry]
ExcTableEntry := [Label ,Label ,Label ,Type]

In the ExcTableEntry type, the first label is the starting label
of the exception line, the second denotes the ending label,
and the third is the target label. An exception of type T1

thrown at line l is caught by the exception entry [lstart ,
lend ,ltarg ,T2] if and only if lstart ≤ l < lend and T1 ¹ T2.
Control is then transferred to ltarg .
In the following, we present the proof translation for com-

positional rule, while, try-finally, and break. Table 2 com-
prises the naming conventions we use in the rest of this pa-
per.

4.1 Compositional Statement
Let TS1 and TS2 be the following proof trees:

TS1 ≡
Tree1

{P} s1 {Qn ,Rb ,Re}

TS2 ≡
Tree2

{Qn} s2 {Rn ,Rb ,Re}

TS1;S2 ≡
TS1 TS2

{P} s1; s2 {Rn ,Rb ,Re}

In the translation of TS1 , the label lnext is the start label
of the translation of s2, say lb . The translation of TS2 uses
the exception table produced by the translation of TS1 , et1.
The translation of TS1;S2 yields the concatenation of the
bytecode proofs for the sub-statements and the exception
table produced by the translation of TS2 .
Let [BS1 , et1] and [BS2 , et2] be of type [BytecodeProof ,

ExcTable]:

[BS1 , et1] = ∇S

(
TS1 , lstart , lb , lbreak , f , et

)

[BS2 , et2] = ∇S

(
TS2 , lb , lnext , lbreak , f , et1

)

42

The translation is defined as follows:

∇S

(
TS1;S2, lstart , lnext , lbreak , f , et

)
=

[BS1 + BS2 , et2]

The bytecode for s1 establishes Qn , which is the precondi-
tion of the first instruction of the bytecode for s2. There-
fore, the concatenation BS1 + BS2 produces a sequence of
valid instruction specifications. We will formalize soundness
in Section 6.

4.2 While Statement
Let TS1 and Twhile be the following proof trees:

TS1 ≡
Tree1

{e ∧ I} s1 {I ,Qb ,Re}

Twhile ≡
TS1

{I} while (e) s1 {(I ∧ ¬e) ∨ Qb , false,Re}

In this translation, first the loop expression is evaluated at
lc . If it is true, control is transferred to lb , the start label of
the loop body. In the translation of TS1 , the start label and
next labels are lb and lc . The break label is the end of the
loop (lnext). Furthermore, the finally list is set to ∅, because
a break inside the loop jumps to the end of the loop without
executing any finally blocks.
Let bgoto and bbrtrue be instruction specifications and BS1

and Be be bytecode proofs:

bgoto = {I } la : goto lc

[BS1 , et1] = ∇S (TS1 , lb , lc , lnext , ∅, et)
Be = ∇E (I , e, (shift(I) ∧ s(0) = e) , c)

bbrtrue = {shift(I) ∧ s(0) = e} ld : brtrue lb

The definition of the translation is the following:

∇S (Twhile , lstart , lnext , lbreak , f , et) =
[bgoto + BS1 + Be + bbrtrue , et1]

The instruction bgoto establishes I , which is the precondition
of the successor instruction (the first instruction of Be). Be

establishes shift(I) ∧ s(0) = e because the evaluation of
the expression pushes the result on top of the stack. This
postcondition implies the precondition of the successor in-
struction bbrtrue. bbrtrue establishes the preconditions of both
possible successor instructions, namely e ∧ I for the suc-
cessor lb (the first instruction of BS1), and I ∧ ¬e for lnext .
Finally, BS1 establishes I , which implies the precondition of
its successor Be , I . Therefore, the produced bytecode proof
is valid.

4.3 Try-Finally Statement
Sun’s newer Java compilers translate try-finally state-

ments using code duplication. Consider the following exam-
ple:

while (i < 20) {
try {

try {
try { ... break; ... }
catch (Exception e) { i = 9; }

}
finally { throw new Exception(); }

}
catch (Exception e) { i = 99; }

}

The finally body is duplicated before the break. But the
exception thrown in the finally bock must be caught by the
outer try-catch. To achieve that, the compiler creates, in
the following order, exception lines for the outer try-catch,
for the try-finally, and for the inner try-catch. When the
compiler reaches the break, it divides the exception entry of
the inner try-catch and try-finally into two parts so that
the exception is caught by the outer try-finally. To be able
to divide the exception table the compiler needs to compare
the exception entries. This is why our Finally type consists
of a proof tree (for the duplicated code) and an exception
table. Note that we have a list of Finally to handle nested
try-finally statements.
Let TS1 , TS2 and Ttry−finally be the following proof trees:

TS1 ≡ Tree1

{P} s1 {Qn ,Qb ,Qe}

TS2 ≡ Tree2

{Q} s2 {R,R′b ,R
′
e}

Ttry−finally ≡ TS1 TS2

{P} try s1 finally s2 {R′n ,R′b ,R
′
e}

where

Q ≡
(

(Qn ∧ XTmp = normal) ∨ (Qb ∧ XTmp = break) ∨(
Qe [eTmp/excV] ∧ XTmp = exc ∧ eTmp = excV

)
)

R ≡
(

(R′n ∧ XTmp = normal) ∨ (R′b ∧ XTmp = break) ∨
(R′e ∧ XTmp = exc)

)

In this translation, the bytecode for s1 is followed by the
bytecode for s2. In the translation of TS1 , the finally block
is added to the finally-list f with TS2 ’s source proof tree
and its associated exception table. The corresponding ex-
ception table is retrieved using the function getExcLines :
Label ×Label ×ExcTable → ExcTable. Given two labels and
an exception table et , getExcLines returns, per every ex-
ception type in et , the first et ’s exception entry (if any) for
which the interval made by the starting and ending labels
includes the two given labels. Furthermore, a new exception
entry, for the finally block, is added to the exception ta-
ble et . Then, the bytecode proof for the case when s1 throws
an exception is created. The exception table of this transla-
tion is produced by the predecessor translations.
Let et ′, et ′′ be the following exception tables:

et1 = et + [lstart , lb , ld , any]
et ′ = getExcLines(la , lb , et1)

Let bgoto, bpop, bpushv, and bathrow be instructions specifica-
tions and BS1 , BS2 , and B ′

S2 be bytecode proofs:

[BS1 , et2] = ∇S (TS1 , lstart , lb , lbreak , [TS2 , et ′] + f , et1)

[BS2 , et3] = ∇S (TS2 , lb , lc , lbreak , f , et2)

bgoto = {Q ′
n} lc : goto lnext

bpop =

shift(Qe) ∧
excV 6= null

∧ s(0) = excV

ld : pop eTmp

[BS ′2 , et4] = ∇S (TS2 , le , lf , lbreak , f , et3)

bpushv =
{

Q ′
n ∨ Q ′

b ∨ Q ′
e

}
lf : pushv eTmp

bathrow =

{
(Q ′

n ∨ Q ′
b ∨ Q ′

e)

∧ s(0) = eTmp

}
lg : athrow

43

The translation is defined as follows:

∇S (Ttry−finally , lstart , lnext , lbreak , f , et) =
[BS1 + BS2 + bgoto + bpop + BS ′2 + bpushv + bathrow , et4]

It is easy to see that the instruction specifications bgoto, bpop,
bpushv, and bathrow are valid (by applying the definition of
the weakest precondition). However, the argument for the
translation of TS1 and TS2 is more complex. Basically, the
result is a valid proof because the proof tree inserted in f for
the translation of TS1 is a valid proof and the postcondition
of each finally block implies the precondition of the next
one. Furthermore, for normal execution, the postcondition
of BS1 (Qn) implies the precondition of BS2 (Q).

4.4 Break Statement
To specify the rules for break, we use the following recur-

sive function: divide: ExcTable × ExcTableEntry × Label
× Label → ExcTable. Its definition assumes that the ex-
ception entry is in the given exception table and the two
given labels are in the interval made by the exception en-
try’s starting and ending labels. Given an exception entry
y and two labels ls and le , divide compares every exception
entry, say x , of the given exception table to y . If the inter-
val defined by x ’s starting and ending labels is included in
the interval defined by y ’s starting and ending labels, then
x must be divided to have the appropriate behavior of the
exceptions. Thus, the first and the last interval of the three
intervals defined by x ’s starting and ending labels, ls , and
le are returned, and the procedure is continued for the next
exception entry. If x and y are equal, then recursion stops
as divide reached the expected entry. The formal definition
of divide is the following:

divide : ExcTable × ExcTableEntry × Label ×
Label → ExcTable

divide : ([], e ′, ls , le) = [e ′]
divide : (e : et , e ′, ls , le) =

[lstart , ls , ltarg , T1] + [le , lend , ltarg , T1]+
divide(et , e ′, ls , le) if e ⊆ e ′ ∧ e 6= e ′

| e : et if e = e ′

| e : divide(et , e ′, ls , le) otherwise
where
e ≡ [lstart , lend , ltarg ,T1] and e ′ ≡ [l ′start , l

′
end , l ′targ ,T2]

⊆ : ExcTableEntry × ExcTableEntry → Boolean
⊆ : ([lstart , lend , ltarg ,T1], [l

′
start , l

′
end , l ′targ ,T2]) =

true if (l ′st ≤ lst) ∧ (l ′end ≥ lend)
| false otherwise

When a break statement is encountered, the proof tree of
every finally block the break has to execute upon exiting
the loop is translated. Then, control is transferred to the end
of the loop using the label lbreak . Let fi = [TFi , et

′
i] denote

the i-th element of the list f , where

TFi =
Treei

{U i} si {V i}

and U i and V i have the following form, which corresponds

to the Hoare rule for try-finally (see Section 2):

U i ≡

(U i
n ∧ XTmp = normal) ∨

(U i
b ∧ XTmp = break) ∨(
U i

e [eTmp/excV] ∧ XTmp = exc ∧
eTmp = excV

)

V i ≡

(V ′i
n ∧ XTmp = normal) ∨

(V ′i
b ∧ XTmp = break) ∨

(V ′i
e ∧ XTmp = exc)

 , V i

b , V i
e

Let BFi be a BytecodeProof for TFi such that

[BFi
, eti+1] = ∇S

(
TFi

, lstart+i , lstart+i+1, lbr , fi+1...fk ,

divide(eti , et
′
i [0], lstart+i , lstart+i+1)

)

bgoto = {Bk
b } lstart+k+1 : goto lbr

The definition of the translation is the following:

∇S

(

{P} break {false,P , false} , lstart , lnext , lbr , f , et0

)

= [BF1 + BF2 + ...BFk + bgoto, etk]

To argue that the bytecode proof is valid, we have to show
that the postcondition of BFi implies the precondition of
BFi+1 and that the translation of every block is valid. This is
the case because the source rule requires the break-postcondition
of s1 to imply the normal precondition of s2.
The exception table has two important properties that

hold during the translation. The first one (Lemma 1) states
that the exception entries, whose starting labels appear af-
ter the last label generated by the translation, are kept un-
changed. The second one (Lemma 2) expresses that the ex-
ception entry is not changed by the division. These proper-
ties are used to prove soundness of the translation.

Lemma 1. If ∇S ({Pn} s {Q}, la , lb+1, lbreak , f , et)
= [(Ila ...Ilb), et

′] and lstart ≤ la < lb ≤ lend then for every
ls , le ∈ Label such that lb < ls < le ≤ lend and for every
T ∈ Type such that T ¹ Throwable∨T ≡ any, the following
holds: et [lstart , lend ,T] = et ′[ls , le ,T].

Lemma 2. Let r ∈ ExcTableEntry and et ′ ∈ ExcTable be
such that r ∈ et ′. If et ∈ ExcTable and ls , le ∈ Label are
such that et = divide(et ′, r , ls , le), then et [ls , le ,T] = r [2]

5. EXAMPLE
Figure 4 exemplifies the translation. The source proof of

the example in Figure 3 is presented on the left-hand side
and the corresponding bytecode proof on the right. An ex-
ception is thrown in the try block with precondition b = 1.
The finally block increases b and then executes a break
changing the status of the program to break mode (the post-
condition is b = 2). In the bytecode proof, the body of the
loop is between lines 09 and 18. Lines 17 and 18 re-throw
the exception produced at line 10. Due to the execution of
a break instruction, the code from 17 to 18 is not reachable
(this is the reason for their false precondition). The break
translation yields at line 16 a goto instruction whose target
is the end of the loop, i.e., line 23.

44

void foo () {
{ true }
int b = 1;
{ b = 1, false , false }
while (true) {

{ b = 1, false , false }
try {

{ b = 1, false , false }
throw new Exception();
{ false , false , b = 1 }

}
finally {

{ b = 1 ∧Xtmp = exc }
b = b+1;
{ b = 2 ∧Xtmp = exc, false, false }
break;
{ false , b = 2 ∧Xtmp = exc, false }

}
{ false , b = 2, false }

}
{ b = 2, false , false }
b = b+1;
{ b = 3, false , false }

}

{ true } 00 : pushc 1
{s(0) = 1} 01 : pop b
{b = 1} 02 : goto 20
{b = 1} 09 : newobj Exception
{b = 1} 10 : athrow
{b = 1 ∧ excV 6= null ∧ s(0) = excV } 11 : pop eTmp
{b = 1 ∧ eTmp = excV } 12 : pushc 1
{b = 1 ∧ s(0) = 1} 13 : pushv b
{b = 1 ∧ s(1) = 1 ∧ s(0) = b} 14 : binop+

{b = 1 ∧ s(0) = b + 1} 15 : pop b
{b = 2} 16 : goto 23
{ false } 17 : pushv eTmp
{ false } 18 : athrow
{b = 1} 20 : pushc true
{b = 1 ∧ s(0) = true } 21 : brtrue 04
{b = 2} 23 : pushc 1
{b = 2 ∧ s(0) = 1} 24 : pushv b
{b = 2 ∧ s(1) = 1 ∧ s(0) = b} 25 : binop+

{b = 2 ∧ s(0) = 1 + b} 26 : pop b

Exception Table
From to target type

0 7 10 any

Figure 4: Example of source and bytecode proofs generated by the PTC.

6. SOUNDNESS THEOREM
In a PCC environment, a soundness proof is required only

for the trusted components. PTCs are not part of the trusted
code base: If the PTC generates an invalid proof, the proof
checker would reject it. But from the point of view of the
code producer, we would like to have a compiler that always
generates valid proofs. Otherwise, it would be useless.
We prove the soundness of the translations, i.e., the trans-

lation produces valid bytecode proofs. It is, however, not
enough to prove that the translation produces a valid proof,
because the compiler could generate bytecode proofs where
every precondition is false. The theorem states that if (1)
we have a valid source proof for the statement s1, and (2)
we have a proof translation from the source proof that pro-
duces the instructions Ilstart ...Ilend , their respective precondi-
tions Elstart ...Elend , and the exception table et , and (3) the
exceptional postcondition in the source logic implies the pre-
condition at the target label stored in the exception table
for all types T such that T ¹ Throwable ∨ T ≡ any but
considering the value stored in the stack of the bytecode,
and (4) the normal postcondition in the source logic im-
plies the next precondition of the last generated instruction
(if the last generated instruction is the last instruction of
the method, we use the normal postcondition in the source
logic), (5) the break postcondition implies finallyProperties.
Basically, the finallyProperties express that for every triple
stored in f, the triple holds and the break postcondition of
the triple implies the break precondition of the next triple.
And the exceptional postcondition implies the precondition
at the target label stored in the exception table eti but con-
sidering the value stored in the stack of the bytecode. Then,
we have to prove that every bytecode specification holds
(` {El} Il).
In the soundness theorem, we use the following abbrevia-

tion: for an exception table et , two labels la , lb , and a type
T , et [la , lb ,T] returns the target label of the first et ’s excep-
tion entry whose starting and ending labels are less or equal
and greater or equal than la and lb , respectively, and whose

type is a supertype of T .
Due to space limitations, we present the theorem without

the details of the properties satisfied by the finally func-
tion f . The proof runs by induction on the structure of the
derivation tree for {P} s1 {Qn ,Qb ,Qe}. The proof and the
complete theorem can be found in our technical report [7].

Theorem 1.

` Tree
{P} s1 {Qn ,Qb ,Qe}

≡ TS1 ∧
[
(Ilstart ...Ilend

), et
]

= ∇S

(
TS1 , lstart , lend+1, lbreak , f , et ′

)∧
(∀ T : Type : (T ¹ Throwable ∨ T ≡ any) :

(Qe ∧ excV 6= null ∧ s(0) = excV) ⇒ Eet′[lstart ,lend ,T]) ∧(
Qn ⇒ Elend+1

)
∧

(Qb ⇒ finallyProperties)

⇒
∀ l ∈ lstart ... lend : ` {El} Il

7. RELATED WORK
Necula and Lee [9] have developed certifying compilers,

which produce proofs for basic safety properties such as type
safety. Since our approach supports interactive verification
of source programs, we can handle more complex properties
such as functional correctness.
The open verifier framework for foundational verifiers [4]

verifies untrusted code using customized verifiers. The ap-
proach is based on foundation proof carrying code. The ar-
chitecture consists of a trusted checker, a fixpoint module,
and an untrusted extension (a new verifier developed by un-
trusted users). However, the properties that can be proved
are still limited.
A certified compiler [5, 11] is a compiler that generates a

proof that the translation from the source program to the
assembly code preserves the semantics of the source pro-
gram. Together with a source proof, this gives an indirect

45

correctness proof for the bytecode program. Our approach
generates the bytecode proof directly, which leads to smaller
certificates.
Barthe et al. [3] show that proof obligations are preserved

by compilation (for a non-optimizer compiler). They prove
the equivalence between the verification condition (VC) gen-
erated over the source code and the bytecode. The source
language is an imperative language which includes method
invocation, loops, conditional statements, try-catch and throw
statements. However, they do not consider try-finally state-
ments, which make the translation significantly more com-
plex. Our translation supports try-finally and break state-
ments.
Pavlova [10] extends the aforementioned work to a subset

of Java (which includes try-catch, try-finally, and return
statements). She proves equivalence between the VC gener-
ated from the source program and the VC generated from
the bytecode program. The translation of the above source
language has a similar complexity to the translation pre-
sented in this paper. However, Pavlova avoided the code
duplication for finally blocks by disallowing return state-
ments inside the try blocks of try-finally statements. This
simplifies not only the verification condition generator, but
also the translation and the soundness proof.
Furthermore, Barthe et al. [2] translate certificates for op-

timizing compilers from a simple interactive language to an
intermediate RTL language (Register Transfer Language).
The translation is done in two steps: first the source pro-
gram is translated into RTL and then optimizations are per-
formed building the appropriate certificate. Barthe et al. use
a source language that is simpler than ours. We will inves-
tigate optimizing compilers as part of future work.
This work is based on Müller and Bannwart’s work [1].

They present a proof-transforming compiler from a subset
of Java which includes loops, conditional statements and
object oriented features. We have extended the source lan-
guage including exception handling and break statements.
Moreover, we have also proved soundness.

8. CONCLUSION
We have defined proof transformation from a subset of

Java to bytecode. The PTC allows us to develop the proof
in the source language (which is simpler), and transforms it
into a bytecode proof. Since Java source and bytecode are
very similar, proof transformation is simple for many lan-
guage features. In this paper, we focused on one of the most
complex translations, namely the interaction between try-
finally and break statements. We showed that our trans-
lation is sound, that is, it produces valid bytecode proofs.
To show the feasibility of our approach, we implemented

a PTC for a language similar to the Java subset considered
here. The compiler takes a proof in XML format and pro-
duces the bytecode proof.
As future work, we plan to extend the source language

with statements like return and continue. Also, we plan
to develop a proof checker that tests the bytecode proof.
Moreover, we plan to analyze how proofs can be translated
using an optimizing compiler.
Moreover, we will investigate proof-transforming compila-

tion for language features that cannot by directly mapped
to bytecode such as multiple inheritance and Eiffel’s once
methods. This extension will lead to a more general trans-
formation framework.

9. ACKNOWLEDGMENTS
We would like to thank Nicu Georgian Fruja for review-

ing and providing helpful comments on drafts of this paper.
Müller’s work was carried out at ETH Zurich. It was funded
in part by the Information Society Technologies program of
the European Commission, Future and Emerging Technolo-
gies under the IST-2005-015905 MOBIUS project. Nordio’s
work was funded in part by ETH under the Heterogeneous
Proof-Carrying Components project.

10. REFERENCES
[1] F. Y. Bannwart and P. Müller. A Logic for Bytecode.

In F. Spoto, editor, Bytecode Semantics, Verification,
Analysis and Transformation (BYTECODE), volume
141 of ENTCS, pages 255–273. Elsevier, 2005.

[2] G. Barthe, B. Grégoire, C. Kunz, and T. Rezk.
Certificate Translation for Optimizing Compilers. In
13th International Static Analysis Symposium (SAS),
LNCS, Seoul, Korea, August 2006. Springer-Verlag.

[3] G. Barthe, T. Rezk, and A. Saabas. Proof obligations
preserving compilation. In Third International
Workshop on Formal Aspects in Security and Trust,
Newcastle, UK, pages 112–126, 2005.

[4] B. Chang, A. Chlipala, G. Necula, and R. Schneck.
The Open Verifier Framework for Foundational
Verifiers. In ACM SIGPLAN Workshop on Types in
Language Design and Implementation (TLDIŠ05),
2005.

[5] G. Goos and W. Zimmermann. Verification of
Compilers. LNCS, pages 201–230. Springer-Verlag,
2005.

[6] P. Müller. Modular Specification and Verification of
Object-Oriented Programs, volume 2262 of LNCS.
Springer-Verlag, 2002.

[7] P. Müller and M. Nordio. Proof-Transforming
Compilation of Programs with Abrupt Termination.
Technical Report 565, ETH Zurich, 2007.

[8] G. Necula. Compiling with Proofs. PhD thesis, School
of Computer Science, Carnegie Mellon University,
1998.

[9] G. Necula and P. Lee. The Design and
Implementation of a Certifying Compiler. In
Programming Language Design and Implementation
(PLDI), pages 333–344. ACM Press, 1998.

[10] M. Pavlova. Java Bytecode verification and its
applications. PhD thesis, University of Nice
Sophia-Antipolis, 2007.

[11] A. Poetzsch-Heffter and M. J. Gawkowski. Towards
Proof Generating Compilers. ENTCS, 132(1):37–51,
2005.

[12] A. Poetzsch-Heffter and P. Müller. A Programming
Logic for Sequential Java. In S. D. Swierstra, editor,
European Symposium on Programming Languages and
Systems (ESOP’99), volume 1576 of LNCS, pages
162–176. Springer-Verlag, 1999.

[13] A. Poetzsch-Heffter and N. Rauch. Soundness and
Relative Completeness of a Programming Logic for a
Sequential Java Subset. Technical report, Technische
Universität Kaiserlautern, 2004.

46

An Integrated Verification Environment for JML: Architecture and
Early Results

Patrice Chalin, Perry R. James, George Karabotsos
Dependable Software Research Group,

Dept. of Computer Science and Software Engineering,
Concordia University, Montréal, Canada

{chalin, perry, g_karab}@dsrg.org

ABSTRACT
Tool support for the Java Modeling Language (JML) is a very
pressing problem. A main issue with current tools is their
architecture: the cost of keeping up with the evolution of Java is
prohibitively high: e.g., almost three years following its release,
Java 5 has yet to be fully supported. This paper presents the
architecture of JML4, an Integrated Verification Environment
(IVE) for JML that builds upon Eclipse’s support for Java,
enhancing it with Extended Static Checking (ESC), an early form
of Runtime Assertion Checking (RAC) and JML’s non-null type
system. Early results indicate that the synergy of complementary
verification techniques (being made available within a single tool)
can help developers be more effective; we demonstrate new bugs
uncovered in JML annotated Java source—like ESC/Java2—
which is routinely verified using first generation JML tools.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
programming by contract; D.3.3 [Programming Languages]; F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs.

General Terms
Design, Languages, Theory, Verification.

Keywords
Integrated Verification Environment, Java Modeling Language,
Eclipse, JML4.

1. INTRODUCTION
The Java Modeling Language (JML) is the most popular
Behavioral Interface Specification Language (BISL) for Java.
JML is recognized by a dozen tools and used by over two dozen
institutions for teaching and/or research, mainly in the context of
program verification [18]. Tools exist to support the full range of
verification from runtime assertion checking (RAC) to full static
program verification (FSPV) with extended static checking (ESC)
in between [3]. Of these, RAC and ESC are the technologies
which are most likely to be adopted by mainstream developers
because of their ease of use and low learning curve.

In earlier work [6] we confirmed (among other things) how
RAC and ESC are most effective when used together, particularly
when it comes to the verification of sizeable systems.
Unfortunately, this is more challenging than it should be; one of
the key reasons being that the tools accept slightly different and
incompatible variants of JML—sadly this is the case for
practically all of the current JML tools. The top factors
contributing to the current state of affairs are
• partly historical—the tools were developed independently,

each having their own parsers, type checkers, etc. and
• partly due to the rapid pace of evolution of both JML and

Java.
Not only does this last point make it difficult for individual
research teams to keep apace, it also results in significant and
unnecessary duplication of effort.

For some time now the JML community has recognized that a
consolidation effort is necessary with respect to its tool base. In
response to this need, three prototypical “next generation” tools
have taken shape: JML3, JML4, and JML5 [18]. This paper
presents the architecture and design rationale behind JML4: we
explain why we believe JML4 will not suffer from the
maintenance overhead of other JML tools even in the face of the
rapid pace of evolution of Java.

The remainder of the paper is organized as follows. In the
next section, we present early results demonstrating that the
synergy of complementary verification techniques (being made
available within JML4) can help developers be more effective; we
illustrate new bugs uncovered in ESC/Java2 source—despite the
fact that the code is routinely verified using itself and other JML
tools. The remaining sections focus on JML tool support, offering
• a discussion of the goals to be achieved by any next

generation JML tool base (Section 3) and
• a presentation (Section 4) of the architectural and (some

aspects of) the detailed design of JML4; our objective is to
provide sufficient detail to allow JML4’s design to be
assessed relative to the stated goals.

Section 5 provides initial arguments supporting our belief that
JML4’s design will be less costly to maintain in the long run than
current JML tools. Section 6 offers a brief discussion and
comparison of JML4 with its predecessor JML2 and siblings
JML3 and JML5 as well as other tools like the Java Applet
Correctness Kit (JACK). Conclusions and future work are
presented in Section 7.

2. EARLY RESULTS: BENEFITS OF SYNERGY
One of JML4’s first and most fully developed features is

JML’s non-null type system [7]. This, coupled with the tool’s
ability to read the extensive JML API library specifications,
renders it quite effective at statically detecting potential null
pointer exceptions (NPEs). Recently, JML4 was enhanced to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Sixth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2007), September 3-4, 2007,
Cavtat near Dubrovnik, Croatia.
Copyright 2007 ACM ISBN 978-1-59593-721-6/07/0009 ... $5.00

47

support Extended Static Checking (ESC) through the integration
of ESC/Java2 [11]. While each verification technique has
strengths and weaknesses, integration of complementary
techniques into a single verification environment brings about a
level of synergy that would not be achievable otherwise.

As a concrete example of the kind of verification technique
synergy which JML4 achieves, consider the code fragment given
in Figure 1, an excerpt from ESC/Java2’s escjava.Main class.
JML4 correctly reports that a dereference of vcg inside of
processRoutineDecl() could result in an NPE (Figure 2).

Since ESC/Java2 is routinely run on itself, why was this error
not detected before? Because analyzing processRoutine-

Decl(), which consists of 386 lines of code, is beyond the
capabilities of ESC/Java2 (it gives up on attempting to verify the
method because the verification condition is too big). Several
errors that arise under such circumstances were identified in

ESC/Java2 source by JML4.
As another example, consider the static options() method

of escjava.Main (Figure 1) which returns a reference to
ESC/Java2’s command line options. This method is used
throughout the code (272 occurrences) and its return value is
directly dereferenced even though the method can return null.

While JML4 reports the 250+ NPEs related to the use of this
method, ESC fails to do so because another ESC error prevents it
from determining that the method can return null: namely, a
possible type cast violation. The effect of having one error mask
others is particularly acute for ESC/Java2 (even more so than in
ordinary compilers) thus making effective the more resilient,
though less powerful, complementary verification capabilities of
other techniques such as those implemented in JML4 (and
recently added to ESC/Java2 [17]). Our preliminary use of JML4
has demonstrated that, e.g., nullity type errors once fixed allow
ESC to push further its analysis, helping expose yet more bugs in
code and specifications, which leads to uncovering further nullity
type errors, etc.

