

Using Resemblance to Support
Component Reuse and Evolution

Andrew McVeigh, Jeff Kramer and Jeff Magee
Department of Computing
Imperial College, London

SAVCBS 2006

Introduction

The Vision of Software Components
● Composite components are constructed by composing

existing components and connecting them together
E.g. A radio...

● This is a scalable concept...
– Entire systems can be represented

hierarchically in this way

Radio Component

Tuner
Component

Amplifier
Component

system as
a component

Low-level
components

But, Higher Abstraction = Less Reuse
● System construction should ideally be a case of

connecting together increasingly higher-level
components...

● BUT the higher the level of abstraction of a component
– the more specific it generally is (buried abstractions)
– the less reusable it becomes...

I

F

Invoice system component
for doctor's surgery

Component to deal
with doctor's fees

Cannot reuse for
car dealer invoice system
despite major similarities!

4 Requirements for a Reuse Solution
● Reuse implies (extensive) alterations 1. Alter
● Can we just change existing component?

– No! We can't break if it for existing users 2. NoImpact
● Can we copy and modify the source?

– No! Must be able to accept upgrades 3. Upgrades
– Copying leads to maintenance problems
– We may not have the full source code 4. NoSource

Conflicting forces Change components
for reuse

Keep components the
same for existing users

To address these we introduce two constructs:

 Resemblance and Redefinition

Resemblance: Enabling Reuse
● Defines a component in terms of similarity to another

– An inheritance-like construct for components
– The new component is specified as add / delete / replace

changes to the architecture of a base component
● We keep the changes as elements in the new

component
– Lets us reason about combining changes, upgrades etc.

● Intuitively: ClockRadio resembles Radio, but adds a Clock

Radio
Tuner Amp

ClockRadio
resemblesTuner Amp Clock1. Add

2. Add connectors

Redefinition: Modelling Evolution
● Used to model evolution of a component
● Replaces the existing definition of a component

– The existing definition and the redefinition are kept separate
– Changes will only be applied if redefinition is “loaded”
– Can be combined with resemblance to evolve a component

in terms of changes to the old definition

● Intuitively: Evolving a Radio to add a Clock

Radio
Tuner Amp

Radio'Redefines and
resemblesTuner Amp Clock1. Add

2. Add connectors

Using the Constructs

These can be used independently, or together:

● Resemblance
– defines one component in terms of changes to another

● Redefinition
– changes the definition of an existing component

● Resemblance + redefinition
– allows evolution of an existing component in terms of

changes to the previous definition

The Notation

Notation for Leaf Components
● The graphical form is UML2 composite structure

diagrams.
● The textual form is remarkably similar to Darwin.

Notation for Composite Components

Notation for the Constructs

Applies to both composite and leaf components

Example

A note taking application

The Base Application
● Company X makes a drawing application, which has a

postit-note component

Reusing and Altering
● Company Y wishes to reuse and customise

– Add a zoom facility
– Remove the clipboard
– Add hyperlinked text

Using Resemblance to Alter (1)

redefine-component CDrawing
resembles [previous] CDrawing

{
replace-parts:

CNullClipboardMgr clip;
parts:

CZoomMgr z;
connectors:

zoom joins zoom@z to surface@canvas; }

mailto:zoom@z

Using Resemblance to Alter (2)

redefine-component CPostitNote
resembles [previous] CPostitNote

{
replace-parts:

CHyperlinkNoteDisplay display;
}

Conceptual
Overview

● A stratum groups a set
of related definitions

● Resemblance copies
an existing
component's definition
into the current
definition, and allows
changes

● Redefinition pushes a
new definition back into
an existing name

Issues
● Most issues occur when combining multiple

redefinitions of the same component
– This occurs when combining independently developed

changes. This related to a merge conflict in a CM system.

● How do we reason about the soundness of combined
redefinitions?
– What is the resultant system behaviour?
– Does the combination accomplish the goals of each

redefinition, or do they conflict?

● Currently only for non-distributed architectures...

Related Work

Related Work
● MAE

– Architectural configuration management system

● ADLS
– Darwin, ROOM, C2SADEL etc.

● Koala & product line architectural approachs
– Parametrization for reuse
– Variation points

● COM and other component standards
– mechanisms versus design approach

Conclusions and Further Work

Summary
● The constructs satisfy many of the requirements:

– Alter: Parts, attributes, connections can be added,
 deleted, replaced. Extensive changes possible.

– NoImpact: Only see the changes if redefinition is applied
– Upgrades: Can be phrased as another redefinition
– NoSource: Most changes can be performed with just the

 architectural description.
 i.e. No implementation code

● Major issue is how to reason about combined
redefinitions that are independently developed
– What properties are we trying to preserve?
– How do these relate to engineering specifications?

Further Work
● Graphical support for modelling with changes
● Expressing the properties we want preserved

– Protocol compliance of component compositions
– Reachability of a specified goal

● Resolving conflict between redefinitions
– Structural
– Behavioural

● Further work on formal models
– Alloy model for showing structural conflict exists
– FSP translation for protocols
– Semantic model

