Using Resemblance to Support
Component Reuse and Evolution

Andrew McVeigh, Jeff Kramer and Jeff Magee
Department of Computing
Imperial College, London

SAVCBS 2006

Introduction

The Vision of Software Components

e Composite components are constructed by composing
existing components and connecting them together

E.g. Aradio...
Radio Component
—a Tuner — Amplifier —a system as
Component Component a component
.. |
* This Is a scalable concept...
- Entire systems can be represented
hierarchically in this way \ /
Y Low-level

components

But, Higher Abstraction = Less Reuse

* System construction should ideally be a case of
connecting together increasingly higher-level
components...

e BUT the higher the level of abstraction of a component

- the more specific it generally is (buried abstractions)
- the less reusable it becomes...

\

Invoice system component
A for doctor's surgery

I Cannot reuse for
| > car dealer invoice system
despite major similarities!

Component to deal

i o with doctor's fees

4 Requirements for a Reuse Solution

* Reuse implies (extensive) alterations 1. Alter
 Can we just change existing component?

- No! We can't break if it for existing users 2. Nolmpact
 Can we copy and modify the source?

- No! Must be able to accept upgrades 3. Upgrades
- Copying leads to maintenance problems
- We may not have the full source code 4. NoSource

Keep components the
same for existing users

Change components
for reuse

Conflicting forces

To address these we introduce two constructs:

Resemblance and Redefinition

Resemblance: Enabling Reuse

* Defines a component in terms of similarity to another

- An inheritance-like construct for components

- The new component is specified as add / delete / replace
changes to the architecture of a base component

* We keep the changes as elements in the new
component

- Lets us reason about combining changes, upgrades etc.

* Intuitively: ClockRadio resembles Radio, but adds a Clock

Radio ClockRadio
Tuner | Amp resembles 1. Add Clock

2. Add connectors

Redefinition: Modelling Evolution

* Used to model evolution of a component

* Replaces the existing definition of a component

- The existing definition and the redefinition are kept separate
- Changes will only be applied if redefinition is “loaded”

- Can be combined with resemblance to evolve a component
in terms of changes to the old definition

* Intuitively: Evolving a Radio to add a Clock

REEIE Redefines and RERIE

Tuner = Amp resembles 1. Add Clock
2. Add connectors

Using the Constructs

These can be used independently, or together:

e Resemblance

- defines one component in terms of changes to another

e Redefinition

- changes the definition of an existing component

e Resemblance + redefinition

- allows evolution of an existing component in terms of
changes to the previous definition

The Notation

Notation for Leaf Components

* The graphical form is UML2 composite structure
diagrams.

* The textual form is remarkably similar to Darwin.

LeafComponent
port1 [Elatiri: int port2
[=] attr2: String e
() -
IProvidedInterface IRequiredInterface

component LeafComponent
describes com.example.JavaLeafComponent
{
attributes:
int attr1; String attr2;
ports:
port1 provides IProvidedInterface;
port2 requires |IRequiredinterface;

Notation for Composite Components

CompositeComponent
portP parii : LeafComponent portR
connP connR '
O @ attr(10)
B attr2("test") -
IProvidedinterface |RequiredInterface

component CompositeComponent
{
ports:
portP provides |IProvidedinterface;
portR requires IRequiredInterface;
parts:
LeafComponent part1
set attr1(10), attr2("test");
connectors:
connP joins portP to port1@parti;
connR joins portR to port2@part1;

Notation for the Constructs

Fesemblance Fedefinition Combination
1 1 1

Applies to both composite and leaf components

Example

A note taking application

r@ Postit note example E]@]ﬂ

Feedthe cat
and dog. .. Buy some milk

Fegister the car
hitp: M. dvla. gov.uk

The Base Application

e Company X makes a drawing application, which has a

postit-note component

CGDrawing

camvas : CDrawingCanvas

mgr : CDrawingMar I:l

shapes [0.."] p

]
LI

clip : CClipboardMar

ISHape

CPostitNote

display : CNoteDisplay

shape

text : C

Note Text

_/
|Shape

Reusing and Altering

e Company Y wishes to reuse and customise

- Add a zoom facility
- Remove the clipboard
- Add hyperlinked text

-~

£ Postit note example g@ﬂ

Feed the cat and dog...
Buy some milk Il}

F.egister the car
http: Mararar dvla. gov.ulk

Using Resemblance to Alter (1)

ZDOrawing'

carvas: CDrawingCanvas 2 —p CDrawing g
——

shape [0..7"]
mar : COrawinghar :JD — s
L o

IShape

clip : CHullClipboardWar =

redefine-conponent CDr aw ng
resenbl es [previous] CDraw ng
{

repl ace-parts:
CNul I A 1 pboardMvgr cli p;
parts:
CZoom\Wgr z;
connectors:
zoom joins zooma to surface@anvas,; }

mailto:zoom@z

Using Resemblance to Alter (2)

CPostitMote' = |

display - CHyperlinkedhoteDisplay 3l shape

[] O

[Shape

text - CMoteText =

—P crostittiote S
——==

redefine-component CPostitNote
resembles [previous] CPostitNote

{

replace-parts:
CHyperlinkNoteDisplay display;

View of system

‘ 'l l -
C Ceptual 7N
- -
p -
- ",
- -
- -
- -
- -
P .
-~ ,
- -
- -
=~ ey
il "
=~ "
-~ ™,
- L
- B
- ",
- ",
- oy
.
p -

Overview

* A stratum groups a set e O
of related definitions e, e

* Resemblance copies
an existing

component's definition C?
into the current < Q/ e
definition, and allows N o 5

changes PN

(s
N u \\@
_,-""J -\\\H!###E.__,-' " *-\\\
* Redefinition pushes a Q :
1‘\\ . - ####____,-'

new definition back into

\“\\\ @J_‘ #Kf’x
[]] \\\\ ':532" ###K#
an existing name 1:

Strata load order

Issues

* Most issues occur when combining multiple
redefinitions of the same component

- This occurs when combining independently developed
changes. This related to a merge conflict in a CM system.

e How do we reason about the soundness of combined
redefinitions?

- What is the resultant system behaviour?

- Does the combination accomplish the goals of each
redefinition, or do they conflict?

e Currently only for non-distributed architectures...

Related Work

Related Work

MAE

- Architectural configuration management system

ADLS
- Darwin, ROOM, C2SADEL etc.

Koala & product line architectural approachs

— Parametrization for reuse
- Variation points

COM and other component standards

- mechanisms versus design approach

Conclusions and Further Work

summary

* The constructs satisfy many of the requirements:

- Alter: Parts, attributes, connections can be added,
deleted, replaced. Extensive changes possible.

- Nolmpact: Only see the changes if redefinition is applied
- Upgrades: Can be phrased as another redefinition

- NoSource: Most changes can be performed with just the
architectural description.
l.e. No implementation code

* Major issue is how to reason about combined
redefinitions that are independently developed

- What properties are we trying to preserve?
- How do these relate to engineering specifications?

Further Work

Graphical support for modelling with changes
Expressing the properties we want preserved

- Protocol compliance of component compositions
- Reachability of a specified goal
Resolving conflict between redefinitions

— Structural
- Behavioural

Further work on formal models
- Alloy model for showing structural conflict exists

- FSP translation for protocols
- Semantic model