3. JML TOOLS: BACKGROUND AND GOALS
In this section we discuss the main goals to be satisfied by any
next generation tool base for JML. Before doing so we give a
brief summary of the JML’s first generation of tools.

3.1 FIRST GENERATION TOOLS
The first generation JML tools essentially consist of:
• Common JML tool suite—formerly the Iowa State University

(ISU) JML tool suite—also known to developers as JML2,
which includes the JML RAC compiler and JmlUnit [3],

• ESC/Java2, an extended static checker [11], and
• LOOP a full static program verifier [20].
Of these, JML2 is the original JML tool set. Although ESC/Java2
and LOOP initially used an annotation language other than JML,
they quickly switched to use JML.

Being independent development efforts, each of the tools
mentioned above has its own Java/JML front end including
scanner, parser, abstract syntax tree (AST) hierarchy and static

package escjava;
...
public class Main extends javafe.SrcTool {

 ...

 public static Options options() {
 return (Options)options;
 }

 ...
 public String processRoutineDecl(...) {

 ...

 VcGenerator vcg = null; ...
 try {

 ... // possible assignment to vcg

 } // multiple catch blocks
 catch (Exception e) {

 ...

 }
 ...

 fw.write(vcg.old2Dot()); // <<< possible NPE

 ...
 }

}

Figure 1. Code excerpt from the escjava.Main class

Figure 2. JML4 reporting non-null type system errors in a method too big for ESC to verify

48

analysis code—though not all developed to the same level of
completeness or reliability. This is a considerable amount of
duplicate effort and code (of the order of 50-100K SLOC1). This
became evident as JML evolved, but the main hurdle which has
yet to be fully addressed is the advent of Java 5 (especially
generics).

3.1.1 LESSONS LEARNED FROM JML2
Which lessons can be learned from the development of the first
generation of tools, especially JML2 which, from the start, has
been the reference implementation of JML? JML2 was essentially
developed as an extension to the MultiJava (MJ) compiler. By
“extension”, we mean that
• for the most part, MJ remains independent of JML
• many JML features are naturally implemented by subclassing

MJ features and overriding methods—e.g. abstract syntax tree
nodes with their associated type checking methods;

• in other situations, extension points (calls to methods with
empty bodies) were added to MJ classes so that it was
possible to override behavior in JML2.

We believe that this approach has allowed JML2 to be
successfully maintained as the JML reference implementation
since 2002 by an increasing developer pool (there are currently 49
registered developers). In that case what, if anything, went
wrong? We believe it was a combination of factors including the
advent of a relatively big step in the evolution of Java (including
Java 5 generics) and the difficulty in finding developers to
upgrade MJ. Hence our approach in JML4 has been to repeat the
successful approach adopted by JML2 but to ensure that we
choose to extend a Java compiler that we are confident will be
maintained (outside of the JML community).

3.1.2 EVOLUTION OF IDES
Another important point to be made about the first generation of
JML tools is that they are mainly command line tools, though
some developers were able to make comfortable use of them
inside Emacs, which in a sense, can be considered an early
integrated development environment (IDE).

With a phenomenal increase in the popularity of modern IDEs
like Eclipse, it seems clear that to increase the likelihood of
getting widespread adoption of JML, it will be necessary to have
its tools operate well within one or more popular IDEs. In
recognition of this, early efforts have successfully provided basic
JML tool support via Eclipse plug-ins, which mainly offer access
to the command line capabilities of the JML RAC or ESC/Java2.

Other efforts (generation 1.5), resulted in tools that were built
from the outset within an IDE but have not been designed to
support RAC and ESC. These include the
• Java Applet Correctness Kit (JACK), built directly as an

Eclipse plug-in, supports interactive static verification [2].
• KeY tool, which was recently adapted to support JML as a

constraint language for expressing specifications in design
models. The KeY tool is built on top of Borland’s Together
IDE [1, 12].

1 (Physical) Source Lines of Code obtained by counting end-of-lines for

non-comment code.

3.2 GOALS FOR NEXT GENERATION TOOL
BASES

We are targeting mainstream industrial software developers as our
key end users. From an end user point of view, we strive to offer a
single Integrated (Development and) Verification Environment
(IVE) within which they can use any desired combination of
RAC, ESC, and FSPV technology. No single tool currently offers
this feature set for JML. In addition, user assistance by means of
the auto-generation of specifications (or specification fragments)
should be possible—e.g. based on approaches currently offered
by tools like Daikon [14], Houdini [15] and JmlSpec [3].

Since JML is essentially a superset of Java, most JML tools
will require, at a minimum, the capabilities of a Java compiler
front end. Some tools (e.g., the RAC) would benefit from
compiler back-end support as well. One of the important
challenges faced by the JML community is keeping up with the
rapid pace of the evolution of Java. As researchers in the field of
applied formal methods, we get little or no reward for developing
and/or maintaining basic support for Java. While such support is
essential, it is also very labor intensive. Hence, an ideal solution
would be to extend a Java compiler, already integrated within a
modern IDE, whose maintenance is assured by a developer base
outside of the JML research community. If the extension points
can be judiciously chosen and kept to a minimum then the extra
effort caused by developing on top of a rapidly moving base can
be minimized.

In summary, our general goals are to provide
• a base framework for the integrated capabilities of RAC, ESC,

and FSPV
• in the context of a modern Java IDE whose maintenance is

outside the JML community
• by implementing support for JML as extensions to the base

support for Java so as to minimize the integration effort
required when new versions of the IDE are released.

A few recent projects have attempted to satisfy these goals. In the
next section, we describe how we have attempted to satisfy them
in our design of JML4; the other projects are discussed in the
section on related work.

4. JML4
In our first feature set, JML4 enhanced Eclipse 3.3 with: scanning
and parsing of nullity modifiers, enforcement of JML’s non-null
type system (both statically and at runtime) and the ability to read
and make use of the extensive JML API library specifications.
This subset of features was chosen so as to exercise some of the
basic capabilities that any JML extension to Eclipse would need
to support. These include
• recognizing and processing JML syntax inside specially

marked comments, both in *.java files as well as *.jml
files;

• storing JML-specific nodes in an extended AST hierarchy,
• statically enforcing a modified type system, and
• providing for runtime assertion checking (RAC).
Also, the chosen subset of features is useful in its own right,
somewhat independent of other JML features [7]; i.e. the
capabilities form a natural extension to the existing embryonic
Eclipse support for nullity analysis.

We have since been pursuing our enrichment of the JML4
feature set so that to date, we have completed a full integration of

49

ESC/Java2 and begun work towards the support of runtime
assertion checking of JML Level 0 [19, Section 2.9].

In the remainder of this section, we present our proposed
means of extending Eclipse to support JML, appealing at times to
the specific way in which the JML4 features described above
have been realized.

4.1 ARCHITECTURAL OVERVIEW
Eclipse is a plug-in based application platform. An Eclipse
application consists of the Eclipse plug-in loader (Platform
Runtime component), certain common plug-ins (such as those in
the Eclipse Platform package) along with application specific
plug-ins. Well known bundlings of Eclipse plug-ins include the
Eclipse Software Development Kit (SDK) and the Eclipse Rich
Client Platform (RCP). While Eclipse is written in Java, it does
not have built-in support for Java. Like all other Eclipse features,
Java support is provided by a collection of plug-ins—called the
Eclipse Java Development Tooling (JDT)—offering, among other
things, a standard Java compiler and debugger.

The main packages of interest in the JDT are the ui, core,
and debug. As can be gathered from the names, the core (non-UI)
compiler functionality is defined in the core package; UI
elements and debugger infrastructure are provided by the
components in the ui and debug packages, respectively.

One of the rules of Eclipse development is that public APIs
must be maintained forever. This API stability helps avoid
breaking client code. The following convention was established
by Eclipse developers: only classes or interfaces that are not in a
package named internal can be considered part of the public
API. Hence, for example, the classes for the JDT’s internal AST
are found in the org.eclipse.jdt.internal.compiler.ast
package, where as the public version of the AST is (partly)
reproduced under org.eclipse.jdt.core.dom. For JML4 we
have generally made changes to internal components (to insert
hooks) and then moved most of the JML specific code to
org.jmlspecs.eclipse.jdt.

At the top-most level, JML4 consists of:
• a customized version of the org.eclipse.jdt.core

package (details will be given below) that is used as a drop-in
replacement for the official Eclipse JDT core.

• JML specific classes contained in org.jmlspecs.-

eclipse.jdt including core classes (most of which are sub-
classes of the JDT Abstract Syntax Tree (AST) node
hierarchy) and ui classes (e.g. for JML related preferences).

These packages are shown in bold in Figure 3.

4.2 COMPILATION PHASES OVERVIEW
The main steps of the compilation process performed by JML4
are illustrated in Figure 4. In the Eclipse JDT (and JML4), there
are two types of parsing: in addition to a standard full parse, there
is also a diet parse, which only gathers signature information and
ignores method bodies. When a set of JML annotated Java files is
to be compiled, all are diet parsed to create (diet) ASTs
containing initial type information, and the resulting type bindings
are stored in the lookup environment (not shown). Then each
compilation unit (CU) is fully parsed. During the processing of
each CU, types that are referenced but not yet in the lookup en-
vironment must have type bindings created for them. This is done
by first searching for a binary (*.class) file or, if not found, a
source (*.java) file. Bindings are created directly from a binary
file, but a source file must be diet parsed and added to the list to
be processed. In both cases the bindings are added to the lookup
environment. If JML specifications for any CU or referenced type
are contained in a separate external file (e.g. a *.jml file), then
these specification files are diet parsed and the resulting
information merged with the CU AST (or associated with the

core

org.jmlspecs.
eclipse.jdt

org.eclipse.jdt
...

Platform
Runtime

Eclipse Platform Workbench
Workspace
Team
Help

ui

debug

core

ui

Figure 3. High-level package view

Figure 4. JDT/JML4 compilation phases

50

binding in the case of a binary file). Finally, flow analysis and
code generation are performed. Extended static checking is
treated as a distinct phase between flow analysis and code
generation. In the remaining subsections we briefly cover some
aspects of JML4 compilation—details can be found in [8].

4.3 LEXICAL SCANNING, PARSING AND THE
AST

Figure 5 provides an overview of the main parser components as
well as the means by which they are generated; components in
bold are those that have been customized under JML4.

Scanning. Since all of JML is contained within specially
marked comments, the main change to the lexical scanner was to
enhance it to recognize JML annotations. This is currently
handled using a Boolean field that indicates if the scanner is in a
JML annotation or not. Adding support for new keywords
requires a little more work than usual since the JDT’s scanner is
highly optimized and hand crafted. Keywords, for example, are
identified by a set of nested case statements based on the first
character of a lexeme and its length.

Parsing. The JDT’s parser is auto-generated from a grammar
file (java.g) using the Jikes Parser Generator (JikesPG) and a
custom script we have written. On a positive note, the grammar
file, java.g, closely follows the Java Language Specification
[16] and hence has been relatively easy to extend. Possibly the
main source of difficulty in the parser is the lack of automatic
support for token stacks.

Other than adding methods corresponding to new grammar-
rule reductions, the most prominent change to the parser is the
replacement of calls to constructors of JDT AST nodes with those
of JML-specific AST subclasses. The abstract syntax tree
hierarchy for JML4 is obtained by subclassing specific JDT AST
nodes as needed. An illustration of how this is done is given in
Figure 6. For example, JML type references are like Java type

references but have additional information such as nullity.
Currently we subclass 20% of the AST node types; the JML
specific subclasses generally contain very little code (and in
particular, no code is copied from superclasses).

4.4 TYPE CHECKING AND FLOW ANALYSIS
Type checking is performed by invoking the resolve() method
on a compilation unit. Similarly, flow analysis is performed by
the analyseCode() method. Addition of JML functionality is
achieved by inserting “hooks” into the previously mentioned
methods—i.e. calls to methods with empty bodies in the parent
class that are then overridden in JML-specific AST nodes. Our
hope is that such hooks will be ported back into the Eclipse JDT,
something the JDT developers have confirmed is feasible
provided we can demonstrate that no public APIs are changed and
that there is little or no impact on runtime performance.

Between type checking and flow analysis, the compiler
checks for external specification files (e.g., *.jml files)
corresponding to the file being compiled. If one is found, it is
parsed and any annotations are added to the corresponding
declarations. Binary types (i.e., those found in *.class files)
whose specifications are needed are handled differently. For
these, the system searches for both a source and external
specification file.

4.5 RUNTIME CHECKING AND EXTENDED
STATIC CHECKING

Code generation is performed by each ASTNode’s generate-
Code() method. Its CodeStream parameter provides methods for
emitting JVM bytecode and hides some of the bookkeeping
details, such as determining the generated code’s runtime stack
usage. Hence, supporting runtime checking is relatively
straightforward.

Extended Static Checking in JML4 is currently achieved by a

org.eclipse.jdt.internal.compiler.parser

JikesPG

Parser
.java

Terminal
Tokens

.java

Parser code
fragments

Parser table
fragments

(.rsc)

DSRG
script

Resource
and other

files

Scanner
.java

java.g

Figure 5. Customizing the JDT lexer and parser

Figure 6. Part of the AST hierarchy (org.eclipse.jdt.internal.compiler.ast)

51

preliminary integration of ESC/Java2. That is, during compilation
in a step just following flow analysis, we invoke escjava’s main
processing method—which effectively reparses the file inside of
ESC/Java2. While such an approach is inefficient, it has allowed
us to focus on the integration of the problem reporting. As a next
step, we will create a visitor which will map Eclipse JDT AST’s
into ESC/Java2’s AST, thus avoiding the reparsing. Finally, we
plan on building a custom transformation from the JDT’s AST
into ESC/Java2’s guarded command language, hopefully allowing
us to reuse the rest of ESC/Java2’s verification condition
generation back-end.

5. VALIDATION OF ARCHITECTURAL
APPROACH

JML4 was recently used to help validate our proposal that JML’s
non-null type system should be non-null by default [7]. It was
used to produce RAC-enabled versions of five case studies
(totaling over 470K SLOC), which were then used to execute
those systems’ extensive test suites. This exercise gave us
confidence in JML4’s runtime checking capabilities and its ability
to process JML API specifications.

JML4, like JML2, is built as a closely integrated and yet
loosely coupled extension to an existing compiler. An additional
benefit for JML4 is that the timely compiler base maintenance is
assured by the Eclipse Foundation developers. Hence, as
compared to JML2, we have traded in committer rights for free
maintenance; a choice which we believe will be more
advantageous in the long run—in particular due to the rapid pace
of the evolution of Java. Unfortunately, loosing committer rights
means that we must maintain our own version of the JDT code.
Use of the CVS vendor branch feature has made this manageable.

While we originally had the goal of creating JML4 as a proper
Eclipse plug-in, only making use of public JDT APIs (rather than
as a replacement plug-in for the JDT), it rapidly became clear that
this would result in far too much copy-and-change code; so much
so that the advantage of coupling to an existing compiler was lost
(e.g. due to the need to maintain our own full parser and AST).

Nonetheless we were also originally reluctant to build atop
internal APIs, which contrary to public APIs, are subject to
change—with weekly releases of the JDT code, it seemed like we
would be building on quicksand. Anticipating this, we established
several conventions that make merging in the frequent JDT
changes both easier and less error prone. These include
• avoiding introducing JML features by the copy-and-change of

JDT code, instead we make use of subclassing and method
extension points;

• bracketing any changes to our copy of the JDT code with
special comment markers.

While following these conventions, incorporating each of the
regular JDT updates since the fall of 2006 (to our surprise) has
taken less than 10 minutes, on average.

6. RELATED WORK
In this section we briefly compare JML4 to its sibling next
generation projects JML3, JML5 as well as to the Java Applet
Correctness Kit (JACK). Further details, examples and tools are
covered in [8].

The first next-generation Eclipse-based initiative was JML3,
created by David Cok. The main objective of the project was to
create a proper Eclipse plug-in, independent of the internals of the
JDT [9]. Considerable work has been done to develop the
necessary infrastructure, but there are growing concerns about the
long term costs of this approach.

Because the JDT’s parser is not extensible from public JDT
extensions points, a separate parser for the entire Java language
and an AST had to be created for JML3; in addition, Cok notes
that “JML3 [will need] to have its own name / type / resolver /
checker for both JML constructs [and] all of Java” [9]. Since one
of the main goals of the next generation tools is to escape from
providing support for the Java language, this is a key
disadvantage.

The Java Applet Correctness Kit (JACK) is a proprietary tool
for JML annotated Java Card programs initially developed at
Gemplus (2002) and then taken over by INRIA (2003) [2]. It uses
a weakest precondition calculus to generate proof obligations that
are discharged automatically or interactively using various
theorem provers [5]. While JACK is emerging as a candidate next
generation tool (offering features unique to JML tools such as
verification of annotated byte code [4] and a proof obligation
viewer), being a proper Eclipse plug-in, it suffers from the same
drawbacks as JML3. Additionally JACK does not provide support
for RAC which we believe is an essential component of a
mainstream IVE.

The JML5 project, recently initiated at Iowa State University,
has taken a different approach. Its goal is to embed JML
specifications in Java 5 annotations rather than Java comments.
Such a change will allow JML’s tools to use any Java 5 compliant
compiler. Unfortunately, the use of annotations has important
drawbacks as well. In addition to requiring a separate parser to
process the JML specific annotation contents (e.g. assertion
expressions), Java’s current annotation facility does not allow for
annotations to be placed at all locations in the code at which JML
can be placed. JSR-308 is addressing this problem as a
consequence of its mandate, but any changes proposed would
only be present in Java 7 and would not allow support for earlier
versions of Java [13].

Table 1 presents a summary of the comparison of the tools.
As compared to the approach taken in JML4, the main drawback
of the other tools is that they are likely to require more effort to
maintain over the long haul as Java continues to evolve and due to
the looser coupling with their base.

7. CONCLUSION AND FUTURE WORK
The idea of providing JML tool support by means of a closely
integrated and yet loosely coupled extension to an existing
compiler was successfully realized in JML2. This has worked
well since 2002, but unfortunately the chosen Java compiler is not
being kept up to date with respect to Java in a timely manner. We
propose applying the same approach by extending the Eclipse
JDT (partly through internal packages). Even though it is more
invasive than a proper plug-in solution, using this approach we
have demonstrated that it was relatively easy to enhance the type
system and provide RAC and ESC support.

52

Other possible next generation JML tools have been
discussed, but all seem to share the common overhead of
maintaining a full Java parser, AST, and type checker separate
from the base tools they are built from. This seems like an
overhead that will be too costly in the long run. We are certainly
not claiming that JML4 is the only viable next generation
candidate but are hopeful that this paper has demonstrated that it
is a likely candidate.

REFERENCES
[1] W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R.

Hähnle, W. Menzel, W. Mostowski, A. Roth, S. Schlager,
and P. H. Schmitt, “The KeY Tool”, Software and System
Modeling, 4:32-54, 2005.

[2] G. Barthe, L. Burdy, J. Charles, B. Grégoire, M. Huisman,
J.-L. Lanet, M. Pavlova, and A. Requet, “JACK: a tool for
validation of security and behaviour of Java applications”.
Proceedings of the 5th International Symposium on Formal
Methods for Components and Objects (FMCO), 2007.

[3] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll, “An Overview
of JML Tools and Applications”, International Journal on
Software Tools for Technology Transfer (STTT), 7(3):212-
232, 2005.

[4] L. Burdy, M. Huisman, and M. Pavlova, “Preliminary
Design of BML: A Behavioral Interface Specification
Language For Java Bytecode”. Proceedings of the
Fundamental Approaches to Software Engineering (FASE),
vol. 4422 of LNCS, pp. 215-229, 2007.

[5] L. Burdy, A. Requet, and J.-L. Lanet, “Java Applet
Correctness: A Developer-Oriented Approach”.
Proceedings of the International Symposium of Formal
Methods Europe, vol. 2805 of LNCS. Springer, 2003.

[6] P. Chalin and P. James, “Cross-Verification of JML Tools:
An ESC/Java2 Case Study”. Proceedings of the Workshop
on Verified Software: Theories, Tools, and Experiments
(VSTTE), Seattle, Washington, August, 2006.

[7] P. Chalin and P. James, “Non-null References by Default in
Java: Alleviating the Nullity Annotation Burden”.
Proceedings of the 21st European Conference on Object-
Oriented Programming (ECOOP), Berlin, Germany, July-
August, 2007.

[8] P. Chalin, P. R. James, and G. Karabotsos, “The
Architecture of JML4, a Proposed Integrated Verification
Environment for JML”, Dependable Software Research
Group, Concordia University, ENCS-CSE-TR 2007-006.
May, 2007.

[9] D. R. Cok, “Design Notes (Eclipse.txt)”,
http://jmlspecs.svn.sourceforge.net/viewvc/jmlspecs/trunk/d
ocs/eclipse.txt, 2007.

[10] D. R. Cok, E. Hubbers, and E. Rodríguez, “Esc/Java2
Eclipse Plug-in”, http://sort.ucd.ie/projects/escjava-eclipse/,
2007.

[11] D. R. Cok and J. R. Kiniry, “ESC/Java2: Uniting ESC/Java
and JML”. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet,
and T. Muntean editors, Proceedings of the International
Workshop on the Construction and Analysis of Safe, Secure,
and Interoperable Smart Devices (CASSIS'04), Marseille,
France, March 10-14, vol. 3362 of LNCS, pp. 108-128.
Springer, 2004.

[12] C. Engel and A. Roth, “KeY Quicktour for JML”:
www.key-project.org, 2006.

[13] M. Ernst and D. Coward, “Annotations on Java Types”,
JCP.org, JSR 308. October 17, 2006.

[14] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C.
Pacheco, M. S. Tschantz, and C. Xiao, “The Daikon system
for dynamic detection of likely invariants”, Science of
Computer Programming, 2007.

[15] C. Flanagan and K. R. M. Leino, “Houdini, an Annotation
Assistant for ESC/Java”. Proceedings of the International
Symposium of Formal Methods Europe, Berlin, Germany,
vol. 2021, pp. 500-517. Springer, 2001.

[16] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java
Language Specification, 3rd ed. Addison-Wesley
Professional, 2005.

[17] M. Janota, R. Grigore, and M. Moskal, “Reachability
Analysis for Annotated Code”, UCD Dublin, submitted to
SAVCBS, 2007.

[18] G. T. Leavens, “The Java Modeling Language (JML)”:
http://www.jmlspecs.org, 2007.

[19] G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D.
Cok, P. Müller, J. Kiniry, and P. Chalin, “JML Reference
Manual”, http://www.jmlspecs.org, 2007.

[20] J. van den Berg and B. Jacobs, “The LOOP compiler for
Java and JML”. In T. Margaria and W. Yi editors,
Proceedings of the Tools and Algorithms for the
Construction and Analysis of Software (TACAS), vol. 2031
of LNCS, pp. 299-312. Springer, 2001.

Table 1. A Comparison of Possible Next Generation JML Tools
 JML2 JML3 JML4 JML5 ESC/Java2 Plug-in JACK

Name MJ JDT JDT any Java 7+ ESC/Java2 and JDT JDT Base
Compiler / IDE Maintained (supports Java ≥ 5) 1

Reuse/extension of base
(e.g. parser, AST) vs. copy-and-change

RAC () N/A N/A
ESC N/A () N/A Tool Support

FSPV N/A () () N/A N/A
MJ = MultiJava, JDT = Eclipse Java Develoment Toolkit
N/A = not possible, practical or not a goal, () = planned

1 ESC/Java2 is currently being maintained to support new verification functionality, but its compiler front end has yet to reach Java 5 [10].

53

54

Playing with Time in Publish-Subscribe
using a Domain-Specific Model Checker

Luciano Baresi, Giorgio Gerosa, Carlo Ghezzi, and Luca Mottola
Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy

{baresi, gerosa, ghezzi, mottola}@elet.polimi.it

ABSTRACT
Thanks to the sharp decoupling it fosters, the Publish-Subscribe
paradigm is particularly suited to the implementation of dynamic
applications where components join and leave the system unpre-
dictably, and their distributed interactions change over time. Al-
though this feature represents an asset during the implementation
phases, it is usually difficult to reason on the global behavior at de-
sign time. The problem is exacerbated by the variety of Publish-
Subscribe systems available that greatly differ in the guarantees
provided, e.g., in terms of message reliability or delivery order.

Some of the authors already tackled the problem with a domain-
specific model checker, whose internals are customized depending
on the guarantees assumed on the communication infrastructure.
However, we essentially disregarded the timing aspects, which are
nonetheless pivotal in many applications exploiting a Publish-Sub-
scribe infrastructure. In this paper we augment our tool to verify
temporal properties, and explore the interplay between time and
different Publish-Subscribe semantics through a case study. More-
over, we report on an effort to formally verify the correctness of the
temporal extension, in an attempt to provide a strong foundation
for the results obtained using our tool.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
Model checking; D.2.11 [Software Engineering]: Software Ar-
chitectures—Patterns

General Terms
Modeling, verification, distributed architectures.

Keywords
Model checking, Publish-Subscribe, time.

1. INTRODUCTION
In recent years, the rise of pervasive and embedded applications

has increasingly demanded for highly dynamic and reconfigurable
software architectures. In these scenarios, the application compo-
nents require the ability to federate spontaneously, and dynami-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2007), September 3-4, 2007, Cavtat
near Dubrovnik, Croatia.
Copyright 2007 ACM ISBN 978-1-59593-721-6/07/0009 ...$5.00.

Dispatcher

Application components
Input queue

Input queue

Input queue

Publish/
SubscribeNotify

Figure 1: P/S architecture.

cally change the nature of their interactions as new requirements
arise. As a result, traditional architectural paradigms (e.g., client-
server) are ill-suited to the requirements at hand. In contrast, the
Publish-Subscribe (P/S) [13] paradigm provides an asynchronous,
implicit, and multi-point communication style that well adapts to
dynamic scenarios. As illustrated in Figure 1, in a P/S system
components subscribe to specific message (event) patterns, and are
notified when other components publish messages matching their
subscriptions. A dispatcher mediates the communication by stor-
ing subscriptions in a dedicated table, and matching them against
published messages. Based on this interaction pattern, P/S systems
have been developed for a wide range of scenarios, from wide-area
notification services [8] to wireless sensor networks [18].

Although the P/S paradigm makes it easier to implement dy-
namic applications, the strong decoupling it fosters renders the glo-
bal interactions among components difficult to capture and to rea-
son about. This ultimately hinders the verification and validation
of the overall federation. Moreover, available P/S systems provide
radically different guarantees that may affect the outcome of the
verification effort. For instance, different message delivery order-
ings may have an impact on a component’s execution flow, which
may reflect in a different system-wide behavior.

To address these issues, model checking has been proposed as
a tool to analyze the behavior of applications built on top of P/S
infrastructures, e.g., as in [14]. These approaches, however, do not
capture many of the guarantees provided by existing P/S systems,
thus limiting their applicability. In [2], we proposed a novel ap-
proach to the problem: instead of using standard tools, we leverage
off the extensible model checker Bogor [19], and augment its in-
put language and internal mechanisms to include P/S operations as
primitive constructs. By doing so, we can model the various P/S
guarantees within the checking engine, and customize the verifi-
cation based on a specific incarnation of the P/S paradigm. This
approach, summarized in Section 2, allows us to achieve a domain-
specific, state abstraction mechanism, which dramatically reduces
the cost of performing the verification.

In this paper, we make a step forward by adding a notion of time
to our tool. Our temporal model, illustrated in Section 3, is in-

55

Guarantee Choices
Message Reliability Absent, Present
Message Ordering Random, Pair-wise FIFO,

System-wide FIFO,
Causal Order, Total Order

Filtering Precise, Approximate
Subscription Propagation Delay Absent, Present
Repliable Messages Absent, Present
Message Priorities Absent, Present,

Present w/ Scrunching
Queue Drop Policy None, Tail Drop,

Priority Drop
Table 1: P/S guarantees.

spired by the work on real-time event-based middleware by Deng
et al. [10]. In their work, however, time was still tied to a partic-
ular incarnation of the P/S paradigm, namely the CORBA Event
Service. Furthermore, they did not account explicitly for message
delays, that may also impact the execution flow of a component. As
such, their work cannot be reused as is. In our approach we bring
time as an additional dimension next to those we use to character-
ize the semantics provided by P/S systems, explicitly accounting
for message delays. By enabling the interplay between time and
the various P/S guarantees, we enable the verification of P/S ap-
plications in realistic environments, going beyond the simplistic
communication models of previous work. The effectiveness of our
approach is assessed in a non-trivial case study, illustrated in Sec-
tion 4, using properties expressed in Linear Temporal Logic (LTL).

