Performance Specifications
Based upon Complete Profiles

Joan Krone
William F. Ogden
Murali Sitaraman

Our Starting Point

D. Parnas:

* A good specification should tell a client
everything he needs to know about a
component and nothing more.

Us:

* A client needs to know not only about the

functionality provided by a component, but
also about Its performance.

Goals for a Performance
Specification Mechanism

It should support:

* Abstracting away confusing details

* Retaining adequate precision (completeness)
e Scaling for arbitrarily large components

* Verifying correctness of compositions

« Extending functional specifications

and critically:

e Describing commonalities

Commonality Identification
Example

Various “Sorting” Implementations

A

Q *
\ N
< @) N
$ N g e 2 @
S X % Z & S
4

Type_Fam Entry_Keeper

AébStraCt Oper Add_Entry
- orting | oper Change_Modes
omponent | quer Remove_a_Smallest

N | /

(Prioritizer)

Type_Fam Entry Keeper
Aébsttract Oper Add_Entry
c orting . Oper Change_Modes
ormponen Oper Remove_a_Smallest
(Prioritizer) ;

-

Performance
Abstraction

Simple Profile Example with Stacks

Concept Stack _Template(type Entry; eval Max_Depth:
Type_Family Stack ¢ Str(Entry);

Operation Push(alters E: Entry; updates S: Stack);
requires |S| < Max_Depth;
ensures S = (#E)#S;

Operation Pop(replaces R: Entry; updates S: Stack);
requires |S| >0 ;
ensures #S = (R)°S;

Operation Depth_of(preserves S: Stack): Integer;
ensures Depth_of = (|S]);

Enhancement Flipping_Capability for Stack _Template;
Operation Flip(updates S: Stack);
ensures S = #SRev;
end Flipping_Capability;

Possible Implementation:
Realization Obvious F C_ Realiz for Flipping_Capability
Procedure Flip(updates S: Stack);
Var Next Entry: Entry;
Var S_Flipped: Stack;
While Depth of(S)#0
affecting S, S_Flipped, Next_Entry;
maintaining #S = S_FlippedR®¢' - S and
Entry.Is_Init(Next_Entry);
decreasing |S|;
do
Pop(Next_Entry, S);
Push(Next_Entry, S_Flipped);
end,
S = S _Flipped,;
end Flip; 8
end Obvious F C Realiz;

An Example Profile

Profile SSCF short_for Stack_Space Conscious_Flip for

Flipping_Capability for Stack_Template with_profile SSC;
Defines SSCF;,, SSCF.,: R*’;

Defines SSCF, -1, SSCFg ot N;
Operation Flip(updates S: Stack);
duration SSCF, + Entry.l_Dur + Stack.l_Dur +
Entry.F_IV_Dur + Stack.F_IV_Dur +
(SSCF, + Entry.l_Dur + Entry.F_IV_Dur).|#S|;
manip_disp (SSCF,,-; + Entry.l_Disp + Stack.l_Disp) +
Max(SSCFgy, ., Entry.IM_Disp, Entry.F_IVM_Disp);
end SSCF;

duration SSCF., + Entry.l_Dur + Stack.l_Dur + Entry.F_IV_Dur +
Stack.F_IV_Dur + (SSCF., + Entry.l_Dur + Entry.F_IV_Dur)-|#S];

Realization Obvious F C_ Realiz for Flipping_Capability
Definition SSCF,: R**= (Dur, (1) + SSC, + Int.Dur, + Dur._.);
Definition SSCF,: R*® = (SSC, + Int.Dur, + SSCy;; + SSCy,,);
Definition SSCF.,;: N = ...

Procedure Flip(updates S: Stack);

Var Next_Entry: Entry;

Var S_Flipped: Stack;

While Depth_of(S)#0
affecting S, S_Flipped, Next_Entry;
maintaining #S = S_FlippedR® o S and Entry.Is_Init(Next_Entry);
decreasing |S|;
elapsed_time (SSCF, + Entry.l_Dur +

Entry.F_IV_Dur)-|S_Flipped|;

do
Pop(Next_Entry, S);
Push(Next_Entry, S_Flipped);
end;
S =S _Flipped, 10
end Flip;

Profile SSC short_for Space Conscious for Stack_Template;
Defines SSC,, SSC,;, SSC., SSC._,, SSC;, SSC, SSC,, SSC,,,

S§CRC: R>9;
Type_Family Stack;

Initialization

duration SSC, + (SSC,; + Entry.l_Dur)-Max_Depth;

Operation Pop(replaces R: Entry; updates S: Stack);

duration SSC,_, + Entry.l_Dur + Entry.F_Dur(#R);"
Operation Push(alters E: Entry; updates S: Stack);

ensures Entry.Is_Init(E);*

duration SSC_ ;
Operation Depth_of(preserves S: Stack): Integer;

duration SSC;

end SSC;

TNote that this duration expression is split between the externally defined terms
for the duration of an Entry initialization, Entry.l_Dur, and the finalization of the
iIncoming value of R, Entry.F_Dur(#R) and the internally defined term SSCg,;.

*Note that this extension of the functional specification for Push is essential for
achieving tight performance specifications. 11

So, the Profile construct is a performance
specification mechanism that supports:

e Abstracting away confusing detaills
 Retaining adequate precision (completeness)
« Scaling for arbitrarily large components

* Verifying correctness of compositions
 Extending functional specifications

e Describing commonalities

It (or something quite similar) should be included
In any serious language for component
specification and verification.

12

What Else Is There?

What happens with displacement (space).

How component composition works.
— Multiple profiles for a constituent.

How large components can have simple
orofiles.

How to formally verify profiles.
When to supplement an object model.

13