To achieve our objective, we must delve into the internals of Bo-
gor to modify critical aspects, such as the inter-component sched-
ule. In doing so, we may run the risk of breaking the checking
engine itself, thus producing unsound results. To address this is-
sue, Section 5 illustrates how we formally verified the correctness
of our temporal extension using existing tools for software verifi-
cation. Notably, these are based on Bogor itself. This allowed us to
make the verification process feasible, by leveraging off the exper-
tise in Bogor we gained while developing the temporal extension.
As we discuss in Section 5, a brute-force approach would instead
make the same problem intractable. Brief concluding remarks and
directions for future work conclude the paper in Section 6.

2. MODEL CHECKING
P/S ARCHITECTURES

The P/S paradigm revolves around a few primitives, which allow
application components to interact by publishing messages or issu-
ing (un)subscriptions. Although the programming interface mostly
remains the same across different P/S incarnations, the way the
paradigm is implemented greatly differs. Table 1 illustrates a clas-
sification of P/S guarantees and semantics we found in existing sys-
tems. These characterize the features that may impact the behavior
of components running on top of such infrastructures, and there-
fore affect whether a given requirement is actually verified. For
instance, message ordering refers to the policy used to deliver mes-
sages: random order, pair-wise FIFO order to deliver messages to
a given subscriber in FIFO order with respect to publish operations
from the same component, system-wide FIFO order to deliver mes-
sages in the same order as publish operations also across different
components, according to the causality chain among messages, or
total order to deliver the same messages in the same order to all
components with the same set of subscriptions. The remaining di-
mensions in Table 1 are thoroughly described in [2]. In the follow-
ing, we briefly overview how the problem of verifying P/S archi-
tectures has been tackled in previous work, and how we addressed
the same problem trough a domain-specific model checker.

Model Checker

Application
Components

Checking Engine

Model Checker Input Language

PubSub
Infrastructure

Input Models

(a) Standard.
Model Checker

Application Components

Input Models

Model Checker Input Language + PubSub API

PubSub
Infrastructure

Checking
Engine

(b) Domain-Specific.
Figure 2: Approaches to model checking P/S architectures.

2.1 Approaches Using Standard Tools
Garlan et al. investigated the problem of model checking P/S

architectures in [14]. They provide a set of pluggable modules
that allow the user to choose one configuration out of a predefined
set. Nonetheless, available models are far from fully capturing the
different characteristics of existing P/S systems shown in Table 1.
Also, application components cannot change their subscriptions at
run-time. The same approach is extended in [5] by adding more
expressive events, dynamic delivery policies and dynamic event-
method bindings. Still, the dispatching mechanism is only char-
acterized in terms of delivery policy (asynchronous, synchronous,
immediate or delayed). Similarly, some of the authors of this paper
addressed similar issues in [21] using the SPIN model checker [17].
The P/S infrastructure is characterized in terms of reliability, mes-
sage delivery order, and subscription propagation delay. Therefore,
several of the dimensions in Table 1 are still missing.

Techniques applicable to specific P/S systems have been consid-
ered in [3, 6]. Beek et al. [3] concentrate on the addition of a P/S
notification service to an existing groupware protocol. They also
show how the P/S paradigm improves the user awareness of the sta-
tus of a project when used to coordinate a large development team.
Caporuscio et al. [6] develop a compositional reasoning technique
based on an assume-guarantee methodology. The methodology is
applied on a specific case study, i.e., the development a file shar-
ing system on top of the Siena P/S system [8]. These approaches
lose generality in that they do not allow the user to customize the
checking engine to model various P/S guarantees.

2.2 A Change of Perspective
Standard tools easily show their limitations when it comes to

implement fine-grained, customizable models to describe guaran-
tees such as those in Table 1. Essentially, this is due to the lack
of parametrization in the input language, and state space explosion
problems. Based on this observation, we reverted the traditional ap-
proach, by embedding the P/S communication paradigm within the
model checker, and exporting the P/S API as primitive constructs
of the modeling language. This is intuitively illustrated in Figure 2.

This approach provides several advantages over traditional so-
lutions. We can easily customize the state space generation de-
pending on the particular combination of guarantees assumed on
the P/S infrastructure. This achieves a domain-specific, state ab-
straction mechanism that sensibly reduces the cost of accomplish-
ing the verification by minimizing the number of states generated.
By the same token, it is easy to customize the behavior of the P/S
infrastructure. To this end, before starting the verification, the user
selects a combination of the guarantees shown in Table 1. For in-
stance, s/he may want to check the behavior of application com-
ponents while assuming an underlying P/S infrastructure that guar-
antees causal order and precise filtering. Based on this, our tool
instantiates a parametric dispatcher within the checking engine, to
model the behavior the user desires. As a nice side-effect, describ-
ing the behavior of components running on top of a P/S infrastruc-
ture becomes straightforward, as the input language now comprises
a set of constructs mimicking the P/S API found in real systems.

56

typealias MessagePriority int (0,9); enum DropPolicy {TAIL_DROP, PRIORITY_DROP}
extension PubSubConnection for polimi.bogor.bogorps.PubSubModule {
typedef type<’a>;
expdef PubSubConnection.type<’a> register<’a>();
expdef PubSubConnection.type<’a> registerWithDropping<’a>(int, DropPolicy);
actiondef subscribe<’a>(PubSubConnection.type<’a>, ’a -> boolean);
actiondef publish<’a>(PubSubConnection.type<’a>, ’a);
actiondef publishWithPriority<’a>(PubSubConnection.type<’a>, ’a, MessagePriority);
expdef boolean waitingMessage<’a>(PubSubConnection.type<’a>);
actiondef getNextMessage<’a>(PubSubConnection.type<’a>, lazy ’a);

}

Figure 3: Bogor preamble to export the P/S infrastructure.

// Message definition
record MyMessage { int value;}
MyMessage receivedEvent := new MyMessage;

// Subscription definition
fun isGreaterThanZero(MyMessage event)

returns boolean = event.value > 0;

active thread PublisherComponent() {
MyMessage publishedEvent;
PubSubConnection.type<MyMessage> ps;

loc loc0: // Connection setup
do {
ps := PubSubConnection.register<MyMessage>();

} goto loc1;

loc loc1: // Publishing a message
do {
publishedEvent := new MyMessage;
publishedEvent.value := 1;
PubSubConnection.

publish<MyMessage>(ps, publishedEvent);
} return;

}

active thread SubscriberComponent() {
PubSubConnection.type<MyMessage> ps;

loc loc0: // Connection setup and subscription
do {
ps := PubSubConnection.register<MyMessage>();
PubSubConnection.

subscribe<MyMessage>(ps, isGreaterThanZero);
} goto loc1;

loc loc1: // Message receive
when PubSubConnection.
waitingMessage<MyMessage>(ps) do {
PubSubConnection.

getNextMessage<MyMessage>(ps, receivedEvent);
} return;

}

Figure 4: Using P/S extensions in a Bogor model.

To assess the feasibility of the approach, we use Bogor [19], an
extensible model checker written in Java. With respect to similar
tools, Bogor eases the definition of domain-specific constructs in its
input language. Additionally, it provides out-of-the-box support for
function pointers and dynamic threads, that are pivotal in modeling
the dynamic applications we target. Adding further constructs to
Bogor requires the developers to prepend a preamble to the Bogor
models exploiting the new constructs, and provide one or more Java
classes implementing the required semantics.

Figure 3 illustrates the preamble containing the P/S constructs
available in our tool. Instead, Figure 4 shows an example use,
where two components initially register with the P/S extension with-
in Bogor, as shown in loc0:. In a sense, this models the opera-
tion of opening a connection to the P/S dispatcher, represented by a
dedicated handler returned by the register operation. The han-
dler is used to issue (un)subscriptions and publish messages over a
specific connection to the dispatcher. The former is accomplished

by providing as parameter to subscribe a boolean function rep-
resenting the actual subscription, as in loc0: for the subscriber
component. Notably, this gives the user great flexibility in defining
the format of messages and the matching semantics. Instead, pub-
lishing is achieved with publish or publishWithPriority,
depending on whether messages have associated priorities. To pro-
cess incoming messages, a guard statement named waitingMes-
sage is provided, which holds true when at least one message is
available in the incoming queue. To retrieve the actual message
content, we use the getNextMessage construct.

The mechanisms underpinning the constructs in Figure 3 focus
on guaranteeing a given P/S semantics while reducing the number
of states generated during the verification. For instance, consider
the processing triggered by a message published: the dispatcher
matches the message against the subscriptions issued so far, and
delivers its content to a component if at least one of its subscrip-
tions matches. However, in the presence of multiple subscriptions,
the order in which these are examined is immaterial. Therefore, we
can model the subscription table as a set, thus avoiding the gener-
ation of explicit states when it would make no difference from the
application perspective. This already provides improvements over
standard tools not equipped with a notion of set. Much greater im-
provements are achieved in controlling the generation of states rep-
resenting message routing with particular delivery orderings, and in
modeling message duplications. More details can be found in [2].

3. TIME EXTENSION
A large body of work exists in the field of model checking em-

bedded systems with time constraints, e.g., [1]. However, our ob-
jective here is not to embed a generic notion of time. Being our
approach specific to the P/S domain, we rather aim to include a
temporal model suited to the requirements of applications built on
top of a P/S infrastructure. Additionally, this must be sufficiently
lightweight to enable its interplay with the other P/S dimensions in
a clear and intuitive manner. Based on these reasons, we adapted
the model presented in [10] to suit the aforementioned needs.

3.1 Time Model
Components running on top of P/S infrastructures are usually

implemented as passive threads executing in an event-driven envi-
ronment. Thread activation is accomplished implicitly by the P/S
infrastructure in delivering a message to a subscribing component.
This executes a message handler where further operations are usu-
ally performed, e.g., to issue new (un)subscriptions or publish mes-
sages. The thread is then suspended again waiting for further mes-
sages. In our approach, the execution rate of a component dictates
the frequency of its operations on the P/S dispatcher, i.e., how many
P/S primitives can be executed in a single time unit. Notably, a rele-
vant class of real systems can be similarly modeled, e.g., [12,16]. In
addition, in distributed environments it is unreasonable to assume
that messages are delivered with zero delays. Therefore, differently

57

PublishC1
(msg1)

PublishC1
(msg2)RegisterC1

PublishC2
(msg3)

PublishC2
(msg4)RegisterC2

start end

start end

C2

C1

System

Figure 5: Two components publishing two messages each.

Co
m

po
ne

nt
 1

Co
m

po
ne

nt
 2

publish

publish

publish

publish

1

2 3

(a) Second execution: the time model is vi-
olated.

Co
m

po
ne

nt
 1

Co
m

po
ne

nt
 2

publish

publish

publish

publish

1

2

3

4

(b) Third execution: the timing constraints are
met.

Figure 6: A graphical representation of the second and third exe-
cutions in Table 2. (The numbers in the circles represent a possible
system-wide schedule).

from [10], we also consider random message delays, thus providing
an even more realistic environment to modeling P/S applications in
case message delays are to be taken into account [7].

The above time model does not modify the individual states of
the system. Rather, it limits the way the system state space is ex-
plored, by preventing some of the transitions to be taken. Let us
consider the example in Figure 5: two components register with the
P/S infrastructure, and publish two messages each. In the absence
of any notion of time, our tool would explore all the possible inter-
leavings of the operations of the two components. As the system
global state is given by the combination of the per-component local
states, the model checker would generate a high number of possible
executions. Some example schedules are shown in Table 2.

When we enable our time model with component C1 being as-
signed an execution rate twice as that of C2, both executions 1 and
2 in Table 2 become unfeasible. The former trivially violates the
timing constraints, as all operations of component C2 are executed
before C1 starts. As for the latter, Figure 6 graphically compares
execution 2 and 3: our time model is violated in transitioning from

Co
m

po
ne

nt
 1

Co
m

po
ne

nt
 2

...

publish(msg1)

...

...

2

1

3

4

process
(msg1)

msg1 is
in transit

Figure 7: A possible schedule between two components when a
message is sent with a non-zero delay.

〈publish(msg1)C1, publish(msg3)C2〉 to 〈publish(msg1)C1,
publish(msg4)C2〉. Indeed, being C1 running at twice the rate
of C2, it should be allowed to perform two operations for each
operation executed by C2. Instead, Figure 6(a) shows C2 perform-
ing a further operation while C1 has not yet performed the second
publish. Also note that Figure 6(b) is not the only possible correct
schedule. For instance, a different, correct execution is obtained by
swapping the relative order of the initial publish operations. This
indeed represents a different inter-leaving of concurrent operations.

Message delays are modeled similarly, by marking a message as
“in transit” until the time constraints at the subscribing components
are met. An example is illustrated in Figure 7: a component whose
execution rate is of one operation per time unit publishes a message.
This travels towards the subscribing components with a delay of a
single time unit. The receiving component, whose execution rate is
of two operations per time unit, has two available slots before the
message appears in its input queue. During this time frame, it can
either perform other operations, or decide to be suspended waiting
for its input queue to fill.

3.2 Implementation
Implementing the above time model in our Bogor P/S exten-

sion essentially requires the ability to control the inter-component
scheduling. To this end, we further augment the P/S preamble in
Figure 3, by adding the constructs needed to control how the com-
ponents proceed, and providing the corresponding semantics within
the existing implementation of the P/S extension.

Bogor Language Constructs. Figure 8 illustrates the same exam-
ple as in Figure 4, now using the additional constructs of our time
extension. After registering the connection to the dispatcher, each
component configures the time extension using configureTime-
Params. This requires the component execution rate, and two val-
ues representing the lower and upper bounds of a (discrete) random
delay for incoming messages. In case the user needs to temporarily
revert to the original untimed behavior, it is sufficient to set to zero
the execution rate of all components.

The inter-component schedule is controlled using two guard state-
ments: canProceed and timedWaitingMessage. The for-
mer yields true when a component is allowed to proceed without
violating any time constraint. Instead, the latter yields one value
among CAN_PROCEED, CANNOT_PROCEED, and QUEUE_EMPTY.
Note that we explicitly distinguish whether the component can-
not proceed because higher priority components must be scheduled
first (CANNOT_PROCEED), or the timing constraints would allow
the component to proceed, but no messages are waiting in its input
queue (QUEUE_EMPTY). The latter is needed to give the ability
not to lose available slots in the current schedule and perform some
operations instead of waiting for an incoming message, as it is pos-
sible in the untimed version of the tool.

58

Id Execution
1 〈startC1, startC2〉, 〈startC1, registerC2〉, 〈startC1, publish(msg3)C2〉, 〈startC1, publish(msg4)C2〉,

〈startC1, endC2〉, 〈registerC1, endC2〉, 〈publish(msg1)C1endC2〉, 〈publish(msg2)C1, endC2〉, 〈endC1, endC2〉
2 〈startC1, startC2〉, 〈registerC1, startC2〉, 〈registerC1, registerC2〉, 〈publish(msg1)C1, registerC2〉,

〈publish(msg1)C1, publish(msg3)C2〉, 〈publish(msg1)C1, publish(msg4)C2〉, 〈publish(msg2)C1, publish(msg4)C2〉,
〈endC1, publish(msg4)C2〉, 〈endC1, endC2〉

3 〈startC1, startC2〉, 〈registerC1, startC2〉, 〈registerC1, registerC2〉, 〈publish(msg1)C1, registerC2〉,
〈publish(msg1)C1, publish(msg3)C2〉, 〈publish(msg2)C1, publish(msg3)C2〉, 〈publish(msg2)C1, publish(msg4)C2〉,
〈endC1, publish(msg4)C2〉, 〈endC1, endC2〉

Table 2: Some of the possible executions for the example in Figure 5, when no time notion is employed.

// Message definition
record MyMessage { int value;}
MyMessage receivedEvent := new MyMessage;

// Subscription definition
fun isGreaterThanZero(MyMessage event)

returns boolean = event.value > 0;

active thread PublisherComponent() {
MyMessage publishedEvent;
PubSubConnection.type<MyMessage> ps;

loc loc0: // Connection setup
do {
ps := PubSubConnection.register<MyMessage>();
PubSubConnection.configureTimeParams(ps, 2, 1, 0);

} goto loc1;

loc loc1: // Publishing a message
when (PubSubConnection.canProceed<MyMessage())
do {
publishedEvent := new MyMessage;
publishedEvent.value := 1;
PubSubConnection.

publish<MyMessage>(ps, publishedEvent);
} return;

}

active thread SubscriberComponent() {
PubSubConnection.type<MyMessage> ps;

loc loc0: // Connection setup and subscription
do {
ps := PubSubConnection.register<MyMessage>();
PubSubConnection.configureTimeParams(ps, 1, 1, 0);
PubSubConnection.

subscribe<MyMessage>(ps, isGreaterThanZero);
} goto loc1;

loc loc1: // Message receive
when (PubSubConnection.
timedWaitingMessage<MyMessage>(ps)==CAN_PROCEED)
do {
PubSubConnection.

getNextMessage<MyMessage>(ps, receivedEvent);
} return;
when (PubSubConnection.
timedWaitingMessage<MyMessage>(ps)==QUEUE_EMPTY)
do {

// Do something...
} return;

}

Figure 8: Adding time to the example model in Figure 4.

Bogor Internals. The mechanisms underlying the above Bogor
constructs divide time into frames, whose length corresponds to a
single operation of the lowest priority component. Based on this,
higher priority components are scheduled multiple times in a single
frame. Within a frame, all possible inter-leavings are generated.
When this is achieved, the execution proceeds to the next frame.

Our implementation is tied to that of the P/S operations, to lever-
age off the domain-specific semantics of the executions involved,
and cut down on the processing overhead whenever possible. Here
we provide some examples as to where we take advantage of this.
Interested readers are referred to [15] for more information.

• Several of the dimensions listed in Table 1 also somehow
constrain the inter-component schedule. For instance, when
causal order is assumed, a component is suspended wait-
ing for incoming messages until all causally connected mes-
sages are in its input queue. In our experience, the impact
of these guarantees on the number of enabled transitions is
much greater than that imposed by the time model, especially
when safety properties are to be checked. Therefore, when-
ever possible, we apply the mechanisms modeling the P/S
guarantees before computing the time-based schedule and
running the corresponding checks. This saves in the process-
ing overhead during the verification.

• To model a random message delay between two bounds, we
must generate all the possible executions corresponding to
each (discrete) value in the interval. However, leveraging
off the semantics of this value —which represents the time
taken for a message to be transmitted from a component to
another— it can be observed that not every value in the in-
terval generates a different execution. Based on this obser-
vation, we can apply basic results of rate monotonic theory,
and identify the subset of values that need to be checked to
ensure the completeness of the verification. This way, we
save the processing to generate executions that do not differ
in the inter-leavings among components. Note that the above
can be done while the verification proceeds, by looking at the
execution rate and current state of the components about to
receive the message in transit.

• When timedWaitingMessage returns QUEUE_EMPTY,
the corresponding component already passed the time checks.
Unless the component includes some alternative behaviors
(as in Figure 8), it is suspended waiting for incoming mes-
sages. In this case, the checking engine lets another compo-
nent proceed, and reschedules the suspended component im-
mediately after, without re-running the time extension. Note
that this is semantically correct because once a component
passed the time checks for the current frame, there is no way
for another component to subtract an allocated time slot from
it. Based on this observation, we alleviate the processing
overhead generated during the verification whenever a mes-
sage is to be received.

Our tool performance is such that time-related properties can be
checked within reasonable time under realistic assumptions on the
P/S infrastructure, as illustrated next.

4. CASE STUDY
In this section, we describe the application scenario we have cho-

sen to exemplify the approach, discuss the insights we gained by
exploring the interplay between time and the various P/S guaran-
tees, and report on some performance results assessing the effec-
tiveness of our tool.

59

Scenario. Systems exploiting a P/S style of interaction span sev-
eral applications domains. Among them, telemedicine is one of the
most promising, as it has the potential to drastically lower the costs
of maintaining hospital facilities, while letting patients enjoy better
quality of life [20]. Here we consider a remote patient monitoring
system, consisting of the following components:

• A variable number of patients, equipped with several sensing
devices to monitor critical parameters, such as heart rate or
blood pressure.

• The medical laboratory, responsible for monitoring the pa-
tients’ status. In case of moderate danger, the lab personnel
can immediately decide on corrective actions when no phys-
ical intervention is required. For instance, a dose change for
a treatment can be remotely communicated to the patient.

• If the patient is in severe danger and is to be picked up by a
first-response team, the medical laboratory informs a flying
squad about the emergency, communicating all the relevant
information to reach the patient and cope with the situation.

• In the same conditions, the medical laboratory also notifies
the hospital about a possible request for hospitalization. On
the way to it, the flying squad also keeps the hospital posted
about the patient’s current conditions, until a final notifica-
tion is sent when the patient is handed over to the hospital
personnel.

Interactions are expressed in terms of P/S operations. Specifi-
cally, the medical laboratory issues a subscription to collect the data
gathered by the patient’s sensors when the values are outside the al-
lowed ranges. The hospital, as well as the flying squad, subscribe
to all messages regarding possible requests for hospitalization. In
addition, the hospital is also interested in messages coming from
the flying squad while carrying a patient.

Essentially, three patterns of interactions characterize our sce-
nario, depending on the patient’s status. Under normal conditions,
the component modeling the patient periodically publishes mes-
sages that, by virtue of not representing any possible danger, are
not delivered to any remote component. When the patient parame-
ters represent a moderate danger, the medical laboratory interacts
with the patient only, e.g., to adjust the doses, without involving any
further component. Differently, under severe danger, all the com-
ponents in the system are involved until the patient’s responsibility
is passed to the hospital personnel.

Running the Verification. To verify our initial design, we checked
whether the following requirements were satisfied:

Requirement 1 When a patient’s status turns into a situation of
moderate danger, any corrective action must be communi-
cated by the medical laboratory within T1 time units.

Requirement 2 Whenever a patient is in a situation of severe dan-
ger, the hospital must receive a request for hospitalization
within T2 time units.

Requirement 3 When a patient arrives at the hospital, the person-
nel there must have received the corresponding request for
hospitalization in advance.

The above requirements are straightforwardly expressed as LTL
formulae over the variables representing the components’ current
state1. In particular, the first and second requirement exploit a hook

Define
Application

Model

Select PubSub
Guarantees

Instantiate
Dispatcher

Run
Verification

Verification
OK? Design Choice

Modify comm
infrastructure?

Modify app?

Specify
Properties

No

Yes

Yes

No

Yes

Modify
exec rates / msg

delays?

Specify Time
Aspects

Yes

No

Figure 9: Verification flow with Bogor and our P/S extension.

into our time extension that allows properties to be expressed de-
pending on time intervals.

As illustrated in Figure 9, our tool allows the application de-
signer to iterate in a loop where either the application model evolves,
the timing aspects are tuned, or the guarantees assumed on the P/S
infrastructure change. This allows the designers to explore the in-
terplay between the application and the underlying communication
infrastructure. Further, time adds another dimension to this, en-
abling an additional degree of freedom.

For instance, we realized that in our application the character-
istics of the input queues and the component execution rates are
tightly intertwined. Indeed, the first requirement easily fails if the
component modeling the medical laboratory is not assigned an ex-
ecution rate sufficient to handle multiple concurrent notifications
coming from different patients. However, even if this component
is running at a sufficiently high rate, the patients’ notifications can
easily fill up the component’s input queue if this is assumed to be
finite. In this case, depending on the drop policy adopted, some
messages are discarded. Similarly, when multiple patients are in
severe danger, the medical laboratory may send multiple requests
for hospitalization. Therefore, to meet the second requirement, the
component modeling the hospital must be able to process these
messages within a given time bound, and have sufficiently large
queues not to drop any of them.

An interesting relation also exists between message delays and
delivery order. To verify the third requirement, our application
needs an underlying communication infrastructure providing causal
order delivery. Indeed, with random message delays, it may hap-
pen that the message coming from the medical lab is delayed w.r.t.
the one sent by the flying squad when handing over the patient.
However, if message delays are constant, the system essentially
proceeds in a delayed-synchronous manner, which makes assum-
ing any specific message orderings superfluous.

In addition, to evaluate the performance of our tool, we mea-
sured the time and memory taken, as well as the number of states

1To run LTL verification, we used the Bogor extension in [4]

60

Req. No. Patients Mem. (Mb) States Time
R1 10 278.38 70234 ≈ 16 min
R1 20 312.31 123122 ≈ 20 min
R2 10 412.21 113213 ≈ 22 min
R2 20 502.75 209123 ≈ 26 min
R3 10 498.1 232123 ≈ 30 min
R3 20 591.1 289124 ≈ 35 min
Table 3: Performance of our tool when R1-R3 are verified.

generated during the verification. We considered a system with
10 or 20 patients, each publishing 10 messages that may randomly
trigger the actions corresponding to moderate or severe danger. We
gathered the aforementioned metrics on an Intel Core Duo 1,83Ghz
processor running Apple OSx, using the DJProf [11] profiler to
evaluate the memory occupancy.

When a requirement turns out not to be verified, a counterexam-
ple is returned within a few seconds. Instead, Table 3 reports the
performance of our tool in case the verification succeeds. Note that
doubling the number of patients corresponds to a sharp increase in
the message traffic modeling the interactions among components,
as well as in the number of possible inter-leavings. The additional
complexity of the model, however, yields only a moderate over-
head in the time taken to accomplish the verification, about 25%
in the worst case. We believe this is due to our implementation
of the time extension, described in Section 3.2, that exploits the
domain-specific semantics of P/S to cut down the processing. By
the same token, the above metrics only slightly change assuming
different P/S guarantees that still make the verification succeed. For
instance, as already mentioned, the third requirement can be veri-
fied by either assuming causal ordering, or by imposing a constant
message delay. In both cases, the verification completes in about
half hour.

5. VERIFYING THE TIME EXTENSION
For our tool to prove useful, we must provide a strong foundation

upon which our implementation can substantiate the soundness of
presented results. In general, it is hard to achieve this objective.
Moreover, in our approach the challenge is even more critical, as we
are extending an existing model checker by augmenting its internal
mechanism. To address this issue, we checked the correctness of
our temporal extension using Bandera [9], a tool for the automatic
verification of Java code. Notably, Bandera itself is based on Bogor.
Essentially, it translates the Java code into a Bogor model upon
which the actual verification is run. Consequently, we exploited
our expertise in Bogor to reduce the size of the code fed as input to
Bandera, therefore making the verification feasible. In this section
we report on our experience in this respect, highlighting the lessons
we learned on the way.

Bandera is a set of tools for the transformation of Java code into
verifiable models. To this end, code analysis techniques are used to
reduce the size of the models produced. Essentially, Bandera aims
to i) eliminate from the input code all the elements (e.g., classes,
methods, variables) that do not affect the verification of a given
property, ii) abstract the type of, and infer bounds for, the remain-
ing variables to reduce the state space generated during the verifi-
cation. This is achieved through multiple translation steps, whose
final output is a runnable Bogor model encompassing the properties
to be verified. These are generally specified in terms of the values
taken by input or output parameters of relevant methods.

Despite the degree of sophistication of Bandera, a brute-force
approach whereby the entire Bogor code plus the P/S and time
extensions are input to Bandera easily fails: the model output by
Bandera is intractable. Nonetheless, by examining the outcome of

Co
m

po
ne

nt
 1

Co
m

po
ne

nt
 2

publish publish publish

publish publish

canProceed
returns TRUE

canProceed
returns TRUE

canProceed
returns TRUE

canProceed
returns TRUE

canProceed
returns TRUE

(a) Two components publishing messages at
different rates.

Co
m

po
ne

nt
 1

Co
m

po
ne

nt
 2

suspended ...

publish(msg1)

timedWaitingMessage
returns QUEUE_EMPTY

canProceed
returns TRUE

...

timedWaitingMessage
returns CAN_PROCEED

getNextMessage
delivers msg1

canProceed
returns TRUE

msg1 is in transit

(b) A subscriber and a publisher component, mes-
sages have a non-zero delay.

Figure 10: Scenarios for verifying the time extension.

Bandera, one can recognize how large parts of those models are
not relevant to the verification of the time extension. Indeed, as we
already observed, our notion of time does not alter the state space
w.r.t. the untimed version of our tool. Rather, it limits the way the
state space is explored. Therefore, the correctness of our extension
can be checked by simply making sure that the guards controlling
the inter-component schedules return the correct values for every
possible situation.

Based on the above observation —that again exploits our domain-
specific knowledge— we carved out the time extension plus a few
Bogor components needed to trigger its functionality. Specifically,
almost the entire Bogor code enabling the extension capabilities
was removed, as well as parts of the Bogor parser. Moreover, the
state space generation mechanism was greatly reduced, as only the
ability of generating the state space was required. Instead, how to
explore this is dictated by the time extension, that is our verification
target. To let the entire package compile, we implemented empty
stubs in place of the parts removed.

To check our implementation, we must explore all the possible
inter-component schedules. Notably, this can be accomplished with
only two components, and four scenarios where these components
publish or receive messages:

Scenario 1. As shown in Figure 10(a), two components publish
messages with a non-integer ratio between their execution
rates. No component is subscribed to these messages, hence
they are discarded at the dispatcher. The scenario essentially
checks whether the inter-component schedules are generated
correctly in the absence of any message in transit.

Scenario 2. With a non-zero message delay, a component subscribes

61

to a message published by another component, as depicted
in Figure 10(b). Therefore, timedWaitingMessage re-
turns QUEUE_EMPTY while the message is in transit, and
switches to CAN_PROCEED as soon as the message appears
in the input queue. The component execution rates are as-
signed so that only the receiving component is allowed to
proceed at the time of message reception. The scenario veri-
fies the functioning of timedWaitingMessage, and how
the inter-component schedule is generated when a message is
received with the subscribing component being given higher
priority.

Scenario 3. Similarly to the previous scenario, this time the com-
ponent execution rates are assigned so that the publishing
component has higher priority. Therefore, when the message
is inserted in the input queue of the receiving component,
this is not immediately scheduled, and the publishing com-
ponent can proceed. This scenario checks the situation dual
to scenario 2.

Scenario 4. To test the combination of scenarios 2 and 3, the com-
ponent execution rates and message delays are assigned so
that both components can be scheduled when the message
arrives at the intended recipient. The objective is to check
whether both possible schedules are correctly generated.

Overall, Bandera generated about 100 assertions to verify the
correctness of our implementation. As for the results, we actually
discovered a bug in our initial prototype. Bandera showed a coun-
terexample in the third scenario where timedWaitingMessage
returned the wrong value after backtracking from the state that rep-
resents component A receiving the message. This was caused by a
non-initialized variable, whose default value worked for most (but
not all) combinations of the input parameters. Apparently, in our
initial tests we were lucky in picking the “right” inputs. This result
witnesses the importance of our efforts in verifying our time exten-
sion. In their absence, this bug would have probably survived.

6. CONCLUSION
In this paper we presented a time model to investigate time-

sensitive P/S architectures. In our approach, time is embedded
within the model checker as an additional dimension characteriz-
ing the system behavior. This work completes previous efforts by
some of the authors, by providing the missing tile in a framework
for the verification of P/S architectures. Our approach opens up op-
portunities for better investigations during the early design stages,
which ultimately hold the potential to produce more reliable imple-
mentations.

Our research agenda includes a deeper assessment of the effec-
tiveness of our approach through several case studies, as well as
further work in the direction of the formal verification of the cor-
rectness of our Bogor implementation.

7. REFERENCES
[1] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for

real-time systems. In Proc. of the 5th Int. Symposium on
Logic in Computer Science, 1990.

[2] L. Baresi, C. Ghezzi, and L. Mottola. On accurate automatic
verification of publish-subscribe architectures. In Proc. of the
29th Int. Conf. on Software Engineering (ICSE07), 2007.

[3] M.-H. Beek, M. Massink, D. Latella, S. Gnesi, A. Forghieri,
and M. Sebastianis. A case study on the automated
verification of groupware protocols. In Proc. of the 27th Int.
Conf. on Software engineering (ICSE05), 2005.

[4] Bogor Extensions for LTL Checking. projects.cis.
ksu.edu/projects/gudangbogor/.

[5] J.-S. Bradbury and J. Dingel. Evaluating and improving the
automatic analysis of implicit invocation systems. In Proc. of
the 9th European software engineering Conf., 2003.

[6] M. Caporuscio, P. Inverardi, and P. Pelliccione.
Compositional verification of middleware-based software
architecture descriptions. In Proc. of the 26th Int. Conf. on
Software Engineering (ICSE04), 2004.

[7] N. Carvalho, F. Araujo, and L. Rodrigues. Reducing latency
in rendezvous-based publish-subscribe systems for wireless
ad hoc networks. In Proc. of the 5th Int. Wkshp. on
Distributed Event-Based Systems (DEBS), 2006.

[8] A. Carzaniga, D.-S. Rosenblum, and A.-L. Wolf. Design and
evaluation of a wide-area event notification service. ACM
Trans. Comput. Syst., 19(3), 2001.

[9] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S.
Pasareanu, Robby, and H. Zheng. Bandera: extracting
finite-state models from java source code. In Proc. of the
22nd Int. Conf. on Software engineering, 2000.

[10] X. Deng, M.-B. Dwyer, J. Hatcliff, and G. Jung.
Model-checking middleware-based event-driven real-time
embedded software. In Proc. of the 1st Int. Symposium on
Formal Methods for Components and Objects, 2002.

[11] DJProf Java Profiler,
www.mcs.vuw.ac.nz/djp/djprof/.

[12] B. S. Doerr and D. C. Sharp. Freeing product line
architectures from execution dependencies. In Proc. of the
1st Conf. on Software product lines : experience and
research directions, 2000.

[13] P.-Th. Eugster, P.-A. Felber, R. Guerraoui, and A.-M.
Kermarrec. The many faces of publish/subscribe. ACM
Comput. Surv., 35(2), 2003.

[14] D. Garlan and S. Khersonsky. Model checking
implicit-invocation systems. In Proc. of the 10th Int.
Workshop on Software Specification and Design, 2000.

[15] G. Gerosa. Design and Implementation of a Time Extension
for a Domain-Specific Model Checker. Master Thesis (in
italian), Politecnico di Milano (Italy), 2007.

[16] T. H. Harrison, D. L. Levine, and D. C. Schmidt. The design
and performance of a real-time corba event service. In Proc.
of the 12th ACM SIGPLAN Conf. on Object-oriented
programming, systems, languages, and applications
(OOPSLA), 1997.

[17] G. J. Holzmann. The model checker spin. IEEE Trans. Softw.
Eng., 23(5):279–295, 1997.

[18] S. Li, Y. Lin, S.H. Son, J.A. Stankovic, and Y. Wei. Event
detection services using data service middleware in
distributed sensor networks. Telecommunication Systems,
26(2), June 2004.

[19] Robby, M.-B. Dwyer, and J. Hatcliff. Bogor: an extensible
and highly-modular software model checking framework. In
Proc. of the 9th European software engineering Conf., 2003.

[20] U. Varshney. Pervasive healthcare. Computer, 36(12), 2003.
[21] L. Zanolin, C. Ghezzi, and L. Baresi. An approach to model

and validate publish/subscribe architectures. In Proc. of the
SAVCBS Workshop, 2003.

62

On Timed Components and their Abstraction

Ramzi Ben Salah
VERIMAG

2, av. de Vignate
38610 Gieres, France

Ramzi.Salah@imag.fr

Marius Bozga
VERIMAG

2, av. de Vignate
38610 Gieres, France

Marius.Bozga@imag.fr

Oded Maler
VERIMAG

2, av. de Vignate
38610 Gieres, France

Oded.Maler@imag.fr

ABSTRACT
We develop a new technique for generating small-complexity ab-
stractions of timed automata that provide an approximation of their
timed input-output behavior. This abstraction is obtained by first
augmenting the automaton with additional input clocks, comput-
ing the “reachable” timed automaton that corresponds to the aug-
mented model and finally “hiding” the internal variables and clocks
of the system. As a result we obtain a timed automaton that does
not allow any qualitative behavior which is infeasible due to tim-
ing constraints, and which maintains a relaxed form of the timing
constraints associated with the feasible behaviors. We have im-
plemented this technique and applied it to several examples from
different application domains.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—Reuse mod-
els

General Terms
Verification

Keywords
components, timed automata, abstraction

1. INTRODUCTION
The basic premise of a component-based design methodology

is that a component (a hardware IP block, a software module, a
network router) can be used during the construction of a system
without deep knowledge of its intimate internal structure but rather
using a more abstract (and conservative) description of its observ-
able input-output behavior. This description should be sufficiently
detailed to prove the correct interaction of the component with the
entire system, and sufficiently small to avoid state explosion. In this
work we extend this methodology to timed systems models that re-
flect also quantitative performance information. Phenomena such
as delays in circuits and communication networks, as well as ex-
ecution and response times of software are the natural application

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2007), September 3-4, 2007, Cavtat
near Dubrovnik, Croatia.
Copyright 2007 ACM ISBN 978-1-59593-721-6/07/0009 ...$5.00.

domains for such models. Using the new abstraction technique pre-
sented in the paper, we can automatically build a conservative ap-
proximation of the timed input-output behavior of the component
such that any performance guarantees obtained using the abstract
model, hold also for the concrete model.

This technique, which has been implemented into a tool, trans-
forms a high-level description of the timed systems1 into a prod-
uct of timed automata that captures all the possible behaviors of
the system under all admissible inputs and choices of delay pa-
rameters. From this automaton which has one state variable and
one clock variablefor every timed element2 we generate an ab-
stract model with fewer states and clocks which provides an over-
approximation of the time-dependent input-output behavior of the
system. This simplified model can replace the original model within
a hierarchical/compositional reasoning methodology. Our technique
allows the user to select the appropriate level of aggressiveness in
the abstraction, that is, the level of relaxation of the timing and or-
dering constraints in the abstract model, to achieve a good trade
off between the complexity of the model and its faithfulness to the
concrete behavior of the system. The major steps in our procedure
are:

1. Introduction of additional input clocks, each of which mea-
sures the time elapsed since the occurrence of a particular in-
put event. When the effect of this event is propagated through
the system, its associated clock is deactivated and can be
reused by future events.3 These “dynamic clocks” consti-
tute a novel and non-trivial feature in the theory and practice
of timed automata and their number is always bounded, de-
pending on the variability of the input and the structure of the
system.

2. Full-fledged reachability analysis of the automaton, result-
ing in a modified automaton from which all behaviors that
violate timing constraints are eliminated.

3. Generation of an abstract model by hiding all internal clocks
and variables and projecting the timing constraints on the in-
put clocks.

1For circuits this description consists of a network of logical gates
with bi-bounded delay elements, for embedded software it consists
of descriptions of tasks, resources, durations and scheduling poli-
cies.
2A timed element is something that measures the time since the
occurrence of some event and uses this value to guard a transition.
3We restrict ourselves to systems with an acyclic structure, sys-
tems in which every cycle in the transition graph has at least one
transition labelled with an input event. Such systems do not gen-
erate “autonomous” cycles and hence every input event generates
a “wave” of reactions that propagate through the system within a
finite time.

63

4. Minimization of the automaton by merging states which are
equivalent (or approximately-equivalent) with respect to ob-
servable input-output behavior.

The rest of the paper is organized as follows. Section 2 gives
some background on abstraction in general while Section 3 offers
a quick survey of timed automata and the computational difficulty
inherent in their analysis. Section 4 illustrates our modeling ap-
proach and describes the various stages of our abstraction proce-
dure. Preliminary experimental results are described and discussed
in Section 5 followed by suggestions for future work.

2. ABSTRACTION IN GENERAL
In verification and other system design activities we have often

to deal with a system model S which is too complex to analyze due
to its large or even infinite state space. In this case we can try to
replace S with a more abstract model S′ with the following prop-
erties: 1) The complexity of S′ is smaller than that of S, where
complexity is viewed operationally, that is, S′ is easier to analyze
than S using some verification tool; 2) Every observable behav-
ior of S is also a behavior of S′, but not vice versa (conservative
approximation).

Analyzing S′ is computationally easier than the verification of
S but due to over approximation, it may happen that the verifica-
tion of S′ may fail although S is correct. The navigation in the
space of possible abstractions of S in order to find one which is
sufficiently simple to avoid explosion yet sufficiently detailed to
prove the property in question, is a major research topic, especially
for infinite-state systems such as those used to model software. The
current paper is concerned with adapting this methodology to timed
systems defined using the timed automaton formalism, but before
moving to those, let us contemplate briefly on the nature of abstrac-
tion.

A discrete component S, such as a digital circuit or a reactive
program, is a device that maintains some relationship between the
sequence of inputs it observes and the sequence of outputs it emits.
Mathematically speaking, it can be viewed as a transducer, an
input-output transition system S = (X, Y, Z, δ, γ) that reads in-
puts ranging over X, makes transitions in its state space Y , accord-
ing to the transition relation δ, and outputs elements of Z accord-
ing to the output function γ. If we view S as a “white box” and
observe also the sequence of states visited while producing the out-
put (see Figure 1-(a)), we can view S as realizing some sequential
function f from X∗ to Y ∗ × Z∗ However, we do not really care
about the internal states of S, it is only the input-output function
(or relation) from X∗ to Z∗ which determines whether S interacts
correctly with its environment and meets its specification. So the
most natural simplification is to hide Y and consider the sequential
function f : X∗ → Z∗ as the essence of S.

However, contrary to what one may prematurely think, hiding
Y and projecting onto the output does not imply that we gain any-
thing in complexity neither lose anything in accuracy. The reason
is that every sequential function has its inherent state space struc-
ture (minimal realization, Myhill-Nerode congruence relation), re-
gardless of whether the states themselves are observable. In other
words, hiding internal states from outside observation does not change
the state space nor the transition function, which remains of the
form y′ = δ(y, x). The only thing it does is to “remove” the states
from the output function (see Figure 1-(a)).

Real abstractions, do reduce complexity and lose information by
simplifying the transition relation. The most common way to do
so is to define an equivalence relation ∼ on Y and replace S =
(X, Y, Z, δ, γ) with S′ = (X, Y ′, Z, δ′, γ′) where Y ′ = Y/ ∼,

the set of partition blocks of ∼. In other words we merge to-
gether states that are ∼-equivalent (see Figure 1-(b)). A transition
(y′

1, x, z, y′
2) exists in S′ if a transition (y1, x, z, y2) exists for some

y1 ∈ y′
1 and y2 ∈ y′

2. Such an abstraction may lose information
and generate more behaviors then are really possible in S. For ex-
ample, the behavior x1/z1z4 is possible in S′ while in S we have
either x1/z1z3 or x2/z2z4.

Our goal is to export these ideas to timed automata by hiding
some clocks variables, but the explanation is more complicated be-
cause in timed automata, like in any other automata with auxiliary
variables, the visible transition graph does not convey all the infor-
mation on the system dynamics but rather a projection of it.

3. TIMED MODELS
Timed extensions of discrete transition systems, such as timed

automata or Petri nets, allow one to reason about systems in an ex-
tremely important level of abstraction. At this level, the process
of switching between two discrete states is refined into two tran-
sitions, initiation and conclusion, separated by some real-valued
delay, which is often not known exactly but bounded. Among the
numerous phenomena that can benefit from this style of modeling
we mention the execution time of a block of code in a real-time pro-
gram, communication delays in a network, and the time it takes for
a digital electronic gate (or a more complex block) to stabilize to a
new value after its input has changed. In this paper we demonstrate
our approach using models based on networks of Boolean gates due
to their notational economy and because it is easy to generate large
examples in a uniform way, but the techniques developed can be
adapted to other description levels and application domains.

Timed automata model duration of actions using auxiliary clock
variables. To express a timing constraint between two transitions
(such as the initiation and termination of a process) a clock is re-
set to zero while taking the first transition, and its value is tested
to satisfy the constraint as a pre-condition (“guard”) for the sec-
ond transition. Between transitions, when the automaton stays in a
state, the value of all active clocks progress in the same pace, rep-
resenting at each moment the time elapsed since the occurrence of
their respective events.

At each moment along the real-time axis, the state of the automa-
ton is characterized by a configuration (q, v) with q being a discrete
state and v a vector of clock valuations ranging over some bounded
subset of R

n. Albeit the infinite state space, the basic verification
questions for timed automata are decidable [1]. Existing decision
techniques suffer, however, from the usual state-explosion prob-
lem, aggravated by the clock-explosion problem: during reachabil-
ity analysis we need to store “symbolic states” of the form (q, P)
where q is a discrete state and P is a set of clock valuations. These
sets are expressed by a conjunction of constraints of forms like
x < d or x − y < d, and constitute a special class of convex
polyhedra that we call timed polyhedra. In a state where n clocks
are active, timed polyhedra can be n-dimensional and admit up to
two constraints for each pair of variables. Consequently the anal-
ysis of a system consisting of n timed components may generate
in the worst case O(2n · n!) symbolic states, each with an O(n2)
representation size. Although a lot of effort has been invested dur-
ing the last decade in finding more efficient ways to analyze timed
automata, scalability toward the size requirements of circuit anal-
ysis has not been achieved. In this work we start exploring com-
positional reasoning via abstraction as an alternative road toward
scaling-up timed automata technology.

4. TIMED ABSTRACTION

64

y0

y1

y2

y0

y1

y2x2/z2

x1/z1

(a)

X Y
Z

Y
X Y Z

S S′

y0

y2

y1

y12y0

(b)

/z4

/z3

X Y Z X ZY ′
S S′

x1/y1, z1

x2/y2, z2

x1/z1

x2/z2 x2/z2

x1/z1 /z3

/z4

Figure 1: (a) Hiding internal states from the outside does not necessarily reduce complexity; (b) An abstraction S ′ of S obtained by
merging y1 and y2 into y12.

Timed automata are quite intuitive but their formal definition can
be rather irritating outside formal verification circles. To address
potential users of the proposed technology we avoid formalization
and illustrate our technique using a running example.

4.1 Modeling
Figure 2 shows a timed Boolean circuit and one of its possible

behaviors. The circuit has an input signal x which may switch arbi-
trarily, but with bounded variability, that is, it has to wait at least 5
time units between subsequent switchings. Changes in x are prop-
agated through a bi-bounded delay element whose output y follows
the value of x within some t ∈ [1, 2] time units and is fed into a
similar delay element with output z. Mathematically speaking the
relation between signals maintained by the circuit can be expressed
by the delay inclusions y ∈ D[1,2](x) and z ∈ D[1,2](y)

Following the principles laid out in [7] we model the input and
the components using the automata Ax, Ay and Az of Figure 3.
We label transitions by input events, guards, clock resets and output
events, for instance, a transition labeled by x+, cy < 2/{cz}, y−

can be taken upon the rising of x, provided that cy < 2, and its ef-
fect is to reset cz and lower y. The input automaton Ax guarantees
bounded variability by guarding its transitions with the condition
cx > 5 and by resetting clock cx to zero at every transition.

The modeling of delay elements by timed automata is a crucial
ingredient of our methodology. The automaton Ay starts at a stable
state 0 where its value coincides with the value of its input x. Upon
a change in x it moves to an excited state 0′ while resetting its clock
cy . The “stabilize” transition from 0′ to 1 through which y “catches
up” with x, may happen when cy ∈ [1, 2], that is, inside the time
window [t + 1, t + 2] with t being the time when x has changed.4

Note that the “excite” transition from 0 to 0′ is always triggered by
an external input but is not visible from the outside, while the stabi-
lization transition from 0′ to 1 is generated autonomously without
an input event (unless one considers the passage of time as such)
and is visible to the outside world. Composing the three automata
we get the global automaton A of Figure 4. Note also that each
clock is active only in global states in which its corresponding gate
is excited.

There are different approaches for treating the case where x changes
its value again before propagating to y. For the purpose of this
work, we assume that the automaton returns from 0′ to 0 (a “re-
gret” transition) and thus it “forgets” the whole episode. Other
approaches may treat this phenomenon as an error (“glitch”), or
model it in a manner more faithful to the physical realization of
logical gates. Either way, this guarantees that the number of events

4The fact that the automaton must leave state 0′ when cx reaches 2
can be expressed either using staying conditions (“invariants”) as-
sociated with states, or “deadlines” and “urgencies” associated with
transitions, [9]. Using the latter terminology, stabilization transi-
tions are delayable.

that may be “alive” in the systems is bounded, regardless of the
input frequency. In other domains this effect can be achieved by
admission controllers or bounded buffers.

The semantics of this automaton consists of all xyz signals it can
generate, that is, the signals carried by all runs of the automaton.
These runs are sequences of configurations separated by transitions
or by time-passage periods. The behavior where x rises at 6, y
follows after 1 time unit and z follows 1.9 time units after y, is
captured by the following run where configurations are presented
as tuples of the form 0

@
x, cx

y, cy

z, cz

1
A

where ⊥ denotes inactive clocks:

0
@

0′, 0
0,⊥
0,⊥

1
A 6−→

0
@

0′, 6
0,⊥
0,⊥

1
A x+

−→
0
@

1′, 0
0′, 0
0,⊥

1
A 1−→

0
@

1′, 1
0′, 1
0,⊥

1
A

y+
−→

0
@

1′, 1
1,⊥
0′, 0

1
A 1.9−→

0
@

1′, 2.9
1,⊥
0′, 1.9

1
A z+

−→
0
@

1′, 2.9
1,⊥
1,⊥

1
A

The circuit behavior carried by this run can be represented either
in a state-based manner (as a signal) or in an event-based manner
(as a time-event sequence, see [2]) as follows:

0
@

0
0
0

1
A

6 0
@

1
0
0

1
A

1 0
@

1
1
0

1
A

1.9 0
@

1
1
1

1
A 6 · x+ · 1 · y+ · 1.9 · z+

We use the term qualitative behavior to denote the sequence of
signal values without reference to timing. For this example the
qualitative behavior is x+y+z+ and can be viewed as an equiva-
lence class of all signals of the form t1 · x+ · t2 · y+ · t3 · z+ · t4
for any t1, t2, t3, t4 ≥ 0.

If we ignore timing constraints, remove all references to clocks
from transition guards and leave only the rising and falling labels,
we obtain a timed automaton which is practically equivalent to an
untimed automaton. This can be viewed as a very aggressive form
of abstraction whose set of qualitative behaviors is the set of all
sequences of labels carried by all paths in the transition graph, for
example x+y+z+x−y−z− or x+y+x−y−. However, taking tim-
ing into account one can see that given the variability constraint on
x, the second behavior is impossible because state 110′ is never
reached with a combination of clock values that satisfies the guard
cx > 5 ∧ cz < 2.

4.2 Reachability Analysis
The analysis of the timed automaton itself, rather than its un-

timed abstraction, is typically performed by constructing the reach-
ability graph, also known as the simulation graph [6], which gives

65

[1, 2]
x+ x−

z+ z−

x

y

z

x y z

[1, 2][5,∞)

Figure 2: A simple timed circuit and a typical behavior.

{cx}, x−

0′

cx > 5/

{cx}, x+
cx > 5/

1′

0 0′

x−, cy < 2/

x+/{cy}

cy ∈ [1, 2]/

y+
cy ∈ [1, 2]/

y−

1′ 1

x−/{cy}

x+, cy < 2/

0 0′
y+/{cz}

y−, cz < 2/

cz ∈ [1, 2]/

z−
cz ∈ [1, 2]/

z+

1′ 1

y−/{cz}

y+, cz < 2/

Ax Ay Az

Figure 3: Modeling the circuit of Figure 2 with timed automata.

y−, {cz}
cy ∈ [1, 2]/

cx > 5, cy < 2, x−/{cx}
1′0′1′0′01′

1′110′1′1

cy ∈ [1, 2]/

y+

cx > 5, cz < 2, x+/{cx, cy}

cx > 5, cy < 2, x+/{cx}

cx > 5, x+/{cx, cy}

cz < 2/y−
cy ∈ [1, 2],

0′00 1′0′0

0′1′0′ 1′10′

cx > 5, x+/{cx, cy}

cy ∈ [1, 2]/

y+, {cz}

cx > 5, cz < 2, x−/{cx}

cx > 5, x−, cz < 2/{cx, cy}

cx > 5, x−, cy < 2/{cx}

cz ∈ [1, 2], cy < 2/z+

cz ∈ [1, 2]/z+

cz ∈ [1, 2], cy < 2/z−cz ∈ [1, 2]/z−

Figure 4: The global automaton A = Ax ◦ Ax ◦ Az for the circuit.

66

a (somewhat non-intuitive) representation of that part of the timed
automaton which is reachable from some initial state or set of states.
To illustrate the idea let us compute the reachability graph for A
starting from an initial configuration (0′00, cx = 0). In this state
we can let time progress indefinitely and can reach all clock valu-
ations satisfying cx ≥ 0. This is represented as a “symbolic state”
(0′00, cx ≥ 0). The next step is to intersect this set with the tran-
sition guard cx > 5 to obtain all the configurations from which the
transition labeled by x+ can be taken, represented by the symbolic
state (000, cx ≥ 5). Finally, by applying to this set the resetting of
cx and cy, we obtain the symbolic state (10′0, cx = cy = 0).

The process is then repeated from the new symbolic state where
time passage is limited by 2 which is the upper bound on the rising
of y, hence the symbolic state is (10′0, cx = cy ≤ 2). The tran-
sition back to 0′00 cannot be taken due to empty intersection with
the guard cx > 5 and this transition is eliminated. The intersection
with the guard cy ∈ [1, 2] gives (10′0, 1 ≤ cx = cy ≤ 2) and the
result of the transition after resetting cz is (1′10′, cx ≤ 2∧cz = 0).
In this state time can progress until cz = 2 resulting in the symbolic
state (1′10′, 1 ≤ cx − cz ≤ 2 ∧ cz ≤ 2) and so on and so forth
until we obtain the reachability graph of Figure 5. The procedure is
guaranteed to terminate due to the finite number of bounded timed
polyhedra [1, 6].

We interpret the reachability graph as a timed automaton A′ as
follows: for each symbolic state (q, P) we define a copy of state
q whose staying condition (and its outgoing transition guards) are
restricted to their intersections with P . Transitions whose guards
become empty in the process, as well as states that become un-
reachable, are removed. On the other hand it may happen that the
reachability graph contains two or more symbolic states (q, P) and
(q, P ′) that correspond to alternative paths to q, and hence the state
will be split in the resulting timed automaton. For example state
0′00 as an initial state can have all clock valuations with cx ≥ 0,
but when reached again through the path x+y+z+x−y−z−, the
value of cx must always exceed 2. Such state splitting will occur
very often in systems such as circuits where there are many “dia-
monds”, that is, two competing events e1 and e2 that may happen
in both e1 ≺ e2 and e2 ≺ e1 orders and converge to the same state
q. If these events reset clocks c1 and c2, respectively, the reach-
ability graph will contain two symbolic states, (q, c1 ≤ c2) and
(q, c2 ≤ c1).

It is not hard to see that the new timed automaton A′ admits
exactly the same set of behaviors as the original automaton A, to-
gether with an additional evident property that any configurations
that satisfies the staying condition of a state is indeed reachable.
Every finite or infinite path (a qualitative behavior) in the transition
graph of A′ is an untimed abstraction of a feasible behavior of A, a
behavior that satisfies the timing constraints. If our goal is to verify
some untimed property of the system, we can remove the clocks
from A′ (after having used them to eliminate infeasible paths) and
apply standard untimed verification algorithms. However if we
want to compose the system with other components it might not
be a good idea to get rid of all timing information. The untimed
abstraction does not constrain in any way the time between x+, y+

and z+, which can be arbitrarily small or large, and will make it dif-
ficult (if not impossible) to prove the correctness of the interaction
of the circuit with its environment. An abstraction which maintains
some of the timing constraints but which has less states and clocks,
would be very useful in this context.

4.3 Abstraction by Clock Projection
We want the abstract model to approximate the timed input-output

relationship maintained by the system. Clock cx measures the time

since the last change in the external input x while clocks cy and cz

measure time elapsed since the occurrence of internal events, the
excitation of the two gates, events that are of no interest to the gen-
eral public. We can thus “hide” these clocks and project the guards
and staying conditions on clock cx to obtain the automaton A′′ of
Figure 6. Note that a projection of a polyhedron P into a lower
dimensional polyhedron P ′ makes some of the constraints which
are implicit (redundant) in P , explicit in P ′. For example the poly-
hedron defined by 1 ≤ cz ≤ 2∧1 ≤ cx − cz ≤ 2 is projected onto
2 ≤ cx ≤ 4.

When y is not observable outside the system, the set of all xz
behaviors of A′′ is exactly that of A and A′ and no information
is lost. Unfortunately, in the general case, the projection of clocks
does lose information. Consider the same circuit but with y visible
to the external world. In this case A′′ is an over approximation
because it allows a behavior like 5 · x+ · 1 · y+ · 3 · z+, where y
“chooses” to change in the earliest time t ∈ [1, 2] after x while z
is allowed to chooses the largest element in [2, 4] = [1 + 1, 2 + 2]
while in A and A′ its choices were restricted to the interval [t +
1, t + 2]. This is the type of accuracy we are ready to sacrifice for
the purpose of complexity reduction.

The outcome of our abstraction technique is a timed automaton
over the inputs and outputs of the system, where output transition
guards involve clocks that measure the time elapsed since the oc-
currence of input events. In the previous example we used input
clock cx which was reset at every change in x. This construction
was correct because the variability constraint prevented the arrival
of an x-event while the circuit is still busy “digesting” the previous
event. When this constraint is relaxed, an x-labeled transition may
be taken in a state where one or more gates excited by the previous
x-transition have not yet stabilized. In our example, if we change
the variability constraint from cx ≥ 5 to cx ≥ 3, x may change at
state 1′10′ where y has already stabilized but z is still excited by
the previous change. If we reset cx we lose the time of that pre-
vious event, and when we project transitions guards on cx we do
not express the temporal distance between the rising of z and its
triggering event.5

To guarantee correct abstraction each input event should reset its
proper clock which will stay active as long as the “wave” of reac-
tions it triggered has not propagated through the system. Within
our modeling methodology, the number of input events that may be
active simultaneously in an acyclic system is bounded and hence a
finite number of clocks will suffice to retain the information nec-
essary for relating the timing of input and output events. To im-
plement these input clocks we modify the timed automaton model
to include a pool of dynamic clocks which are activated by input
events and killed when the effect of these events propagates to the
output. The attachment of these clocks to input events is not fixed
and the same clock can, for example, denote at some point the time
elapsed since the oldest x1 event still in the system, and at some
other point, the time since the most recent x2 event. Technically
speaking, we replace the input generator by one which creates a
new clock at every transition, and keeps track of the input events
that are still alive in the system and the clocks that represent them.
It is worth mentioning that such dynamic clocks are useful in other,
more theoretical, contexts [8].

4.4 Minimization
By hiding internal clocks we obtain an abstract model whose

number of clocks need not be equal to the number of timed ele-

5In our previous work [3] we have applied this abstraction tech-
nique to systems whose inputs changes only once at time zero, so
that one additional clock was sufficient to project on.

67

cx > 5, x+/{cx, cy}

1′10′1 ≤ cx − cz ≤ 2, cz ≤ 2

cx = cy ≤ 2

1 ≤ cy = cx ≤ 2/
y+, {cz}

1 ≤ cz ≤ 2, 1 ≤ cx − cz ≤ 2/z−

1 ≤ cz ≤ 2, 1 ≤ cx − cz ≤ 2/z+

0 ≤ cx

1′0′00′00

0′00

0′01′ 1 ≤ cx − cz ≤ 2, cz ≤ 2

cx = cy ≤ 2

0′1′1
cx > 5, x−/{cx, cy}

1′11

2 ≤ cx

1 ≤ cx = cy ≤ 2/
y−, {cz}

2 ≤ cx

Figure 5: The reachability graph of the automaton in Figure 4, interpreted as a timed automaton A′.

0′01′

0′1′1 1′11

2 ≤ cx

2 ≤ cx ≤ 4/z−

1 ≤ cx ≤ 4

1 ≤ cx ≤ 2/y−

cx > 5, x−/{cx}

2 ≤ cx ≤ 4/z+

1′0′0

1′10′

cx > 5, x+/{cx}

1 ≤ cx ≤ 2/y+

1 ≤ cx ≤ 4

cx ≤ 2

0 ≤ cx

0′00

0′00

2 ≤ cx

cx ≤ 2

Figure 6: The automaton A′′ obtained from A′ by hiding clocks cy and cz . The dotted boxes group together states that differ only
by the value if the internal variable y.

68

ments but rather depends on the maximal number of input events
that may be “alive” simultaneously in the system. The number of
such events depends, of course, on the size of the system as well as
on other properties such as the number of inputs, their variability as
well as structural properties such as width vs. depth (sequentiality
vs. parallelism). Under reasonable assumptions concerning these
parameters, the reduction in the number of clocks is significant.

The final step in our procedure aims at reducing the number of
discrete states by merging states that are equivalent or approxi-
mately equivalent in terms of the observable behaviors they admit.
Candidates for merging are states that differ from each other only
by values of internal variables and of clocks, for example states
such as 1′0′0 and 1′10′ in automaton A′′ of Figure 6, after hiding
y. A commonly-used minimization rule (also for untimed systems)
is the following.

Let q be a source state for several paths, each consisting of a se-
quence of unobservable transitions, except the last transition which
changes one observable variable and goes to state q′. In this case q
and all the intermediate states can be collapsed into one state whose
staying condition is the union of those of all states, and which has
a transition to q′ guarded by the union of all transition guards to
q′ from the intermediate states. Applying this rule we obtain the
automaton of Figure 7 which is nothing but a demonstration of
the following equivalence on delay operators: D[1,2](D[1,2](x)) =
D[2,4](x). A similar transformation was presented in [11] for timed
Petri nets.

The situation gets more complicated when the system admits
more parallelism and input events may appear more frequently. We
have developed a variety of minimization algorithms that are simi-
lar in spirit to those described in [5]. We employ a variety of pro-
gressively more “liberal” criteria that merge states which: 1) Admit
exactly the same sequences of observable transitions and guards; 2)
Differ in guards but the guards are included in each other; 3) Differ
in guards and the guard of the new state is the convex hull of the
guards of the original states; 4) Differ in the order of some sequence
of events that admit.

We have implemented all the abovementioned features into a
new experimental version of the verification tool IF [4], includ-
ing an automatic translation from a circuit description language to
timed automata, generation and maintenance of dynamic clocks,
projection and minimization. The software implementing this tech-
nique consists of more than 15000 lines of C++ code.

5. EXPERIMENTAL RESULTS
To assess our approach we applied it first on some classes of syn-

thetic circuits, the first of which is a family of k-long buffers like
the one described in the example, with delays in [3, 5]. We per-
formed the experiments with two versions of the buffer, one where
only the output of gate k is observable, and the other where the
output of gate k/2 is visible as well. Table 1 shows the results of
applying our technique while assuming input variability bounded
by 40. Column w shows the maximal number of input events that
may be alive in the buffer, which ranges from 1 to 3 depending on
the circuit depth. The first pair of columns shows the number of
symbolic states and transition in the computed reachability graph.
The rest of the table shows the size of the reduced graph using
three minimization criteria: Hidemin indicates merging only in the
case of identical guards, TimedMin merges states when guards are
included in each other while Temporal Min ignores guards and con-
siders equivalence with respect to transition labels.

The other class of examples is inspired by recent research on per-
formance analysis of embedded software, e.g. [10]. We consider
systems that generate different types of tasks with some bounded

frequency. Each type of task has to go through a partially-ordered
set of treatments. Each type of treatment requires a specific re-
source (machine) for some duration with the possibility of resource
conflicts between tasks. These conflicts are resolved by a scheduler
applying a simple policy. Each task type has a dedicated bounded
buffer. We have applied our technique to an instance of this prob-
lem with 2 task types, 3 machines, a priority-based scheduler and
parameters that allow 3 events to be alive simultaneously in the sys-
tem. An unoptimized version of IF generates a reachability graph
with 1282 states and 1975 transitions. The version of IF that we
use, with dynamic clocks and various optimization that we do not
bother to detail, yields a graph with 127 states and 205 transition.
After minimization with zone inclusion we obtain the automaton
of Figure 8 with 18 states and 33 transitions. Transitions in the
reduced model correspond to arrivals of new tasks and their termi-
nation.

6. DISCUSSION
We have developed a new promising technique for automatic

generation of abstractions for open timed systems. Timed automata
with dynamic input clocks may turn out to be the appropriate for-
malism for characterizing the timed input-output behaviors of com-
plex systems, whose approximation by nice analytical expressions
is too coarse. Our technique can also be part of a divide-and-
conquer methodology where abstract models of sub-systems are
composed together in order to verify a system too large to be an-
alyzed as a whole. Much more experimentation and fine tuning
are needed, however, in order to assess the applicability of our ap-
proach.

Our original ambitious aim was to provide a “fully-open” ab-
straction without assuming any restriction on the inputs, and letting
this restrictions come from each particular environment with which
the abstract model is to be composed. However, we have learned
in the process that unrestricted inputs generate too many simulta-
neous waves that lead to explosion. One should be careful, though,
not to confuse what is assumed and what should be guaranteed.

7. REFERENCES
[1] R. Alur and D.L. Dill, A Theory of Timed Automata,

Theoretical Computer Science 126, 183-235, 1994.
[2] E. Asarin, P. Caspi and O. Maler, Timed Regular

Expressions, The Journal of the ACM 49, 172-206, 2002.
[3] R. Ben Salah, M. Bozga and O. Maler, On Timing Analysis

of Combinational Circuits, FORMATS’03, 204-219, LNCS
2003.

[4] M. Bozga, S. Graf and L. Mounier, IF-2.0: A Validation
Environment for Component-Based Real-Time Systems,
CAV’02, LNCS 2404, Springer, 2002.

[5] C. Daws and S. Tripakis, Model Checking of Real-Time
Reachability Properties using Abstractions, TACAS’98,
LNCS 1384, 1998.

[6] T. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine,
Symbolic Model-checking for Real-time Systems,
Information and Computation 111, 193-244, 1994.

[7] O. Maler and A. Pnueli, Timing Analysis of Asynchronous
Circuits using Timed Automata, CHARME’95, 189-205,
LNCS 987, Springer, 1995.

[8] O. Maler, D. Nickovic and A. Pnueli, Real Time Temporal
Logic: Past, Present, Future, FORMATS’05, 2-16, LNCS
3829, Springer, 2005.

[9] J. Sifakis and S. Yovine, Compositional Specification of
Timed Systems, STACS’96, 347-359, LNCS 1046, Springer,

69

0′1 1′1
cx > 5, x−/{cx}

0 ≤ cx ≤ 4

0′0 1′0
cx > 5, x+/{cx}

0 ≤ cx ≤ 4

2 ≤ cx ≤ 4/z+
2 ≤ cx ≤ 4/z−

Figure 7: Hiding y and minimizing the automaton

Generated HideMin TimedMin Temporal Min
Buff Time w Graph 1 Out 2 Out 1 Out 2 Out 1 Out 2 Out

(mn) S T S T S T S T S T S T S T

2 00:00 1 6 6 4 4 6 6 4 4 6 6 4 4 6 6
3 00:00 1 8 8 4 4 6 6 4 4 6 6 4 4 6 6
4 00:00 1 10 10 4 4 6 6 4 4 6 6 4 4 6 6
5 00:00 1 12 12 4 4 6 6 4 4 6 6 4 4 6 6
6 00:00 1 14 14 4 4 6 6 4 4 6 6 4 4 6 6
7 00:00 1 16 16 4 4 6 6 4 4 6 6 4 4 6 6
8 00:00 2 20 22 6 8 8 10 8 10 8 10 8 10 8 10
9 00:00 2 26 32 6 12 8 14 6 8 8 12 6 8 8 12

10 00:00 2 44 62 8 24 10 26 8 12 10 14 6 8 8 10
11 00:01 2 86 132 10 50 12 52 10 18 12 20 6 8 8 12
12 00:03 2 166 266 12 92 18 98 12 26 16 32 6 8 12 18
13 00:20 2 382 624 16 172 26 188 14 36 18 42 6 8 12 18
14 00:34 2 584 966 22 280 44 322 20 84 30 110 6 8 22 48
15 00:54 2 804 1336 26 398 54 446 24 110 42 150 6 8 30 78
16 03:45 3 2208 3846 67 884 125 1109 52 270 96 445 29 85 68 254
17 09:28 3 4349 8284 333 5596 497 4884 235 2590 363 2591 114 881 221 1587
18 38:45 3 12425 25329 1051 39940 1387 28993 623 15375 879 14080 466 14805 756 12974

Table 1: The result of applying our technique to chains of buffers.

0

15

G1+
St{GB1.0}

16

G2+
St{GB2.0}

1

4

F1+
Rm{GB1.0}

Sh{GB1.0<<GB1.1}
Z1

10

F2+
Z4

2

3

F1+
Rm{GB1.0}

Sh{GB1.0<<GB1.1}
Z2

8

F2+
Z3

F1+
Rm{GB1.0}

Z9

7

G1+
St{GB1.1}

Z8

F1+
Rm{GB1.0}

Z11

5

F1+
Rm{GB1.0}

Sh{GB1.0<<GB1.1}
Z5

6

F2+
Z6

F1+
Rm{GB1.0}

Sh{GB1.0<<GB1.1}
Z7

F1+
Rm{GB1.0}

Z11

12

G2+
St{GB2.0}

Z11

13

G2+
St{GB2.0}

Z22

14

G2+
St{GB2.0}

Z21

9

F2+
Z6

11

G1+
St{GB1.0}

Z10

F2+
Z12

G1+
St{GB1.1}

Z14

G1+
St{GB1.1}

Z13

F1+
Rm{GB1.0}

Z14

G1+
St{GB1.1}

Z17

F2+
Z16

G1+
St{GB1.1}

Z20

F1+
Rm{GB1.0}

Z15

F1+
Rm{GB1.0}

Z19

F2+
Z20

F2+
Z6

G1+
St{GB1.0}

Z23

G1+
St{GB1.0}

Z10

Figure 8: The abstract model of the 2-task, 3-machines problem. Arrival and termination of tasks are denoted by Gi and Fi labels,
respectively, whike creation, removal and shifting of clocks by St, Rm and Sh. Zones appear in a separate file to facilitate readability.
A more detailed description of the input and the output can be found in www-verimag.imag.fr/∼maler/cav-appendix.html

70

1996.
[10] E. Wandeler, A. Maxiaguine, L. Thiele: Quantitative

Characterization of Event Streams in Analysis of Hard
Real-Time Applications, Real-Time Systems 29, 205-225,
2005.

[11] H. Zheng, E. Mercer, and C.J. Myers, Modular verification
of timed circuits using automatic abstraction, IEEE Trans. on
CAD 22, 2003.

71

72

SAVCBS 2007
CHALLENGE PROBLEM

SOLUTIONS

73

74

Challenge Problem: Subject-Observer Specification
with Component-Interaction Automata

Pavlína Vařeková
∗

, Barbora Zimmerova
∗

Faculty of Informatics
Masaryk University

602 00 Brno, Czech Republic
{xvareko1, zimmerova}@fi.muni.cz

ABSTRACT
This paper presents our solution to the Subject-Observer
Specification problem announced as the challenge problem
of the SAVCBS 2007 workshop. The text consists of two
parts. In the first part, we present the model of the Subject-
Observer system in terms of Component-interaction au-
tomata. In the second part, we present our approach to
verification of the system model with respect to unlimited
number of Observers.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation

General Terms
Component-based systems, verification, specification

Keywords
Component-based systems, dynamic number of components,
finite-state systems, verification, software modelling

1. INTRODUCTION
The following solution to the Subject-Observer Specification
challenge problem is based on the paper [3] that is going
to be presented at the workshop. For this reason we do
not repeat the definitions given in the paper and reference
the reader to the paper. The model is created using the
Component-interaction automata modelling language (first
presented in [1]). For more information on the language
please see [4] or the coming detailed case study [5], our re-
sult in the CoCoME (Common Component Modelling Exam-
ple) Contest1, where we have first experienced the Subject-
Observer modelling problem.

∗The authors have been supported by the grant No.
1ET400300504.
1http://www.cocome.org/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Specification and Verifica-
tion of Component-Based Systems (SAVCBS 2007), September
3-4, 2007, Cavtat near Dubrovnik, Croatia.
Copyright 2007 ACM ISBN 978-1-59593-721-6/07/0009 ...$5.00.

2. SPECIFICATION
Consider the assignment of the challenge problem. It states
that there may be many Observers for a Subject and an Ob-
server may be registered with more than one Subject. But
it does not discuss whether the numbers of Subjects and
Observers are fixed or change at run-time. While working
on the CoCoME, we have observed that in practical applica-
tions, the number of Subjects is usually fixed, but the num-
ber of Observers can grow dynamically. In this example, we
suppose the same. In addition, as distinct to the official as-
signment, we add a possibility of the Observer to deregister
from Subjects to make the solution more interesting.

Now we present our model for the example created using
Component-interaction automata. For clearness, we start
with the model of the system with one Subject only. Then
we generalize the model to multiple Subjects.

2.1 Model with one Subject
The model of the system with one Subject and multiple
Observers is the following.

2.1.1 Observer
The Observer (in this case with a component name j ∈ N)
first needs to register to get to the state 3 where it can
accept notifications and ask for the value managed by the
Subject. In the model, each method, e.g. register(), is
assigned a tuple of action names: register denotes the call
of the method, and register’ the return from the method.
These two determine the start and the end of the method’s
execution.

Oj : �� 1�������	
(j,register,−)

�� 2�������	

(−,register′,j)
��

4�������	

(−,deregister′,j)

��

3�������	
(j,deregister,−)��

(−,notify,j)
�� 5�������	

(j,getV alue,−)

��
7�������	

(j,notify′,−)

��

6�������	
(−,getV alue′,j)��

A hierarchy of component names: (j)

Figure 1: A CI model of the Observer Oj

75

2.1.2 Subject
The Subject S (component name α) implements four meth-
ods, update(), register(), deregister(), getValue(),
and hence its model consists of four parts connected via
the full composition operator ⊗ (no transitions removed) as
S = ⊗{S1,S2,S3,S4}. Models of the parts are in figure 2.

S1 : �� 1�������	
(−,update,α)

��

��

(−,notify′,α)

��
�� 2�������	

(α,update′,−)

��

��

(−,notify′,α)

��
�� 3�������	

(α,int,α)����
��

��
�

��
(−,notify′,α)

��
��

5�������	
(α,int,α)

���������

����

(−,notify′,α)

�
�� 4�������	

(α,int,α)��
����

(α,notify,−)

�
��

S2 : �� 1�������	
(−,register,α)

�� 2�������	
(α,register′,−)��

S3 : �� 1�������	
(−,deregister,α)

�� 2�������	
(α,deregister′,−)��

S4 : �� 1�������	
(−,getV alue,α)

�� 2�������	
(α,getV alue′,−)��

A hierarchy of component names: (α)

Figure 2: A CI model of the Subject S parts

On the update() method (automaton S1), the Subject first
receives the method call, confirms its return (to allow the
updater to continue its execution while the notifications are
delivered, which is common in Subject-Observer communi-
cational models) and then takes care about notifying the
Observers. This proceeds in two loops separated by inter-
nal actions. The first loop distributes the notification to the
Observers, the second confirms termination of notifications.
This allows the Observers to execute bodies of their methods
in parallel. More, the confirmation (−, notify′, α) is allowed
also in other states than 5. This protects the system from
deadlock of the Observers that do not manage to synchro-
nize with the Subject before it leaves the state 5. Note that
the composition with Observers using a handshake-like com-
position (required synchronization of complementary labels,
which are removed and only synchronized internal labels re-
main) includes paths representing that 0, 1, 2, ...,all registered
Observers are notified. However no Observer can be notified
twice. This confirms to the at most once constraint, which
will be verified later in this text.

On the remaining methods register(), deregister(), get-
Value() (automata S2,S3,S4), the Subject only receives the
call and then returns. More interesting behaviour could be
inserted on the place of state 2.

2.2 Model with several Subjects
The presented model can be readily extended to the multi-
Subject case. Suppose the number of Subjects is n, then
we have Subjects Si for i ∈ {1, 2, ..., n} where i represents
the id of the Subjects. We add this id also to the names of
methods to distinguish which Subject an Observer wants to
communicate with.

2.2.1 Observer
The Observer now consists of n parts identical up to indexes
in actions, each one for communication with one Subject.
A model of one part is in figure 3. The parts are again
connected via the full composition operator ⊗, hence the
model of the Observer (component name j) is Oj,{1,...,n} =
⊗{Oj,i}i∈{1,...,n}.

Oj,i : �� 1�������	
(j,registeri,−)

�� 2�������	

(−,register′
i,j)

��
4�������	

(−,deregister′
i,j)

��

3�������	
(j,deregisteri,−)��

(−,notifyi,j)
�� 5�������	

(j,getV aluei,−)

��
7�������	

(j,notify′
i,−)

��

6�������	
(−,getV alue′i,j)��

A hierarchy of component names: (j)

Figure 3: A CI model of the Observer part Oj,i

2.2.2 Subject
The model of a Subject Si (component name αi where
αi, i ∈ N, denotes the sequence of i symbols α) is analogical
to the model of Subject S (figure 2). It again consists of
four parts Si = ⊗{Si

1,Si
2,Si

3,Si
4}. The models of the parts

are in figure 4.

Si
1 : �� 1�������	

(−,updatei,αi)

��

��

(−,notify′
i,αi)

��
�� 2�������	

(αi,update′i,−)

��

��

(−,notify′
i,αi)

��
�� 3�������	

(αi,inti,αi)����
��

��
�

��
(−,notify′

i,αi)

��
��

5�������	
(αi,inti,αi)

���������

����

(−,notify′
i,αi)

�
�� 4�������	

(αi,inti,αi)��
����

(αi,notifyi,−)

�
��

Si
2 : �� 1�������	

(−,registeri,αi)

�� 2�������	
(αi,register′

i,−)��

Si
3 : �� 1�������	

(−,deregisteri,αi)

�� 2�������	
(αi,deregister′

i,−)��

Si
4 : �� 1�������	

(−,getV aluei,αi)

�� 2�������	
(αi,getV alue′i,−)��

A hierarchy of component names: (αi)

Figure 4: A CI model of the Subject Si parts

2.2.3 The composite model
Now we can fix the number of Subjects to n, and the number
of Observers to m, hence get automata S1,S2, . . . ,Sn and
O1,{1,2,...,n},O2,{1,2,...,n}, . . . ,Om,{1,2,...,n} given by descrip-
tion above, and compose them together using handshake-
like composition. The handshake-like composition requires
synchronization of those labels that have a counterpart at
other component. Such labels are afterwards removed from
the composition and only the internally synchronized labels
are left.

76

This type of composition can be realized via composition
operator ⊗F (see [3]) where F =S

i,j∈N
{(αi,notifyi,j),(j,notify′

i,αi),(j,registeri,αi),(αi,register′
i,j),

(j,deregisteri,αi),(αi,deregisteri,j),(j,getV aluei,αi),(αi,getV alue′i,j)}
∪ S

i∈N
{(−,updatei,αi),(αi,update′i,−),(αi,inti,αi)}

The resulting model is then:
⊗F{S1, . . . ,Sn,O1,{1,2,...,n}, . . . ,Om,{1,2,...,n}}.

Such a model is suitable for verification of properties fixed
to the selected numbers of Subjects and Observers. How-
ever we are interested also in verification of the proper-
ties for an arbitrary number of Observers, because it is
usual that the Observers can be added to and removed
from the system dynamically. To this issue, we may ap-
ply the solution [3] presented at this workshop. However
before we can do so, we need to adjust the system to
the structure that is awaited by our approach. That is
that the system consists of one stable component (called
provider) and a number of dynamic components of one type
(called clients). To meet this constraint, we only com-
pose all Subjects into a composite Subject managing all
values S{1,...,n} = ⊗{Si}i∈{1,...,n} and define the dynamic

system model as Sn&O = (S{1,...,n}, {Oj,{1,...,n}}j∈N,F)
and a composite system with m Observers as Sn&Om =
⊗F{S{1,...,n},O1,{1,...,n}, . . . ,Om,{1,...,n}}.

Now the composite Subject represents the provider and Ob-
servers the clients of the dynamic system we have just de-
fined.

3. VERIFICATION
In this section, we describe the verification of a dynamic
system Sn&O for arbitrary fixed number of Subjects n. We
present the application of the approach introduced in [3]
for effective verification of properties expressed as sequences
Property(Sn&O, m). Then we illustrate the technique on
the properties of the systems S1&O and S2&O.

3.1 Properties for verification
In formal verification techniques, like model checking [2], the
properties for verification are specified in temporal logics.
In our approach, we use the logic CI-LTL. CI-LTL is an
extension of the action-based LTL, which is in addition to
expressing that an action (label) l is proceeding P(l) able
to express that a given label l is enabled E(l) in a state of a
path (one-step branching). See [3] for description of CI-LTL.

Assume a dynamic system D. The properties that we aim to
verify, can be specified with a sequence of formulas {ϕi}i∈N0

over LD such that a property is satisfied iff for each i ∈ N0

it holds that ϕi |= Di. Note that not every sequence of
formulas {ϕi}i∈N0 represents a meaningful property of the
system. Thus we concentrate on the formulas satisfying the
following.

(1) The property makes no distinctions among clients.
(2) If the property is violated by a path in a system Di+j

where j components do not perform any steps, the
property is violated by the same sequence of labels
also in the system with i clients only.

Moreover, we pose the following two restrictions. See [3] for

proper description of these.

(3) We focus only on the formula sequences that represent
properties whose violation involves a finite number m
of observed components only.

(4) We consider only the properties that are invariant un-
der stuttering according to CI-LTL.

The set of properties that fulfills these conditions for model
D and the finite number of components m is denoted
Property(D,m).

3.2 Verification technique
The core idea of the verification process is based on finding a
number k ∈ N such that if the property is violated on a sys-
tem then it must be violated for the system with maximally
k clients deployed. If such k exists, it allows us to reduce
verification of the infinite system to a finite one. In partic-
ular, to a verification of a finite number of finite systems –
with 0, 1, . . . , k clients deployed. The value k for a dynamic
system D and a set of observable actions X can be esti-
mated as a sum of two measures. The first one is a measure
of complexity of a dynamic system reflecting the maximal
number of clients that are regarded by the provider. The
second one is a similar measure on properties that reflects
the minimal number of clients necessary to exhibit a path
violating studied property.

3.3 Optimizations
The model of the dynamic system for the Subject-Observer
problem Sn&O does not exactly follow the pattern client-
provider supposed by our approach [3]. In [3] we require
that the provider of a dynamic system can in any time re-
gard at most n clients for a constant n ∈ N0

2. In the case of
a dynamic system Sn&O, the client (Observer) is regarded
(served) if and only if it is registered. Note that the number
of registered Observers in the system Sn&O can be arbi-
trary. Hence |Sn&O|LC0

= ∞. Therefore we need to use

two optimizations that lead to |Sn&O|X finite.

3.3.1 Optimization 1.
With regard to the presence of sub-formulas P(l) and E(l)
in the verified sequence of formulas, we minimize the set X
used in the computation of |D|X . This decrease of the num-
ber of observed labels increases the probability that w.r.t.
these labels the provider (combined Subject) regards at most
a fixed number of clients (Observers) at any time, which
makes |D|X finite.

Example 3.1. Suppose a dynamic system S1&O and two
sets of observable labels X for which we compute the value
|S1&O|X :

• X = {(α, notify1,−), (−, notify′
1, α)}

In this case, the Observer is in a cycle of service if and only
if it started and did not finish the notification. The number

2It could be said that a client is regarded (or served) by the
provider if it synchronized with the provider on an observ-
able label that started client’s execution (cycle of service)
and has not yet synchronized on an observable label repre-
senting the end of this execution. It holds that the value
|D|X is always grater than the maximal number of served
clients.

77

of such Observers is not bound. It holds that the maximal
number of served Observers is lower or equal to |S1&O|X ,
hence |S1&O|X = ∞.

• X = {(−, notify′
1, α)}

In this case no Observer can be in a cycle of service. Roughly
speaking this is because X implies only one observable tran-
sition and hence no Observer can get in between of two ob-
servable transitions that bound a cycle of service (for defi-
nition of a cycle of service see [3]). Therefore it is possible
that the value |S1&O|X is finite. After computing this value
we get |S1&O|X = 1.

3.3.2 Optimization 2.
This optimization is based on a modification of the dynamic
system and the property in a way that thanks to them we
may verify the original property on the original system, and
we increase the probability that the measure of complex-
ity of the modified model with respect to the modified set
of properties and the set of observable labels is finite. Let
{ϕi}i∈N0 ∈ Property(D,m). Suppose:
• A dynamic system D created from system D by modifica-
tion of its provider – modelling the provider of the system
D composed with m clients (see figure 5). The remaining
items of the dynamic system are identical to the system D.
• A sequence of properties {ϕi}i∈N0 such that the formula
ϕn captures for the automaton Dn the same property as the
formula ϕn+m narrowed down to the clients 1, ..., m for the
automaton Dn+m.

Example 3.2. The formulas {ϕi}i∈N0 ∈ Property(D, 1) for
instance capture the property:
After every start of a notification (sent to any Observer)
there follows the finish of this notification.
Then the formulas {ϕi}i∈N0 ∈ Property(D, 0) capture the
property:
After every start of a notification sent to an Observer that
is modelled as a part of the provider, there follows the finish
of this notification.

As {ϕi}i∈N0 ∈ Property(D,m) and these formulas make no
distinction among clients, it holds that:

. Dn |= ϕn iff Dn+m |= ϕn+m.

As {ϕi}i∈N0 ∈ Property(D, 0) then if D0 |= ϕ0, . . . ,
D|D|X′ |= ϕ|D|X′ (for appropriate X ′) it follows from the

intuition presented in Optimization 2 that it must hold that
Dn |= ϕn for every n ∈ N0. From lemmas in [3] we get that
for every n ∈ N0 it holds that Dn+m |= ϕn+m.
Moreover, the set X ′ contains less external labels (input
and output labels) than the set X, and hence there is higher
probability that |D|X′ is finite.

Example 3.3. Suppose that for the system S1&O we
are interested in the verification of the properties from
example 3.2. These properties can be captured as
formulas Property(S1&O, m) and for their verification,
it suffices to use the set of observable labels X =
{(α, notify1,−), (−, notify′

1, α)}. From the reasoning
above, we know that |S1&O|X = ∞. However if we con-

sider the model S1&O where the provider contains not only
n components for the Subjects, n = 1 here, but also m com-
ponents representing Observers, m = 1 here (modelled with

Figure 5: A dynamic system D with n clients and
dynamic system D with n − m clients

component name β), the minimal set of observable actions
is X ′ = {(α, notify1, β), (β, notify′

1, α)} and it holds that

|S1&O|X′ ≤ 1.

3.4 Algorithm for verification
The next section presents examples of the properties of the
Subject-Observer system that are interesting for verification.
Validity of these properties can be showed by intuitive rea-
soning. However for more complex properties, the automatic
verification technique is necessary. In this section we present
such a technique based on the results from [3]. This verifi-
cation will take advantage of the optimizations introduced
above. It consists of the following three steps.

(1) Creation of a harmonized sequence of formulas {ϕi}i∈N0

that corresponds to a given property for the dynamic sys-
tem Sn&O. Detecting whether there is a finite m such
that the sequence of formulas {ϕi}i∈N0 is part of the set
Property(Sn&O, m). If there is no such m, it is not possi-
ble to verify {ϕi}i∈N0 using the approach from [3]. It is clear
that a property can be captured with various formulas, some
of them can be verified using our approach, some of them
cannot (see the property (c) in section 4.1).

(2) Modification of the dynamic system Sn&O and the se-
quence of formulas {ϕi}i∈N0 using Optimization 2 to the dy-
namic system Sn&O (the Observers that become part of the
provider will be referred to as β, ββ, . . .) and the sequence
of formulas {ϕi}i∈N0 . With respect to the Optimization 1,
we select the set X of observable labels and we compute
|Sn&O|X .

(3) The dynamic system Sn&O and formulas {ϕi}i∈N0 agree
with the prerequisites of Lemma 5.4 from [3]. Hence for the
verification of the given property, it suffices to check the
validity of the according formulas on the systems Sn&O0,
Sn&O1, . . . , Sn&O|Sn&O|X . If the verification succeeds, it

is verified that the property holds for all systems Sn&O0,
Sn&O1, Therefore from the discussion in Optimiza-
tion 2 it follows that the original property is verified on mod-
els Sn&Om, Sn&Om+1, For verification of the whole
dynamic system, we more need to verify the original prop-
erty on Sn&O0, Sn&O1, . . . , Sn&Om−1.

Only the first step (1) needs to be supported manually, the
steps (2) and (3) can be done automatically.

78

The intuition for getting the over-approximation of the value
|D|X , which we will use together with Lemma 5.4 from [3] for
automatization of the steps (2) and (3) from the algorithm
above is based on a simple observation:

”If for a dynamic system D the automaton Dn generates all
possible runs with respect to the observable labels X, then for
every i ∈ N the automaton Dn+i generates again the same
runs. Hence it holds that |D|X ≤ n.”

4. EXAMPLES
Now we present several examples to demonstrate the verifi-
cation of the Subject-Observer system model.

4.1 Verification of the syst. with one Subject
In this section, we illustrate the verification technique pre-
sented above on the dynamic system S1&O. In the exam-
ples, we discuss the first step in detail because it is the man-
ual part of the verification. For the remaining two steps,
which can be done automatically, we just present the results
without further discussion.

a) If a run contains infinitely many steps concerning
some Observer, then the Observer is infinitely many
times enabled to receive notifications.

• This property can be expressed by a harmonized set
of formulas {ϕi}i∈N0 :
ϕi =

V
j≤i ϕ(α, j),

where
ϕ(α, j) = [G F W

l∈Labj
P(l)] ⇒ [G F E(α, notify1, j)],

Labj = {(j,register1,α),(α,register′
1,j),(j,deregister1 ,α),

(α,deregister′
1,j),(α,notify1,j),(j,notify′

1,α),(j,getV alue1,α),

(α,getV alue′1,j)}
(Labj is a set of all the labels that are present in some
of the automata S1&Oj , S1&Oj+1, . . . concerning the
Observer Oj).
For any i ∈ N0 and an infinite run π starting in an
initial state of the automaton S1&O satisfying π 	|=
ϕi, there exists a number j ∈ N such that on this
run the formula ϕ(α, j) is not valid. For confirming
this violation it suffices to observe the Subject and the
Observer with the numerical name j. Hence in general,
it always suffices to observe one Observer to confirm
the violation of the property. It holds that:
{ϕi}i∈N0 ∈ Property(S1&O, 1)

• The modified sequence of formulas {ϕi}i∈N0 is then
ϕi = ϕ(α, β) ∀i ∈ N0.
In this case, it suffices to compute the value
|S1&OLabβ

| (see Lemma 5.4 from [3])
and from the algorithm discussed above it follows that:
|S1&OLabβ

| ≤ 0.

• Then after verifying the models S1&O0 and S1&O0

we can conclude that the property always holds.

b) If one of the registered Observers receives a no-
tification and some other Observer is also ready to
receive one (is registered and has not receive it yet),
it will receive the notification too.

• This property can be expressed by a harmonized set
of formulas {ϕi}i∈N0 :

ϕi =
V

j1,j2≤i,j1 �=j2
ϕ(α, j1, j2),

where
ϕ(α, j1, j2) = G [(P(α, notify1, j1) ∧
E(α,notify1, j2)) ⇒ (true U P(α, notify1, j2))]
For any i ∈ N0 and an infinite run π starting in
an initial state of the automaton S1&O satisfying
π 	|= ϕi, there exists distinct numbers j1, j2 ∈ N such
that on this run the formula ϕ(α, j1, j2) is not valid.
For confirming this violation it suffices to observe the
Subject and the Observers with the numerical names
j1 and j2. Hence in general, it always suffices to
observe two Observer to confirm the violation of the
property. It holds that:
{ϕi}i∈N0 ∈ Property(S1&O, 2).

• {ϕi}i∈N0 satisfies ∀i ∈ N0 ϕi = ϕ(α, β, ββ).

In this case, it suffices to compute the value |S1&OX |
for X = {(α,notify1,βk),(βk,notify′

1,α),(α,register′
1,βk),

(βk,deregister1,α) | k∈{1,2}}
(see Lemma 5.4 from [3]) and from the algorithm dis-

cussed above it follows that: |S1&O|X ≤ 0.

• Then after verifying the models S1&O0, S1&O1 and
S1&O0 we can conclude on the validity of the formula.
In this case the formula does not hold which is con-
firmed by the model S1&O0.
The counterexample is the run of the automaton
S1&O0 where first the Observers β and ββ register for
receiving notifications, then the Subject is updated, it
sends the notification to Observer β, but never deliv-
erers the notification to Observer ββ because this gets
locked in a loop of registering and deregistering.

c) After any update, each Observer receives at most
one notification about value change. This reflects
that ”each Observer is called at most once per state change”
from the assignment of the problem.

• This property can be expressed by a set of formulas
{ϕi}i∈N0 :
ϕi =

V
j≤i ¬F ϕ(α, j),

where
ϕ(α, j) = P(α, notify1, j) ∧ X [¬P(−, update1, α) U
P(α, notify1, j)]
These formulas contain operator X , therefore they
are not invariant under stuttering and that is why
{ϕi}i∈N0 	∈ Property(S1&O, m) holds for any m ∈ N0.
We take advantage of the fact that each Observer
after getting the notification must first confirm the
end of the notification before it is able to receive
another one. Hence we can express the property with
the following harmonized set of formulas:
ϕi =

V
j≤i ¬F ϕ(α, j),

where
ϕ(α, j) = P(α, notify1, j) ∧ [¬P(−, update1, α) U
{P(j, notify′

1, α) ∧ [¬P(−, update1, α) U
P(α, notify1, j)]}].
Example of a run violating the formula ϕ(α, j) is for
instance (without names of states):

•(α,notify1,j)��
�=(−,update1,α)

�� • → . . . → •(j,notify′
1,α)��
�=(−,update1,α)
�� • → . . . → •(α,notify1,j)�� • → . . .

79

Using the reasoning analogical to the one above, we
can conclude that {ϕi}i∈N0 ∈ Property(S1&O, 1)

• ϕi = ¬F ϕ(α, β).
We need to compute the value
|S1&O|{(−,update1,α),(α,notify1,β),(β,notify′

1,α)}.

|S1&O|{(−,update1,α),(α,notify1,β),(β,notify′
1,α)} ≤ 1.

• Then after verifying the models S1&O0, S1&O0 and
S1&O1 we can conclude that the property always
holds.

d) Anytime, the Subject is in future enabled to ex-
ecute update().

• This property can be expressed by a harmonized set
of formulas {ϕi}i∈N0 :
ϕi = G F E(−, update1, α).
As the formulas do not contain a name of any Ob-
server, it holds that {ϕi}i∈N0 ∈ Property(S1&O, 0).

• ϕi = ϕi = G F E(−, update1, α).
We need to compute the value
|S1&O|{(−,update1,α),(α,int1,α)}.
It holds that |S1&O|{(−,update1,α),(α,int1,α)} ≤ 1.

• The verification of the models S1&O0, S1&O1 shows
that the property holds on the model S1&O0 but does
not hold on the model S1&O1.

The counterexample is the run of the automaton
S1&O1 (for space reasons we do not include the names
of the states):

•(β,register1,α)�� •
(α,register′

1,β)

�� •(−,update1,α)�� •
(1,register1,α)

�� •(α,register′
1,1)�� •
(1,register1,α)

�� · · ·

e) If it holds for a run that every update of the
Subject is followed by starting the notification of all
the Observers, then each update will be also followed
by finishing of the notifications by all the Observers.

• This property is an example of a property that can be
expressed as a sequence of formulas, but there exists
no m ∈ N0 such that the sequence of formulas is in
Property(S1&O, m). This follows from the fact that
if a property is violated by some run, we are not able
to bound the number of clients that always suffices to
confirm the faultiness of the run.

4.2 Verification of the syst. with two Subjects
In this section we present examples of two properties dis-
cussed above on the dynamic system Subject-Observer with
two Subjects S2&O.

f) If a run contains infinitely many steps concern-
ing some Observer, then the Observer is infinitely
many times enabled to receive notifications from
both Subjects.

• This property can be expressed by a harmonized set
of formulas {ϕi}i∈N0 :
ϕi =

V
j≤i ϕ(α, αα, j),

where

ϕ(α, αα, j) = [G F W
l∈Labj

P(l)] ⇒
[G (F E(α,notify1, j)) ∧ (F E(αα,notify2, j))],
and
Labj = {(j,registerk,αk),(αk,register′

k
,j),(j,deregisterk,αk),

(αk,deregister′
k

,j),(αk,notifyk,j),(j,notify′
k

,αk),

(j,getV aluek,αk),(αk,getV alue′
k

,j) |k∈{1,2}}
(Labj is a set of all the labels that are present in some
of the automata S2&O0, S2&O1, . . . concerning the
Observer Oj).
From the reasons analogical to the ones discussed
above, it follows that:
{ϕi}i∈N0 ∈ Property(S2&O, 1)

• The modified sequence of formulas {ϕi}i∈N0 is then
ϕi = ϕ(α, αα, β) ∀i ∈ N0.

Hence it suffices to compute the value |S2&OLabβ
| and

it follows that: |S2&OLabβ
| ≤ 0.

• From the verification of the models S2&O0 we learn
that the property is not satisfied. The counterexample
is the run containing an infinite number of the transi-
tions concerning the Observer β who can never accept
the notification about the update of the value managed
by the Subject αα (for space reasons we again do not
include the names of the states):

•(β,register,α)�� •
(α,register′,β)

�� •(β,deregister,α))�� •
(α,deregister′,β)

�� •(β,register,α)�� · · ·

g) After any update, each Observer receives at most
one notification about value change. This reflects
that ”each Observer is called at most once per state change”
from the assignment of the problem.

• Analogically to the property (c) in section 4.1, we
take advantage of the fact that each Observer after
getting the notification must first confirm the end of
the notification before it is able to receive another one.
Hence we can express the property with the following
harmonized set of formulas (without the operator X):
ϕi = [

V
j≤i ¬F ϕ(1, j)] ∧ [

V
j≤i ¬F ϕ(2, j)],

where
ϕ(k, j) = P(αk, notifyk, j) ∧ [¬P(−, updatek, αk) U
{P(j, notify′

k, αk) ∧ [¬P(−, updatek, αk) U
P(αk, notifyk, j)]}].
Using the reasoning analogical to the one above, we
can conclude that {ϕi}i∈N0 ∈ Property(S2&O, 1)

• ϕi = ¬F ϕ(α, β) ∧ ¬F ϕ(αα, β).

We need to compute the value |S2&O|X for
X = {(−, update1, α), (α, notify1, β), (β, notify′

1, α),
(−, update2, αα), (αα, notify2, β), (β, notify′

2, αα)}
and it holds that
|S2&O|X ≤ 1.

• Then after verifying the models S2&O0, S2&O0 and
S2&O1 we can conclude that the property always
holds.

4.3 Closing remarks
We could also study the general issue of whether for a cer-
tain property (parametrized with a number of Subjects and

80

Observers) there exists nmax and n′
max such that the valid-

ity of the property for systems with at most n′
max Subjects

and at most nmax Observers implies the validity of the prop-
erty on all systems. The reasoning would follow the same
intuition as the verification of the properties from the set
Property(D,m) on the dynamic system D. However from
space reasons, we do not study this general case here.

5. REFERENCES
[1] L. Brim, I. Černá, P. Vařeková, and B. Zimmerova.

Component-Interaction Automata as a
Verification-Oriented Component-Based System
Specification. In Proceedings of SAVCBS’05, pages
31–38, Lisbon, Portugal, September 2005.

[2] E. M. Clarke, O. Grumberg, and D. A. Peled. Model
Checking. The MIT Press, USA, January 2000.

[3] P. Vařeková, P. Moravec, I. Černá, and B. Zimmerova.
Effective-Verification of Systems with a
Dynamic-Number of Components. In Proceedings of
SAVCBS’07, Dubrovnik, Croatia, September 2007.

[4] I. Černá, P. Vařeková, and B. Zimmerova.
Component-interaction automata modelling language.
Technical Report FIMU-RS-2006-08, Masaryk
University, Faculty of Informatics, Brno, Czech
Republic, October 2006.

[5] B. Zimmerova, P. Vařeková, N. Beneš, I. Černá,
L. Brim, and J. Sochor. The Common Component
Modeling Example: Comparing Software Component
Models, chapter Component-Interaction Automata
Approach (CoIn). To appear in LNCS, 2007.

81

82

SAVCBS 2007
SHORT PAPERS

83

84

Game-Based Safety Checking with Mage

Adam Bakewell
University of Birmingham, UK

a.bakewell@cs.bham.ac.uk

Dan R. Ghica
University of Birmingham, UK

d.r.ghica@cs.bham.ac.uk

ABSTRACTMage is a new experimental model heker based on gamesemantis. It adapts several tehniques inluding lazy (on-the-�y) modelling, symboli modelling, C.E.G.A.R. and ap-proximated ounterexample erti�ation to game models. Itdemonstrates the potential for truly ompositional veri�a-tion of real software.
Categories and Subject DescriptorsD.3.1 [Programming Languages℄: Formal De�nitions andTheory�Semantis
General TermsVeri�ation
KeywordsSoftware model heking, game models, symboli automata,ompositional veri�ation, data approximation, re�nement
1. GAME-BASED SAFETY CHECKING...Game Models Intuitively, the game model of a programan be generated by alling the program with every possibleombination of arguments; and when the program alls onone of its free identi�ers returning every possible result. Thegame model is then the set of sequenes of values passed inand out. Game models have the following key advantages.1. Compositionality The model of a omposite programf(a) is obtained by applying a simple 'ompose' ruleto the models of f and a. Thus omponents an bemodelled and heked independently.2. Full abstration That is, both soundness (presene ofan error-ation in the model implies a fault in the pro-gram) and ompleteness (all program faults are presentas error-ations in the model).
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2007),September 3-4, 2007, Cav-
tat near Dubrovnik, Croatia.
Copyright 2007 ACM ISBN 978-1-59593-721-6/07/0009 ...$5.00.

3. Blak-box The game model only reports observable a-tions. This inherent abstration provides the usualbene�ts: ode privay, model onision, separate anal-ysis of omponents.Safety Cheking In game models, program safety reduesto event reahability (i.e. the program passing out an errorvalue or alling an exeption). Building an automaton rep-resentating the model and searhing the transition spae ofthe automaton for error ations implements safety heking.For simple languages like Idealized Algol (IA) [1℄, whihhave regular language game models, a �nite-state automatonis onstruted and a sound and omplete safety hek byexhaustive searh an be realized, as in the �rst game-basedmodel heker whih was presented at SAVCBS 2003. Theaveat is that for realisti types (e.g. 32-bit integers) themodels are often too big, despite the blak-box property.More powerful features like reursive types and higher-order funtions need in�nite-state automata so state approx-imation and loss of soundness must be inorporated as usual.Data Approximation The seond games-based model heker,GameCheker [5℄ used data approximation and adapted theCEGAR (that is, �ounterexample-guided approximation re-�nement�) tehnique [4℄ to game models. This allows hek-ing to begin with a very small model and gradually inreasethe preision of the data types in parts of the program thatgenerate potential ounterexamples. The results [6℄ showanother suess-in-priniple: programs with realisti typesignatures an be modelled and heked. But literal inter-pretation of the game-theoreti approah � build modelsfrom omponent models and pass the �nal produt to aheker � makes analysis of large programs impratiable.
2. ...WITH MAGEMage Our new safety heker, Mage1, makes several ad-vanes over the previous state-of-the-art that overome someof the problems inherent to ompositional blak box models.These ideas, outlined below, give asymptoti improvementsin the omplexity of many safety heking problems. Thesebig performane gains have been won by bending and break-ing the game approah in various ways.Lazy Safety Cheking Models are big. But this shouldnot be the barrier in safety heking beause the result ofsafety heking is a verdit (and perhaps a ounterexample);not a model. Thus, atually building a model then heking1http://www.s.bham.a.uk/~axb/games/mage/.

85

it is very spae ine�ient. It is also very time ine�ient ifthe model ontains errors that show up early in the hek.Mage generates parts of the model as they are demanded bythe heker. And it stops as soon as it detets unsafety.Symboli Game Models The game models are regularlanguages represented as automata. To �t with lazy hek-ing it is muh better to implement models in an impliit �rather than onstruted � form: an initial state and thenext-state funtion su�e and we all this representation asymboli model (f. [2℄). Symboli omposition is espeiallyuseful as it only onsiders parts of the model that are de-manded by the heker: an integer funtion f model mighthave a di�erent behaviour for eah of its 232 arguments butonly those behaviours demanded by the possible values ofthe argument a are onsidered when generating the modelof f(a). Thus symboli models are still de�ned omposi-tionally but the heker an use information about the sur-rounding ontext to make a signi�ant e�ieny gain whensearhing the symboli transitions.Data ApproximationWe replaed integers with �nite ranges.This breaks the soundness diretion of full abstration so ingeneral only produes possible-ounterexamples but an bevery e�etive in eliminating error-free sub programs fromthe searh and quikly deteting data-independent errors.Approximated Counterexamples Data approximationadds behaviours to the model. Therefore ounterexamplesmust be erti�ed � i.e. is the image, under approximation,of an error in the unapproximated model. Model hekersusually analyse ounterexamples with a SAT solver. Mageuses domain-spei� knowledge to implement a simpler andmore e�ient solution: non-determinism on the path throughthe approximated model to the error indiates a possibly-false ounterexample.CEGAR Finding a possibly-false ounterexample ausesMage to re�ne the re-hek the model. Re�nement meansinreasing the preision of the data approximations for thosevalues that led to the ounterexample. The symboli modelis re�ned simply by modifying the type annotation on af-feted variables. The model-hek-ertify-re�ne loop repeatsuntil a true ounterexample is found or every possibly-falseounterexample is eliminated. Termination is guaranteedbeause eah re�nement makes a model stritly less approx-imate and ultimately the unapproximated models are �nite.Individuated Re�nement It is a disadvantage to foredi�erent uses of the same variable to share the same approx-imation: approximate values needed at one site to generateunsafety are then onsidered at other sites, typially leadingto more false ounterexamples and more baktraking in thesearh and more re�nement iterations than would otherwisehappen. Mage identi�es whih variable site generated (oronsumed) eah value in a possible-ounterexample. and re-�nes the approximation used at eah site individually.Grey-box models To support the re�nement and erti�-ation tehniques we have to leak some information aboutinternal ations. For erti�ation this reates a onstantoverhead; for re�nement the ost an be larger. So our mod-els are not stritly blak-box; merely as blak as possible.

stak size Mage GameCheker Blast2 0.1 10.1 1.64 0.1 27.5 3.38 0.2 112.6 4.616 0.4 780.7 7.832 1.2 12,268.1 17.364 3.9 over 7 hours 43.7128 13.9 - 145.3256 54.8 - spae exhaustedTable 1: Stak over�ow detetion tests.
3. RESULTSStak Veri�ationWe ompare Mage with the earlier CE-GAR game-based heker GameCheker on the same veri�-ation problem. We also ompare it with the powerful non-game-based model heker, Blast [7℄ (translating the prob-lem from IA into C makes no semanti di�erene). Blastis a suitable non-game omparison beause it also uses lazymodelling and re�nement tehniques and it represents thestate of the art in veri�ation based on prediate abstra-tion and it an verify signi�ant appliations suh as deviedrivers. The problem is to disover ontexts that lead tounder�ows and over�ows in a stak of integers where thestak is represented by a �nite array and the stak interfaepresents a push and a pop method that all exeptions whenthe empty stak is popped or a full stak is pushed.Over�ow Table 1 shows the time taken (on the same ma-hine, in seonds) for the three tools to detet a ontextleading to an over�ow for staks of di�erent sizes. TheMage times are roughly linear; GameCheker is exponen-tial beause it is dominated by model building; Blast isalso roughly linear but su�ers resoure problems with largerstaks. Mage an handle staks of thousands of elements.Under�ow For the under�ow searh problem the laziness ofboth Mage and Blast allow the ounterexample �pop empty�to be disovered in a fration of a seond for staks of bil-lions of elementss. For GameCheker the need to build themodel before heking auses similar (slightly faster) resultsto the over�ow problem.Future Prospets Results suh as these suggest that theompositional games approah should be salable to handlemuh larger software projets. Our researh agenda is toextend the framework to a pratial language suh as C andthen to ombine the pure model heking with support fromprogram analysis.
4. REFERENCES[1℄ Abramsky, S., Ghia, D.R., Murawski, A.S., Ong,C.H.L.: Applying game semantis to ompositionalsoftware modeling and veri�ation. In: TACAS.(2004) 421�435[2℄ Ball, T., Rajamani, S.K.: Bebop: A symboli modelheker for boolean programs. In: SPIN. (2000)113�130[3℄ Ball, T., Cook, B., Levin, V., Rajamani, S.K.: Slamand stati driver veri�er: Tehnology transfer offormal methods inside Mirosoft. In: IFM. (2004) 1�20

86

[4℄ Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith,H.: Counterexample-guided abstration re�nement.In: CAV. (2000) 154�169[5℄ Dimovski, A., Ghia, D.R., Lazi, R.:Data-abstration re�nement: A game semantiapproah. In: SAS. (2005) 102�117[6℄ Dimovski, A., Ghia, D.R., Lazi, R.: Aounterexample-guided re�nement tool for openproedural programs. In: SPIN. (2006) 288�292[7℄ Henzinger, T.A., Jhala, R., Majumdar, R.: The Blastsoftware veri�ation system. In: SPIN. (2005) 25�26

87

88

Specification and Verification of Trustworthy
Component-Based Real-Time Reactive Systems ∗

Vasu Alagar and Mubarak Mohammad
Department of Computer Science and Software Engineering

Concordia University
Montreal, Quebec, Canada H3G 1M8

{alagar,ms moham}@cse.concordia.ca

ABSTRACT
This paper presents a formal methodology for the development of
trustworthy real-time reactive systems (RTRS). Safety and secu-
rity are considered as the two significant properties for trustworthy
RTRS. The paper presents an overview of a component-based mod-
eling that involves formal descriptions for trustworthy components.
Then, Formal rules are introduced for the automatic generation of
behavior protocol based on the formal definitions of trustworthy
components. A model-checking method to formally verify security
and safety properties in the component model is presented.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements / Specifications—
Methodologies; D.2.4 [Software Engineering]: Software / Pro-
gram Verification—Formal methods, Model checking

General Terms
Design, Security, Verification

Keywords
Trustworthiness, Components, Real-Time Reactive Systems

1. INTRODUCTION
In this paper we explain how trustworthiness can be exploited in the
specification and verification of component-based real-time reac-
tive systems (RTRS). In the context of RTRS development we iden-
tify safety and security as the two principal factors contributing to
trustworthiness. We propose a verification-oriented design method-
ology that involves (1) formal specification of component struc-
ture and functional/non-functional (trustworthiness) properties, (2)
automatic generation of component behavior using the specified
structure and restricted by the specified properties, and (3) veri-
fication of functional / non-functional component behavior using
model checking.

∗This research is supported by a Research Grant from Natural Sci-
ences and Engineering Research Council of Canada.(NSERC)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2007), September 3-4, 2007,
Cavtat near Dubrovnik, Croatia.
Copyright 2007 ACM ISBN 978-1-59593-721-6/07/0009 ...$5.00.

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

Data Parameters

Services

Interface Types

Frame

Architecture Types

Connector Types

Data Constraints

Data Security

Service Security

User Identity

Reactivity

Time Constraints

Structure Contract

Component Template

Contract CompositionStructural Composition

Composition

Composite Component Template

Timed
Automata

RT
PROMELA Others...

Safety

Liveness

Data flow Security

Data Security

Service Security

Automatic Generation of Behavior Properties

UPPAAL KRONOS SPIN Others...

Model Checking

Figure 1: Formal Methodology

Figure 1 depicts our formal methodology. The idea is to formally
define the structure of simple components and to define functional
and trustworthiness properties at the structural level. There are
two benefits for architecting trustworthiness at the structural level.
First, it enables the automatic generation of component behavior
by analyzing the structure and its properties. Second, it enables
reasoning about trustworthiness at the architectural level which is
proven to be an important method for attaining trustworthiness [7].
The generated behavior can take different formats depending on
defined transformation rules. The defined transformation rules help
in (1) automating the process of generating the behavior so that no
expertise in behavior specification are required, (2) insuring consis-
tency between the structure and properties defined on one hand and
the generated behavior on the other hand, and (3) translating the
elements of the structure definitions and the defined properties to a
behavior specification format that suits different verification tools.
Our goal is to use different verification tools in order to verify a
wide range of properties and target different kinds of systems. This
is because different verification tools differ in their requirements
and abilities [6]: the expressive power of the modeling language,
the verification methods used by them, the size and complexity of
systems that they can handle, the capabilities suited to different
kinds of problems, and the behavior specification format. In this
paper we present rules for generating component behavior as ex-

89

tended timed automata suited for UPPAAL [4] model checker.

In our research, we are focusing on the trustworthiness aspect of
RTRS. Reactive systems belong to the class of computer systems
that maintain continuous interaction with their environment through
stimulus and response. The class of reactive systems in which the
response to a stimulus may be strictly regulated by timing con-
straints is called RTRS. Such systems are required to be trustworthy
due to its complexity and the critical contexts it operate in. Al-
though trust is a social concept which is hard to define formally,
there is some consensus recently in defining trustworthiness as the
degree of user confidence that the system will behave as expected
[5]. Safety and security are identified as essential elements for
achieving trustworthiness [3]. In the past, research in verifying
safety and security properties have progressed in parallel, due to
the finding that safety and security can’t be formally specified and
verified together in any one formal method [8]. We managed to
use component-based development as a basis for a unified formal
model for the specification and verification of safety and security
properties of RTRS [3].

Our contributions in this paper are: (1) a formal methodology for
developing trustworthy RTRS, (2) transformation rules for the au-
tomatic generation of component behavior based on component
structure and properties, and (3) model checking safety and secu-
rity using one method.

2. COMPONENT TEMPLATE - A FORMAL
DEFINITION

In our component model, a component template, component type,
is composed of a structure part and a contract part. The structure of
a template is an abstract external black-box view, called frame, and
its internal hierarchical structure, called architecture. The frame
consists of the interface types, the access points to the services pro-
vided/requested by the component. Each interface type is associ-
ated with a set of services. A service may be parameterized with
data parameters. An architecture is a collection of connector types,
an abstract view of the tie-ins between interface types. The contract
part of the template states the trustworthiness properties required of
the system for which the structure is a blue print.

A component is an instance of a component template. Every com-
ponent instantiated from a template has one instance of the struc-
ture part defined for the template. The frame of the component
is a set of interfaces, where each interface belongs to exactly one
interface type in the template frame. It is possible to instantiate
multiple interfaces of an interface type. An architecture instance
corresponding to a component frame is an instance of the architec-
ture corresponding to the frame in the template, having as many in-
stances of connector types as are required for linking the interfaces
in the component. A component’s contract constrains the commu-
nication pattern at its interfaces and is faithful to the contract part
in its template.

In [3] we have introduced a formal component model for trustwor-
thy systems. In this section we present a brief overview of the com-
ponent model. A component template can be formally specified in
terms of its frame and architecture specifications. We focus only on
the frame specification because of its relevance to the transforma-
tion rules presented in the next section. The internal architecture
specification has no impact on the component behavior communi-
cated at the external interfaces.

The frame specification is a tuple < Π, Σ, Λ, Ξ, σ, Θ, Γ, Ω, Υ, Ψ >
specifying services, interface types, and properties. The symbol Π
denotes a finite non-empty set of interface-types. An interface is
an instance of an interface type, it inherits the services listed in
the type definition. The symbol Σ denotes a finite set of events
where each event represents a service provided/requested by the
component. The set Σ is divided into a set of input events Σinput,
output events Σoutput, and internal events Σinternal such that Σ =
Σinput∪Σoutput∪Σinternal and Σinput∩Σoutput∩Σinternal =
∅. An event can carry data parameter values; therefore, we use Λ to
denote the finite set of data parameters and define Ξ : Σ → PΛ as
a function that associates with each event a set of data parameters.
Events are communicated at the interfaces of the frame; the func-
tion σ : Π → PΣ associates a finite non-empty subset of events
to each interface-type such that ∀P, Q ∈ Π, σ(P) ∩ σ(Q) = ∅
i.e. each event is associated with only one interface type. When a
request (stimulus) for service is received at an interface, it stimu-
lates the component to perform an action and respond either with
an internal processing or with an output event. Θ : Σinput →
Σoutput ∪ Σinternal is a total function that associates a set of
possible responses to each request received by the component. The
function Θ defines a causality relation between events i.e. Θ(e1) =
{e2, e3} means that if event e1 occurs then event e2 or e3 will oc-
cur as a response to e1. The responses of the component can be
constrained using (1) time constraints and (2) data parameter con-
straints. First, Γ denotes the finite set of timing constraints for the
events in Σ, where each time constraint involves conjuncts of the
form (t(r) − t(s)) ◦ n, where t(.) is the time function for event
occurrences, s ∈ Σ is an input event, r ∈ Σ, r ∈ Θ(s) is a re-
sponse to s, ◦ ∈ {<,≤, =,≥, >}, and n : N. Second, Ω denotes
a finite set of constraints for the data parameters associated with
the events in Σ, where each data constraint of an event s ∈ Σ is a
predicate defined over the values of the data parameters Ξ(s) asso-
ciated with s. If s has n number of responses in Θ(s) than there
must be n number of mutually exclusive data constraints defined
over the data parameters of s. This ensures that the responses of
s are mutually exclusive. The services provided by the component
can be secured and restricted only to authorized users. The intro-
duction of security properties at the frame enriches its behavior by
forcing (1) an analysis of the stimulus received before processing
it internally, and (2) an analysis of the response before sending it.
There are two prerequisites for ensuring security at the interfaces of
the component: (1) knowing the identity of the entity on whose be-
half the service is requested/provided, henceforth called user, and
(2) having an explicit definition of an access control matrix that
defines the access level of users to both events and information car-
ried by events. We assume that U denotes the set of users. For the
sake of simplicity we assume AC = {grant, deny} is the set of
access rights for events, and DA = {read, write} is the set of
allowed actions on data. The function Υ : U × Σ → AC defines
the event-security access by assigning for every pair (user, event)
an authorization which is either grant or deny. The function
Ψ : U × Λ → P DA enforces data-security access. It assigns
for every pair (user, dataparameter) an authorization which is
a subset of DA. If Ψ(u, d) = ∅ user u is denied access to data
d. The security property is defined in terms of event-security and
data-security. An interface of a component is event-secure if (1)
every input event is received from a user who is authorized to trig-
ger the input event, and (2) for every response event sent, the user
receiving the response is authorized to view the response. An in-
terface is data-secure if (1) the user has access rights for the data
parameters in every stimulus sent by the user, and (2) for every re-
sponse sent through the interface, the user receiving the response

90

has access rights for the data parameters in the response.

3. FORMAL VERIFICATION
In this section, we present brief information about UPPAAL model
checker. Then, we introduce transformation rules for the automatic
generation of component behavior. Finally, we describe how the
verification process is conducted using UPPAAL model checker.

3.1 UPPAAL
UPPAAL [4] is a mature model checker that has been used suc-
cessfully for more than a decade to model check several types of
concurrent real time systems. The UPPAAL modeling language is
based on timed automata TA = (L, l0, K, A, E, I) where L is the
set of locations denoting states, l0 is the initial location, K is the
set of clocks, A is the set of actions denoting events that cause tran-
sitions between locations, E is the set of edges, and I is the set of
invariants. Formally, E ⊆ L×A×B(K)× 2K ×L where B(K)
is the set of clock and data constraints denoting guard conditions
that restrict transitions, 2K is the set of clock initializations to set
clocks whenever required, and I : L → B(K) is a function assign-
ing clock constraints to locations as invariants. UPPAAL extends
timed automata with additional features. We present some of those
features that are relevant to the this paper:

• Templates: Timed automata are defined as templates with
optional parameters. Parameters are local variables that are
initialized during template instantiation in system declara-
tion.

• Global variables: Global variables and user defined func-
tions can be introduced in a global declaration section. Those
variables and functions are shared and can be accessed by all
templates.

• Binary synchronization: Two timed automata can have a
synchronized transition on an event when both move to new
state at the same time when the event occurs. An event that
causes synchronous transition is defined as a channel, a UP-
PAAL data type. A channel can have two directions: in-
put(labeled with ?) and output(labeled with!).

• Committed Location: Time is not allowed to pass when the
system is in a committed location. If the system state in-
cludes a committed location, the next transition must involve
an outgoing edge from the committed location.

• Expressions: There are three main types of expressions: (1)
Guard expressions are evaluated to boolean and used to re-
strict transitions; guard expressions may include clocks and
state variables, (2) Assignment expressions are used to set
values of clocks and variables, and (3) Invariant expressions
are defined for locations and used to specify conditions that
should be always true in a location.

• Edges: Edges denote transitions between locations. An edge
specification consists of four expressions: Select: assigns a
value from a given range to a defined variable, Guard: an
edge is enabled for a location if and only if the guard is eval-
uated to true, Synchronization: specifies the synchronization
channel and its direction for an edge, and Update: an assign-
ment statements that reset variables and clocks to required
values.

In UPPAAL, system properties are expressed formally using a sim-
plified version of CTL [4] as follows:

• Safety property is formulated positively stating that some
thing good is invariantly true. For example, let ϕ be a for-
mula, A2 ϕ means that ϕ should be always true.

• Liveness property states that some thing good will eventu-
ally happen. For example, A� ϕ means that ϕ will eventually
be satisfied.

3.2 Transformation Rules
In this section, we introduce the transformation rules for the au-
tomatic generation of component behavior based on the analysis
of component’s structure and contract defined in the component
frame specification. A component-based system is a network of
connected components. Every component is mapped to a UPPAAL
template in a one to one manner. We assign a parameter to every
UPPAAL template to denotes the identifier of the user on whose
behalf the component is running. This parameter will be used for
ensuring event and data security.

Let O = {o1, . . . , on} be the set of components in a RTRS, oi =<
ΠIi , Σi, Λi, Ξi, σi, Θi, Γi, Ωi, Υi, Ψi > such that:Σinput ⊆ Σi

denotes the set of stimulus events, Σoutput ⊆ Σi denotes the set of
output events, Σresponse ⊆ Σoutput denotes the set of responses,
Σrequests ⊆ Σi denotes the output events sent to other compo-
nents as requests for services, and Σinternal ⊆ Σi denotes the
set of internal events that are local to the component. Let TA =
(L, L0, K, A, E, I, u) be the definition of UPPAAL timed automata
where u denotes the user identity parameter associated with the
template at its instantiation. Then, the transformation rules con-
struct T = {t1, . . . , tn}, a set of UPPAAL templates, where ti is
the template constructed from component oi.

In the definition of a component frame, Π and σ are used in defining
the architecture. Therefore, Π and σ don’t affect the behavior of the
component, hence, are not used in the transformation process. In
brief, during the process of constructing TA = (L, l0, K, A, E, I)
from frame specification:

• Σ is used to construct L where every location in L denotes
the state of processing an event in Σ,

• Γ is used to construct K and I where a clock in K and an
invariant in I are defined for every time constraint in Γ,

• Σ is used to construct A where an action in A is defined for
every input or output event in Σ, and

• Σ, Λ, Ξ, Θ, Ω, Υ, and Ψ are used to construct E and its as-
sociated expressions. More precisely, Λ defines data param-
eters in Ξ which in turn are used in defining data constraints
in Ω that are used along with Υ to define Guard conditions
for edges. Σ and Θ are used in defining Sync expression. Ψ
is used to control data parameters access in Update expres-
sion.

We extend the UPPAAL formal template by adding security fea-
tures. In the global declaration section, we define: (1) a list of
system user identities U , (2) an event-access control matrix that
defines user access rights to events, (3) a data-access control ma-
trix that defines user access rights to events data parameters, (4) an

91

event security function EventSecurity : U × Σ → boolean that
searches the event-access control matrix of users-events and returns
boolean value indicating whither the user has access or not, (5) a
data security function DataSecurity : U × Λ → boolean that
searches the data-access control matrix of users-data and returns
a boolean indicating whither the user has the proper access right
(write for stimulus parameters and read for response parameters)
or not.

An informal discussion of the steps for constructing
TA = (L, L0, K, A, E, I, u) is given bellow:

Locations [L]. : A component provides and requests a set of
services. The details of service processing are hidden behind com-
ponent interfaces. Therefore, we use locations to denote the states
for processing services. Services are abstracted as events. The
function ∆ : Σ → L constructs for each event a location ∆(e) in
L. The location is the state for processing the event e. The set of
locations L can be constructed with the help of Σ as follows:

• [L.1] Create an initial location l0 to denote the idle state
where the component is waiting for a stimulus.

• [L.2] Stimulus events correspond to the services provided by
the component. For every stimulus event, create a location to
represent the service of processing the stimulus.

• [L.3] Output events that are not responses to stimulus corre-
spond to the services requested by the component. For every
output event that is not a response to a stimulus create a lo-
cation.

Clocks [K]. : Time constraints in Γ can be represented by clocks
in K and invariants representing clock constraints in I . The set of
clocks K can be constructed by creating a clock for every time
constraint that constrains the response of a stimulus. Clocks are
defined as template’s local variables.

Invariants [I]. : Time constraints are defined as location invari-
ants in I . We create an invariant in I for each time constraint in Γ
and assign it to ∆(e).

Actions [A]. : The set of actions A can be constructed by creat-
ing an action in A for every input and output event in Σ. Actions
are defined as synchronous channels. Input actions are decorated
with ? and output actions are decorated with !.

Edges [E]. : The behavior of a component is based on stimuli
and responses. Therefore, E can be constructed using Σ according
to the rules [E.1], [E.2], and [E.3] defined bellow. The specifica-
tion of edge expressions is derived from the data parameters Ξ and
the constraints Ω, Υ, and Ψ that are related to the action a, which
causes the transition, according to the following rules [E.Ex]:

• Select: It is used to get a value in a temporary variable for
each event data parameter in Ξ(a). These values will be as-

signed to their corresponding data parameters in the Update
expression.

• Guard: A guard condition is a conjunction Pr1 ∧ Pr2 such
that Pr1 ∈ Ω which is a predicate on data parameters in
Ξ(a) and Pr2 ∈ Υ which is the event security related to a.

• Sync: the action, the event causing the transition.

• Update: It includes assignment statements that update data
parameters in Ξ(a) and reset the clock in K related to the
time constraint in Γ that is defined for a. In order to ensure
data security, update statements are constrained by DataSecurity
function as follows:
∀d ∈ Ξ(a), d := DataSecurity(u, d)?Select(d) : Null,
which means that if the user u has access to the data param-
eter d then d will be assigned the selected value; otherwise,
d will be set to Null.

The following rules are used to construct template edges. After
constructing each edge, the rules in [E.Ex] are used to define its
expressions.

• [E.1] For every stimulus e create an edge from the initial lo-
cation l0 to ∆(e). If Θ(e) is time constrained then we should
reset the clock.
After finishing the processing of e by sending Θ(e), the com-
ponent can go back to idle state waiting for the next stimulus.
Therefore, for every response, we create an edge from ∆(e)
back to l0.

• [E.2] In order to provide the required services, the compo-
nent may request services from other components. When
a stimulus e has a response Θ(e) ∈ Σrequest then cre-
ate an edge from ∆(e) to ∆(Θ(e)) and a second edge from
∆(Θ(e)) to l0 .

• [E.3] the component may have a concurrent behavior. It
can receive stimuli while processing others. Therefore, we
create an edge from every location that represents stimulus
processing location lp1 to the other stimulus processing loca-
tions lp2. Use intermediate committed locations and split the
edge into two edges: (1) an edge from lp1 to the committed
location labeled with the stimulus and (2) an edge from the
committed location to lp2 labeled with the response of lp1.
The reason for having two edges is that UPPAAL doesn’t
allow having two synchronous channels on an edge.

EXAMPLE 1. Let < Π, Σ, Λ, Ξ, σ, Θ, Γ, Ω, Υ, Ψ > be a frame
specification where P = {p1}; Σ = {e1, e2, e3} such that Σinput =
{e1}, Σresponse = {e2}, Σrequest = {e3}; Λ = {d};Ξ(e1) =
{d}; σ(p1) = {e1, e2, e3}; Θ(e1) = e2, Θ(e1) = e3; Ω(e1, e2) :
d > 10, Ω(e1, e3) : d ≤ 10; Γ(e1, θ(e1)) = [0, 5]; U = {u1},
Υ(u1, e1) = Υ(u1, e2) = Υ(u1, e3) = grant, Ψ(u1, d) =
{read, write}. Figure 2 shows the extended time automata gen-
erated for this example using the transformation rules. The con-
struction is done as follows:
Locations: l0 is created according to rule [L.1], l1 according to
[L.2], the invariant at l1 according to [I], and l2 according to [L.3].
Edges: created according to the following rules and [E.Ex]: (1)
(l0, e1, l1) is created according to [E.1], (2) (l1, e2, l0) is created
according to [E.1], (3) (l1, e3, l3) is created according to [E.2],
and (4) (l2, e3, l0) is constructed according to [E.2].

92

Select: x:int
Guard: EventSecurity(user,e1)
Sync: e1?
Update: c1:=0,
 d:=(DataSecurity(user,d)?x:Null)

Guard: d>10 && EventSecurity(user,e2)
Sync: e2!

Guard: d<=10 && EventSecurity(user,e3)
Sync: e3!

l0

l1 l2Invariant: c1<=5

Figure 2: Example

Clocks: c1 and the invariant at l1 are created according to rules
[K] and [I].
Actions: e1?, e2!, e3! are created according to [A] and [E.Ex]

3.3 Verification Process
In [2] we have applied the methodology successfully to specify
and model check a simplified version of the steam boiler controller
case study [1]. The system consists of 3 components: (1) controller
has 10 locations, (2) level measuring has 3 locations, and (3) mon-
itoring has 5 locations. The steps of performing the verification
process are:

• using UPPAAL editor, we specified the components as UP-
PAAL templates using the automatic transformation rules.
Then, in the system declaration section of the editor, we cre-
ated instances of the templates and defined the RTRS as the
parallel composition of the instances,

• using UPPAAL verifier, we specified safety, liveness, event
security, and data security properties.

– Event security: An event can be triggered only by a
user whose access level is grant. This is expressed as:
A2 for all(i:int[1,NoOfUsers]) C.user==i && C.eventx

imply EventSecurity(i,eventx)==grant. It means: in-
variantly, in all system executions, eventx can be trig-
gered by authorized users only.

– Data security: A data parameter value should be vis-
ible only to authorized users. This is expressed as the
invariant:
A2 for all(i:int[1,NoOfUsers]) C.user==i && Data-
Parameter!=Null imply DataSecurity(i,DataParameter)
==read. It means: invariantly, in all system executions,
the value of DataParameter can be visible only to
authorized users; otherwise, it is set to Null.

• We executed the model checker to verify the properties against
the defined system.

The experiment was performed on two machines: (1) An average
PC workstation with 512MB of memory and Pentium IV processor
running Windows XP Home Edition, and (2) a powerful server with
3GB of memory and Pentium Xeon 3GH running Windows Server
2003. Table 1 presents the time duration of model checking each
property using the two machines. The time ranges between 1 to 2
minutes on the workstation.

Table 1: Time Duration of Model Checking
Result workstation server
Safety 1.49 min 0.12 min

Liveness 1.29 min 0.12 min
Event Security 1.21 min 0.11 min
Data Security 2.06 min 0.12 min

4. CONCLUSION
We have introduced (1) a formal methodology for developing trust-
worthy systems and (2) formal set of rules for generating the behav-
ior of a component-based model, and (3) model check functional
and non-functional properties using UPPAAL model checker. We
have applied our method for a simple version of the steam boiler
controller problem. We plan to evaluate our method on problems
from different domains where both safety and security are critical.
Our research directions include: (1) investigating the requirements
of an ADL for expressing trustworthiness and (2) building a visual
interface tool that enables software architects to specify trustwor-
thy component-based systems. Then, we will derive the formal de-
scription automatically from the visual notations and generate sys-
tem behavior in different formats. The generated behavior will be
input into model checkers to perform the verification process. This
will hide the complexity of formal specification and enable soft-
ware architects to easily design and verify trustworthy systems.

5. REFERENCES
[1] Jean-Raymond Abrial, Egon Börger, and Hans Langmaack.

Formal methods for industrial applications, specifying and
programming the steam boiler control. London, UK, 1996.
Springer-Verlag.

[2] Vasu Alagar and Mubarak Mohammad. A formal approach for
the development of trustworthy component-based rtrs - case
study. http://users.encs.concordia.ca/[tilda]ms moham/sv.pdf.

[3] Vasu Alagar and Mubarak Mohammad. A component model
for trustworthy real-time reactive systems development. In
FACS’07, Sophia-Antipolis, France, Sept 2007.

[4] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A
tutorial on uppaal. In Proceedings of SFM-RT’04, 2004.

[5] Ivica Crnkovic and Magnus Larsson, editors. building reliable
component-based Software Systems. Artech House, 2002.

[6] John C. Knight Elisabeth A. Strunk, M. Anthony Aiello. A
survey of tools for model checking and model-based
development. Technical Report CS-2006-17, Dept. of
Computer Science, University of Virginia, June 2006.

[7] Cristina Gacek and Rogrio de Lemos. Structure for
Dependability: Computer-Based Systems from an
Interdisciplinary Perspective, chapter Architectural
description of dependable software systems, pages 127–142.
Springer London, 2006.

[8] John McLean. A general theory of composition for a class of
“possibilistic” properties. IEEE Trans. on Software
Engineering, 22(1):53–67, 1996.

93

94

Components, Objects, and Contracts

Olaf Owe
Department of Informatics
University of Oslo, Norway

olaf@ifi.uio.no

Gerardo Schneider
Department of Informatics
University of Oslo, Norway

gerardo@ifi.uio.no

Martin Steffen
Department of Informatics
University of Oslo, Norway

msteffen@ifi.uio.no

ABSTRACT
Being a composite part of a larger system, a crucial feature
of a component is its interface, as it describes the compo-
nent’s interaction with the rest of the system in an abstract
manner. It is now commonly accepted that simple syntac-
tic interfaces are not expressive enough for components, and
the trend is towards behavioral interfaces.

We propose to go a step further and enhance components
with deontic contracts, i.e., agreements between two or more
components on what they are obliged, permitted, and forbid-
den to do when interacting. This way, contracts are mod-
eled after legal contracts from conventional business or ju-
dicial arenas. Indeed, our work aims at a framework for
e-contracts, i.e., “electronic” versions of legal documents de-
scribing the parties’ respective duties.

We take the object-oriented, concurrent programming lan-
guage Creol as starting point and extend it with a notion
of components. We then discuss a framework where com-
ponents are accompanied by contracts and we sketch some
ideas on how analysis of compatibility and compositionality
could be done in such a setting.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software; D.1.3
[Programming Techniques]: Concurrent programming;
D.1.5 [Programming Techniques]: Object-oriented pro-
gramming; F.3.1 [Logics and meanings of programs]:
Specifying and Verifying and Reasoning about Programs

General Terms
Verification

Keywords
Components, compositionality, contracts, interfaces, object-
orientation, Creol, deontic logic

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2007), September 3-4, 2007, Cavtat
near Dubrovnik, Croatia.
Copyright 2007 ACM ISBN 978-1-59593-721-6/07/0009 ...$5.00.

We propose to combine components with deontic con-
tracts, i.e., agreements between two or more components
on what they are obliged, permitted, and forbidden to do
when interacting. This way, contracts are modeled after le-
gal contracts from conventional business or judicial arenas.
Indeed, our work aims at a framework for e-contracts, i.e.,
“electronic” versions of legal documents describing the par-
ties’ respective duties. They go beyond standard behavioral
interface descriptions, which typically describe sets of in-
teraction traces. In particular, contracts, in the intended
application domain, involve a deontic perspective, speaking
about obligations, permissions and prohibitions, and also
contain clauses on what is to happen in case the contract
is not respected. This deontic aspect is typical for natural
language legal contracts which we use as a starting point
and which we aim to formalize.

The problem
We are concerned with finding a good programming and
specification language, and appropriate abstractions for de-
veloping components in an integrated manner within the
object-oriented paradigm. We are interested in enhancing
components with more sophisticated structures than inter-
faces, targeted towards e-contracts. In that context, we ad-
dress the following questions.

Design: How to develop components in a programming en-
vironment facilitating rapid prototyping and testing?

Composition and compatibility: How do we know that
two or more components will not conflict with each
other when put together?

Substitutability: How to guarantee that replacing a com-
ponent will not introduce new unexpected behaviors?

Deontic specification: How to specify what a component
is supposed to do, what it may do, and what it should
not do?

Contract violation: How to react in case a component
does what it is not supposed to do?

These issues are crucial in component-based software de-
velopment and deployment. In fact, most of the questions,
perhaps apart from the deontic aspect, are not new to the
component-based software engineering community.

We propose a model combining the following ingredients:
1) As underlying object-oriented language, we use the con-
current language Creol. 2) As mentioned, we propose a no-
tion of deontic contract, written in a contract language. 3)

95

http://www.ifi.uio.no/~olaf
http://heim.ifi.uio.no/~gerardo
http://www.ifi.uio.no/~msteffen

The contract is associated with the component model, al-
lowing static and dynamic reasoning on component consis-
tency and conformance, using a contract logic. In the follow-
ing section we discuss some differences between objects and
components. In Section 3 we clarify the notion of “contract”
used on this paper. In Section 4 we sketch the three ingredi-
ents mentioned above, whereas in Section 5 we describe our
proposed framework. We conclude in the last section.

2. COMPONENTS VS. OBJECTS
Even if there is no clear-cut definition of what exactly

is a component, and what distinguishes the notion from a
software module or just an object, we highlight here some
essential differences between objects and components.

• Components are supposed to be self-contained units
and independently deployable. This is not the case in
general for objects, as they usually are not executable
by themselves.

• If developed using the object-oriented paradigm, a com-
ponent may contain many objects which are encap-
sulated and thus are not accessible from other com-
ponents. If an object creates another object inside a
component, this new object is not visible from the out-
side unless explicitly allowed by the interface. Objects
in most languages do not have this feature.

• Components are static entities representing the main
elements of the run-time structure, in contrast to ob-
jects, which are dynamic instantiations of classes. A
purely class-oriented program does not identify the
main elements of a system.1

In some sense the above may justify the definition of com-
ponents as being just a collection of“circles”(objects) encap-
sulated inside a “box”, which in turn could also be a kind of
object typed by an interface. It is now accepted that such in-
terfaces should not only take into account functional aspects
but should take into account the history of interactions, or
in other words be behavioral.

3. ON THE NOTION OF CONTRACTS
The term “contract” is understood in various ways by dif-

ferent research communities. We briefly recall some of its
more common definitions or informal meanings.

1. Conventional contracts are legally binding documents,
establishing the rights and obligations of different sig-
natories, as in traditional judicial and commercial ac-
tivities.

2. Electronic contracts are machine-oriented and may be
written directly in a formal specification language, or
translated from a conventional contract. The main
feature is the inclusion of certain normative notions
such as obligations, permissions, and prohibitions, be
it directly or by representing them indirectly. In this
context, the signatories of a contract may be objects,
agents, web services, etc.

1However, early OO languages, including Simula and Beta,
had a notion of block prefixing giving rise to static units
which resemble components.

3. Some researchers informally understand contracts as
behavioral interfaces, which specify the history of inter-
actions between different agents (participants, objects,
principals, entities, etc). The rights and obligations are
thus determined by legal (sets of) traces.

4. The term “contract” is sometimes used for specifying
the interaction between communicating entities (agents,
objects, etc). It is common to talk then about a con-
tractual protocol.

5. Programming by contract or design by contract is an
influential methodology popularized first in the con-
text of the object-oriented language Eiffel [6]. Contract
here means a relation between pre- and post-conditions
of routines, method calls, etc.

6. In the context of web services, “contracts” may be un-
derstood as a service-level agreement usually written
in an XML-like language like IBM’s Web Service Level
Agreement (WSLA [10]).

We are mostly concerned with the first two meanings,
though, to be able to reason and operate on contracts, it is
natural to have the contracts written in a formal language,
and thus the second meaning is more adequate. Obviously,
the mentioned interpretations are not absolutely disjoint.
The point we like to stress here is the importance of the
mentioned normative aspects, which is very typical for (elec-
tronic) contracts capturing the spirit in which legal contracts
are usually written. Besides those deontic aspects, electronic
contacts in our sense also include behavioral aspects (making
statements about the order of interactions at the interface),
and may also relate the pre- and post-conditions of meth-
ods, as in point 5. But what is missing in usual interface
and behavioral specifications are linguistic means to make
the consequences explicit; e.g. what happens (or should hap-
pen) when the normative requirements are violated.

4. COMPONENTS, OBJECTS AND
CONTRACTS

Creol
Creol is an object-oriented, concurrent programming and
modeling language developed at the University of Oslo. For
a deeper coverage of the language, its design and semantics,
we refer to the Creol web pages [3] and to [4, 5]. The choice
of Creol as underlying language is motivated as follows:

Concurrency: It is a language for open, distributed sys-
tems, supporting concurrency and asynchronous meth-
od calls. The concurrency model is that of loosely cou-
pled active objects with asynchronous communication.
This makes it an attractive basis for component-based
systems.

Object-orientation: Creol is an object-oriented, class-based
language, with late binding and multiple inheritance.
It is strongly typed, supporting subtypes and sub-inter-
faces.

Interfaces: Creol’s notion of co-interface allows specifica-
tion of required and provided interfaces. The lan-
guage supports behavioral interfaces, based on assume-
guarantee specifications expressed in terms of the com-
munication history.

96

Formal foundations: Creol has a formal operational se-
mantics defined in rewriting logic. The core of the
language has an operational semantics consisting of
only 11 rewrite rules. This makes it easy to extend
and modify the language and the semantics. We may
reuse the operational semantics when formalizing the
extension to components. Based on the formal seman-
tics, the language comes with a simple reasoning sys-
tem and composition rules.

Tool support: Creol has an executable interpreter defined
in the Maude language and rewriting tool. This pro-
vides a useful test-bed for the implementation and test-
ing of our component-based extension. The Maude
tool may be used for simulation, model checking, and
analysis.

Contract language
Formally, we let component interface descriptions be based
on the contract language CL developed in [9]. CL is a lan-
guage tailored for electronic contracts (e-contracts) with for-
mal semantics in an extension of the µ-calculus. The lan-
guage follows an out-to-do approach, i.e. where obligations,
permissions and prohibitions are applied to actions and not
to state-of-affairs. The language avoids the main classical
paradoxes of deontic logic, and it is possible to express (con-
ditional) obligations, permissions and prohibitions over con-
current actions keeping their intuitive meaning. Moreover, it
is possible to represent (nested) CTDs (contrary-to-duty, i.e.
what happens when an obligation is not fulfilled) and CTPs
(contrary-to-prohibitions, i.e which action to be performed
in case of violating a prohibition).

Components and Contracts
We list some of the main features of contracts in the context
of component-based development and deployment. Con-
tracts associated with components enhance behavioral in-
terfaces and give the following added value:

1. If written in a formal language with formal seman-
tics and proof system, a contract can be proved to be
conflict-free, both by model checking and logical de-
duction techniques. The automatic checks can also
reveal incompleteness in the specification, for instance
it may indicate that no escalation is agreed upon in
case one of the partners acts contrary to its contract.

2. The use of contracts may assist the developer during
the development phase to check whether a component
may enter into conflict with others, through a static
analysis of contract compatibility. The appropriate
notion of compatibility in the presence of obligations,
permissions, and prohibitions needs to be developed.

3. A well-founded theory of contracts should provide the
following kinds of analysis:

• Determine whether a contract is covered by an-
other one, i.e. a well-defined notion of sub-contract.
This will help deciding whether a component may
be replaced by another one in a safe manner.

• Allow decisions on whether paying a penalty in
case of one contract violation is beneficial or not
when sub-contracting. Assume component A has
a contract with component B where it is stipu-
lated that A must “pay” x to B in case of con-
tract violation. Suppose now that such violation

Conformance

Static Analysis Testing/Simulation (Maude)

Compatibitliy/Conflict−free

Development (Creol)

Co1

Co1

Co1

Con

Con

Cc1

Cc1

Cc1

Cc1

Ccn

Ccn

Ccn

Figure 1: Development phase.

depends on a service provided by C to A and that
there is a contract between A and C stating that
C must pay y to A in case of their own contract
violation. Then a theory of contracts would allow
A to determine whether it is good to compose
with B. During the development phase this kind
of information may help defining sub-contracting
which are not against a component’s own interest.

• A negotiation phase could be added prior to the
composition of two or more components. In this
phase a contract could be negotiated before the
final signature, as in the context of web services.

4. A run-time contract monitor will guarantee that the
contract is respected, including the penalties and esca-
lations in case of contract violation (CTDs and CTPs).
We expect such a monitor could be extracted from the
components contracts in a (semi-)automatic way.

5. PROPOSED FRAMEWORK
The logical semantics of CL opens the way to use the logic

proof system of µ-calculus, as well as existing model check-
ers. Initial work on model checking a contract has been pre-
sented in [8]. The combination of components, objects and
contracts may be done as sketched in our proposed frame-
work, involving both the component’s development and de-
ployment phase, using Creol as the development platform.

Development Phase.
During this phase our framework may be summarized as

follows (see Fig. 1):

Development: Each component has associated one or more
contracts in the sense discussed above, i.e., specifying
the obligations, permissions, and prohibitions in the
component’s interacting behavior.

Static Analysis: Before deployment, the contract is for-
mally analyzed to guarantee that it is contradiction

97

Pre−execution Analysis

Executing Platform

Monitor

Co1

Co1

Con

Con

Coi

Coi

Cc1

Cc1

Ccn

Ccn

Cci

Cci

Figure 2: Deployment phase.

free. This might be done by using a proof system or
by model checking. Static conformance between the
component and its contract is also proved.

Testing/Simulation: Static analysis techniques cannot val-
idate every aspect of a system. Testing and simulation
are thus needed to complement the above. Since Creol
has a formal semantics in rewriting logic, we propose to
use the Maude environment to simulate and test each
component separately and its interaction with other
components being developed.

Deployment Phase.
After the component is released there is still no complete

guarantee of it being well suited for the yet unknown plat-
form where it will be executed. We propose the following
framework to increase confidence on the component’s com-
patibility with its future environment. See Fig. 2.

Pre-execution Analysis: Before adding a new component
to an existing context of other components, the corre-
sponding contracts are checked to guarantee compat-
ibility. If there are disagreements, a phase of negoti-
ation may start, or the component is simply rejected.
This phase may be considered as a kind of static anal-
ysis on the side of the execution platform.

Execution: If the component is accepted after the analysis
of the previous phase, then it is deployed. A contract
monitor is launched to guarantee that the components
behave according to the contracts. In case of contract
violation, the monitor must take the corresponding ac-
tion as stipulated in the contract for such situation, or
cancel the contract and disable the component.

6. FINAL DISCUSSION
In this paper we sketched how to enhance components

with contracts as complementary to the latest ideas of using

behavioral interfaces. In our opinion this approach would
benefit from the fact that such contracts could be analyzed
logically and model checked in order to find (local) inconsis-
tencies, they could be negotiated and monitored. We believe
component-based development and engineering will in some
sense be reduced to the same kind of problems one finds in
web services and other application domains where contracts
are being studied.

The extension of Creol with primitives to define compo-
nents is not difficult to do as most of the basic constructs
are already defined in the language. For instance, contracts
might be included as data-types in the language.

The successful use of contracts as we have proposed de-
pends very much on the existence of a suitable formal con-
tract language. We intend to further explore CL and its
semantics to be used in this context. We expect to ben-
efit from its formal semantics in the µ-calculus to further
develop proof systems and to explore the possibility of use
existing model checking tools.

Though we believe the first phase of the deployment phase
could be achieved relatively easy, we are aware that ob-
taining a contract monitor, when executing a component
could represent a big challenge if we intend to do so in real-
time. We do not have a solution yet. A very interesting
research direction would be to study how to combine meta-
programming (e.g. in a reflective language) techniques with
a formal (logical) framework for extracting a monitor from
one or more contracts.

Related work and further details may be found in the ac-
companying technical report [7], representing the full version
of the paper.

Acknowledgment. This work is partially supported by
the Nordunet 3 project Contract-Oriented Software Devel-
opment for Internet Services [1] and the EU-project Credo,
A formal framework for reflective component modeling [2].
Marcel Kyas as well as the referees have contributed with
valuable comments.

7. REFERENCES
[1] COSDIS. www.ifi.uio.no/~gerardo/nordunet3,

2007.

[2] Credo. www.cwi.nl/projects/credo/, 2006.

[3] Creol. www.ifi.uio.no/~creol, 2007.

[4] E. B. Johnsen and O. Owe. An asynchronous
communication model for distributed concurrent
objects. In Proc. 2nd Intl. Conf. on Software
Engineering and Formal Methods (SEFM’04), pages
188–197. IEEE Computer Society Press, Sept. 2004.

[5] E. B. Johnsen, O. Owe, and I. C. Yu. Creol: A
type-safe object-oriented model for distributed
concurrent systems. TCS, 365(1–2):23–66, Nov. 2006.

[6] B. Meyer. Eiffel: The Language. Prentice Hall, 1992.

[7] O. Owe, G. Schneider, and M. Steffen. Components,
objects, and contracts. Technical Report 363, Dept. of
Informatics, Univ. of Oslo, Norway, August 2007.

[8] G. Pace, C. Prisacariu, and G. Schneider. Model
checking contracts — a case study. In ATVA’07,
volume 4762 of LNCS, pages 82–97, 2007.

[9] C. Prisacariu and G. Schneider. A formal language for
electronic contracts. In FMOODS’07, volume 4468 of
LNCS, pages 174–189, 2007.

[10] WSLA. www.research.ibm.com/wsla/.

98

http://nordunet3.org/
http://heim.ifi.uio.no/~gerardo/nordunet3/
www.ifi.uio.no/~gerardo/nordunet3
www.cwi.nl/projects/credo/
www.ifi.uio.no/~creol
www.research.ibm.com/wsla/

Compositional Failure-based Semantic Equivalences for
Reo Specifications

Mohammad Izadi
Department of Computer Engineering

sharif University of Technology
Tehran, Iran

izadi@ce.sharif.edu

Ali Movaghar
Department of Computer Engineering

sharif University of Technology
Tehran, Iran

movaghar@sharif.edu

ABSTRACT
Reo is a coordination language for modeling component con-
nectors of component-based computing systems. We show
that the failure-based equivalences NDFD and CFFD are
congruences with respect to composition operators of Reo.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Languages; F.4.3 [Mathematical Logic and For-
mal Languages]: Formal Languages—Verification; D.3.1
[Programming Languages]: Formal Definitions and The-
ory—Semantics

General Terms
Languages, Semantics, Verification.

Keywords
Reo Specification Language, Constraint Automata, Failure-
based Equivalences, Coordination, Component-based Sys-
tems, Semantics.

1. EXTENDED ABSTRACT
The concept of component based systems, especially com-

ponent based software, is a philosophy or way of thinking
to deal with the complexity in designing large scale com-
puting systems. One of the main goals of this approach is
to compose reusable components by some glue codes. The
model or the way in which these components are composed
is called coordination model. Sometimes there are some for-
mal or programming languages which are used for specifica-
tion of coordination models. Such languages are called as
coordination languages. Reo, as one of the most recently
proposed coordination languages, is a channel based exoge-
nous coordination language in which complex coordinators
are compositionally built out of simpler ones [1, 2, 3]. By
using Reo specifications, complex component connectors can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2007), September 3-4, 2007, Cavtat
near Dubrovnik, Croatia.
Copyright 2007 ACM ISBN 978-1-59593-721-6/07/0009 ...$5.00.

be organized in a network of channels and build in a com-
positional manner. Reo relies on a very liberal and simple
notion of channels and can model any kind of peer-to-peer
communication. The channels used in Reo networks can be
considered as simple communicating processes and the only
requirements for them are that channels should have two
ends (or I/O interfaces), declared to be sink or source ends,
and a user-defined semantics. At source ends data items
enter the channel by performing corresponding write opera-
tions. Data items are received from a channel at sink ends
by performing corresponding read operations. Reo allows
for an open ended set of channel types with user defined
semantics.

If we want to be able to reason about properties of spec-
ifications or verify their correctness, Reo, as well as any
other process specification languages, should be given ab-
stract semantics. The key question in giving a semantic
model to a specification language is: ”Whenever can we say
that two specifications or two models are equivalent?” Nu-
merous definitions of different equivalence-relations for tran-
sition system based models have been presented in the liter-
ature. Trace equivalence (automata-theoretic equivalence),
weak bisimilarity presented by Milner [9] and failure-based
equivalences (CSP-like equivalences) such as the equivalence
presented by Hoare [7] are examples of these equivalences.

Constraint automaton, as an extension of finite or Büchi
automaton, is a formalism proposed to capture the oper-
ational semantics of Reo [4]. In a constraint automaton,
contrary to finite automata and labeled transition systems,
the label of a transition is not a simple character or action
name. A transition label contains a set of names and a (con-
straint) proposition. The set of names indicates the names
of ports which are participant in doing the transition and
the proposition expresses some constraint about the data of
the ports.

In this presentation, we are interested to investigate failure-
based equivalences for constraint automata as the abstract
semantics of Reo and their congruency with respect to com-
position operators which are useful in composing Reo spec-
ifications. The ultimate goal is to prepare an environment
for compositional model checking of Reo specifications us-
ing equivalence based reduction method. In this method, the
models of components and connectors of a component-based
system are reduced with respect to an equivalence relation
before building the model of the complete system [5, 6]. An
equivalence relation should have two properties in order to
be useful in the equivalence based compositional reduction
method: it should preserve the class of properties to be ver-

99

ified and also, it should be a congruence with respect to the
syntactic operators which are used for composing of the com-
ponents of the model. By congruence relation we mean that
the replacement of a component of a model by an equivalent
one should always yield a model which is equivalent with the
original one. Fortunately, in the context of compositional
failure based semantic models of process description lan-
guages such as CCS and LOTOS, there are two equivalence
relations, called CFFD and NDFD, which have the preser-
vation property: CFFD-equivalence preserves that fragment
of linear time temporal logic which has no next-time opera-
tor and has an extra operator distinguishing deadlocks [10,
11] and NDFD-equivalence preserves linear time temporal
logic without next-time operator [8]. It was also shown that
CFFD and NDFD are the minimal equivalences preserving
the above mentioned fragments of linear time temporal logic.

Now, we introduce an extended definition of constraint
automaton by which not only the connectors but also the
components can be modeled.

Definition 1. Let N be a set of port names and Data
be a set of data. A data constraint g over names set N and
data set Data is a proposition, which can be constructed by
using the following grammar:
g ::= true | dA = d | g1 ∨ g2 | ¬g d ∈ Data, A ∈ N
We use DC(N, Data) as the set of all data constraints over
names set N and data set Data.
A Constraint automaton over data set Data is a quadruple
C = (Q, Nam, T, q0) where, Q is a finite set of states,
Nam is a finite set of names, such that, τ 6∈ Nam,
T ⊆ Q× ((2Nam ×DC(Nam, Data)) ∪ {τ})×Q , and
q0 ∈ Q is the initial state.
For each (p, N, g, q) ∈ T , it is required that, N 6= ∅ and
g ∈ DC(N, Data).

The main difference of our definition of constraint automa-
ton and its original definition (defined in [4]) is that in our
definition, τ -transitions are permitted, while in its original
definition it is not. We use τ -transitions because τ can be
used as a symbol for each kind of internal action which is
occurred in an actual system but its real type is not impor-
tant in the modeling process. Thus, by using this kind of
constraint automaton, not only the observational behavior
of connectors, but also all internal and observable behavior
of components can be modeled. Also note that, in principle,
a hiding operator can hide all port-names of a transition. In
such cases, we replace the transition label by τ . Our defini-
tion of Constraint automaton is departed from the original
one by dropping the requirement that all runs have to be
infinite. We also deal with finite runs, which are necessary
to argue about deadlock configurations.

Now, we introduce two new composition operators for con-
straint automata: join (production) of two automata with
respect to their common port names and hiding of a port
name in all transition labels of an automaton.

Definition 2. Let C1 = (Q1, Nam1, T1, q01) and C2 =
(Q2, Nam2, T2, q02) be two Constraint automata. The prod-
uct (join) Constraint automaton of C1 and C2 is:
C1 ./ C2 = (Q1 ×Q2, Nam1 ∪Nam2, T, q01 × q02) in which,
1) If (q1, N1, g1, p1) ∈ T1 and (q2, N2, g2, p2) ∈ T2 and
N1 ∩Nam2 = N2 ∩Nam1, then,
(< q1, q2 >, N1 ∪N2, g1 ∧ g2, < p1, p2 >) ∈ T ,
2) If (q, N, g, p) ∈ T1 and N ∩Nam2 = ∅, then,
(< q, q′ >, N, g, < p, q′ >) ∈ T ,

3) If (q, N, g, p) ∈ T2 and N ∩Nam1 = ∅, then,
(< q′, q >, N, g, < q′, p >) ∈ T ,
4) If (q, τ, p) ∈ T1 then, (< q, q′ >, τ, < p, q′ >) ∈ T ,
5) If (q, τ, p) ∈ T2 then, (< q′, q >, τ, < q′, p >) ∈ T .
Let C = (Q, Nam, T, q0) be a Constraint automaton and B
be a name, B ∈ Nam. The Constraint automaton resulted
by hiding of B in A is ∃B[C] = (Q, Nam\{B}, T∃B , q0)
where,
(1) If (q, {B}, g, p) ∈ T then, (q, τ, p) ∈ T∃B.
(2) If (q, N, g, p) ∈ T and N\{B} 6= ∅ then
(q, N\{B}, ∃B[g], p) ∈ T∃B, where ∃B[g] = ∨d∈Datag[dB/d].
(3) If (q, τ, p) ∈ T then, (q, τ, p) ∈ T∃B.

Now, we can show that failure-based equivalences CFFD
and NDFD are congruence with respect to join and hiding
operators of constraint automata.

Theorem 1. NDFD and CFFD-equivalences are congru-
ences with respect to the product (join) and hiding operators
defined for finite constraint automata.

Based on these congruency results and because of the lin-
ear time temporal logic preservation properties of CFFD and
NDFD equivalences and their minimality properties (proved
in [8]), they will be useful candidates for compositional re-
duction of models in the process of verifying the properties of
component based systems, which their connectors are spec-
ified by Reo.

2. REFERENCES
[1] Arbab F., Reo: A Channel-based Coordination Model

for Component Composition, Math. Struc. in
Computer Science, 14(3), (2004), 329-366.

[2] Arbab F., Abstract Behaiviour Types: A foundation
model for components and their composition, science
of Computer Programming, 55, (2005), 3-52.

[3] Arbab F., Mavadat F., Coordination Through Channel
Composition, Proceedings of Coordination Languages
and Models 2002, LNCS, 2315, Springer-Verlag,
(2002).

[4] Baier C., Sirjani M., Arbab F., Rutten J., Modelling
Component connectors in Reo by Constraint
Automata, Science of Computer Programming, 61,
(2006), 75-113.

[5] Clarke E., Long D., McMillan K., Compositional
Model Checking, Proc. of 4th IEEE Symp. on Logic in
Computer Science, (1989), 353-362.

[6] Graf S., Steffen B., Compositional Minimization of
Finite-State Systems, Proc. of CAV’90, Springer,
(1991), 186-196.

[7] Hoare C.A.R., ”Communicating Sequential Processes”,
Prentice-hall, (1985).

[8] Kaivola R., Valmari, A., The Weakest Semantic
Equivalence Preserving Nexttime-less Linear Temporal
Logic, LNCS 630, Springer-Verlag, (1992), 207-221.

[9] Milner R., ”Communication and Concurrency”,
Prentice-Hall, (1989).

[10] Valmari A., Tienari M., An Improved Failure
Equivalence for Finite State Systems with a Reduction
Algorithm, ”Protocol Specification, Testing and
Verification”, XI, (1991), 3-18.

[11] Valmari A., Tienari M., Compositional Failure Based
Semantic Models for Basic LOTOS, Formal Aspects of
Computing 7, (1995), 440-468.

100

A Concept for Dynamic Wiring of Components

Correctness in Dynamic Adaptive Systems

Dirk Niebuhr
Clausthal University of Technology

P.O. Box 1253
38670 Clausthal-Zellerfeld, Germany
dirk.niebuhr@tu-clausthal.de

Andreas Rausch
Clausthal University of Technology

P.O. Box 1253
38670 Clausthal-Zellerfeld, Germany

andreas.rausch@tu-clausthal.de

ABSTRACT
Component-based Systems in our days tend to be more and
more dynamic. Due to the increased mobility of devices
hosting components, components have to be attached or de-
tached to respectively from a system at runtime. This dy-
namic adaptation of the system configuration imposes sev-
eral correctness issues. In general it is not possible to de-
termine a correct system configuration without wiring and
executing the system in advance. We will discuss approaches
how to improve this situation. Finally we will focus on our
favorite approach based on runtime testing.

Categories and Subject Descriptors
D.2.4 [Software]: Software Engineering—Soft-
ware/Program Verification; D.2.11 [Software]: Software
Engineering—Software Architectures; F.3.1 [Theory of
Computation]: Logics and Meanings of Programs—
Specifying and Verifying and Reasoning about Programs

General Terms
Design, Reliability, Verification

Keywords
Dynamic Adaptive Systems, Reconfiguration, Runtime
Testing, Correctness, Component, Adaptation

1. INTRODUCTION
To produce systems out of IT components component-

based development approaches have been developed and suc-
cessfully applied over the past years changing the predom-
inant development paradigm: Systems are no longer rede-
veloped from scratch, but composed of existing components
[4, 1]. Nowadays, these IT components are being more and
more used within an organically grown, heterogeneous, and
dynamic IT environment. Users expect these IT compo-
nents to collaborate autonomously with each other and pro-
vide a real added value to the user. On the other hand,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Sixth International Workshop on Specification and Verification
of Component-Based Systems (SAVCBS 2007), September 3-4,
2007, Cavtat near Dubrovnik, Croatia.
Copyright 2007 ACM ISBN 978-1-59593-721-6/07/0009 ...$5.00.

we depend more and more on these organically grown IT
systems. Hence their correctness has to be guaranteed even
though these systems are never developed and tested in ad-
vance. These dependable adaptive IT systems need to have
the ability to dynamically attach and detach dynamic adap-
tive IT components during runtime. Moreover they need to
detect and avoid possible resulting incorrect system config-
urations during runtime.

In this paper we present our approach of achieving run-
time dependability of these systems by runtime testing. We
will sketch the proposed runtime testing approach illustrated
by a small example in Section 3.

2. DYNAMIC WIRING OF COMPONENTS
Imagine a very simple system containing three compo-

nents ComponentA, ComponentB, and ComponentC. Com-
ponentA requires a component providing InterfaceA whereas
ComponentB respectively ComponentC provide InterfaceB
respectively InterfaceC. Moreover each of the interfaces
comes along with it’s own specification (tA, tB , tC) of
required respectively assured properties. This component
landscape is depicted in Figure 1.

Figure 1: The Artifacts of the Example System

During configuration we have to decide at runtime,
whether holds(prov, req) is valid for a specific configuration
in general, which is depicted in number 3 of Figure 1. This
predicate is valid, if the specification of the provided inter-
face implies the specification of the required interface which
means proving the refinement relation or showing the equiv-
alence of two Turing machines. This requires the evaluation
of implications using second-order logic which refers to the

101

decision problem. This has been proven to be not decidable
by Turing and Church in 1936 [5, 2]. Therefore proving the
correctness of a component wiring at runtime in general is
not possible. There are several approaches to provide (lim-
ited) statements regarding the correctness of the wiring:

1. Using a specification language like regular expressions
or finite state machines, which is more restricted and not
as powerful in order to get a calculable holds-predicate. In
this case you will have to answer the question, whether this
specification language is still capable of specifying the de-
sired dynamic adaptive systems respectively you get a less
valuable proof in case of an incomplete specification.

2. Checking the correct wiring of components by bisimu-
lation [3]. In this case you would need to compare the states
of two simulated system executions for every system execu-
tion step: one system is containing the requiring component
and performs changes to its system state as specified in the
required interface specification, the other one is containing
the providing component and performs changes to its sys-
tem state as specified in the provided interface specification.
In this case you need to argue, whether the performance of
a system using this approach would still be sufficient due to
the massive simulation. In addition you only get a proof of
correctness for the following execution step.

3. Performing runtime testing during the reconfigura-
tion process: whenever two components should be wired to-
gether, test cases are executed within a testbed which check,
whether they fit together. In this case you need to show,
that the test cases executed during reconfiguration are good
enough to expose mismatches of components. Moreover you
have to argue, that the testbed is a sufficient representation
of the real system environment.

3. RUNTIME TESTING APPROACH
Since we don’t want to restrict the specification language

and want to retain a good system performance, our approach
is using runtime testing in a testbed during the reconfigura-
tion of a system. This reconfiguration may occur, whenever
a component appears within a system or a component disap-
pears or fails. In general we use a three-step process. First
of all we derive an ordered set of valid system configurations
from the set of available components. Then we wire these
system configurations within a testbed and check whether
all test cases pass. Finally, we transfer this configuration to
the production system. We will describe these steps shortly
based on an example system.

As you can see, InterfaceA and InterfaceB respectively
InterfaceA and InterfaceC match syntactically, since they
provide syntactically identical methods1. This is checked by
the syntax match depicted in number 1 of Figure 1. Based
on this, two valid system configurations are identified: C1

wiring ComponentA and ComponentB and C2 wiring Com-
ponentA and ComponentC. The subsets of involved compo-
nents in these configurations are depicted in number 2 of
Figure 1 and are ordered in a way preferring C1.

We need to test each of these configurations in a testbed.
Therefore we duplicate the components, wire the duplicates
together and execute test cases. These test cases can be
brought by the component user (here: ComponentA) since
he knows the usage scenarios for the used interface (here: In-

1If components should be wired though their interface meth-
ods are not syntactically equal, one could use ontologies.

terfaceA) best. They could be provided by the used compo-
nent as well. A third option would be to generate test cases
from the interface specifications (here: tA, tB , tC) of one (or
both) of the components. For simplicity we assume, that
ComponentA provides a test case containing three method
calls: square(0) : 0, square(3) : 9, and square(−3) : 9.
Within the testbed this test case is executed.

First of all, a duplicate of ComponentB is wired together
with a duplicate of ComponentA. When executing the sec-
ond method call, the test case fails, since square(3) = 6
which contradicts the expected result of 9. Therefore this
configuration is marked as invalid. When executing the test
cases on the second system configuration, which wires a du-
plicate of ComponentA and a duplicate of ComponentC, all
test cases pass and therefore this configuration is established
in the following. If we want to assure, that the used com-
ponent behaves as required during execution, we can en-
sure this as well by additionally checking this after each
method call during the system execution in the following.
This would cause a large overhead during system execution
and therefore may not be applicable for all types of systems.
This would correspond to the bisimulation approach.

4. CONCLUSIONS AND FURTHER WORK
Reconfiguration, which means changing the component

wiring, is necessary for dynamic adaptive systems since com-
ponents may enter or leave a system at runtime. However
proving the correctness of a component wiring at runtime is
not possible in general. Our approach is based on runtime
testing component duplicates in a testbed during reconfigu-
ration. This enables us to recognize semantical mismatches
of provided and required interfaces at runtime. Therefore we
can mark system configurations, wiring these incompatible
interfaces, as invalid and chose a valid configuration instead.
However we did not take care about cyclic dependencies of
components, where an interface provided by ComponentA is
required by ComponentB and vice versa. Moreover we need
to investigate test case generation, to enable component de-
velopers to provide a single specification of their components
and assure good test cases. Moreover we need to check,
whether it is sufficient, to execute only test cases involving
newly introduced components during reconfiguration.

5. REFERENCES
[1] K. Bergner, A. Rausch, M. Sihling, and A. Vilbig.

Putting the parts together – concepts, description
techniques, and development process for
componentware. In HICSS 33, Proceedings of the
Thirty-Third Annual Hawaii International Conference
on System Sciences. IEEE Computer Society, Jan 2000.

[2] A. Church. An unsolvable problem of elementary
number theory. American Journal of Mathematics,
58:345–363, 1936.

[3] E. Estévez and P. R. Fillottrani. Bisimulation for
component-based development. Journal of Computer
Science & Technology, 1(6), May 2002.

[4] C. Szyperski. Component Software. Addison Wesley
Publishing Company, 2002.

[5] A. M. Turing. On computable numbers, with an
application to the entscheidungsproblem. In
Proceedings of the London Mathematical Society, pages
230–265, 1936.

102

	Janota-Grigore-Moskal.pdf
	Introduction
	Background
	ESC/Java2 Architecture
	VC Generation from DSA

	Definition of Unreachability
	How Unreachability Corresponds to DSA

	Scenarios of Unreachable Code
	Incoherence of Specification and Code
	 Safe Loop Desugaring
	Loop Unrolling

	The Algorithm
	Case Study
	Related Work
	Summary and Future Work
	Acknowledgments
	References

	Owe-Schneider-Steffen.pdf
	References

	Owe-Schneider-Steffen.pdf
	Introduction
	Components vs. Objects
	On the Notion of Contracts
	Components, Objects and Contracts
	Proposed Framework
	Final Discussion
	References

	Owe-Schneider-Steffen.pdf
	Introduction
	Components vs. Objects
	On the Notion of Contracts
	Components, Objects and Contracts
	Proposed Framework
	Final Discussion
	References

