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Our Starting Point

D. Parnas:

* A good specification should tell a client
everything he needs to know about a
component and nothing more.

Us:

* A client needs to know not only about the

functionality provided by a component, but
also about Its performance.



Goals for a Performance
Specification Mechanism

It should support:

* Abstracting away confusing details

* Retaining adequate precision (completeness)
e Scaling for arbitrarily large components

* Verifying correctness of compositions

« Extending functional specifications

and critically:

e Describing commonalities
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Simple Profile Example with Stacks

Concept Stack _Template( type Entry; eval Max_Depth:
Type_Family Stack ¢ Str(Entry);

Operation Push( alters E: Entry; updates S: Stack );
requires |S| < Max_Depth;
ensures S = (#E)#S;

Operation Pop( replaces R: Entry; updates S: Stack );
requires |S| >0 ;
ensures #S = (R)°S;

Operation Depth_of( preserves S: Stack ): Integer;
ensures Depth_of = (|S]);



Enhancement Flipping_Capability for Stack _Template;
Operation Flip( updates S: Stack );
ensures S = #SRev;
end Flipping_Capability;

Possible Implementation:
Realization Obvious F C_ Realiz for Flipping_Capability
Procedure Flip( updates S: Stack );
Var Next Entry: Entry;
Var S_Flipped: Stack;
While Depth of(S)#0
affecting S, S_Flipped, Next_Entry;
maintaining #S = S_FlippedR®¢' - S and
Entry.Is_Init(Next_Entry);
decreasing |S|;
do
Pop( Next_Entry, S);
Push( Next_Entry, S_Flipped );
end,
S = S _Flipped,;
end Flip; 8
end Obvious F C Realiz;



An Example Profile

Profile SSCF short_for Stack_Space Conscious_Flip for

Flipping_Capability for Stack_Template with_profile SSC;
Defines SSCF;,, SSCF.,: R*’;

Defines SSCF, -1, SSCFg ot N;
Operation Flip( updates S: Stack );
duration SSCF, + Entry.l_Dur + Stack.l_Dur +
Entry.F_IV_Dur + Stack.F_IV_Dur +
(SSCF, + Entry.l_Dur + Entry.F_IV_Dur).|#S|;
manip_disp (SSCF,,-; + Entry.l_Disp + Stack.l_Disp) +
Max( SSCFgy, ., Entry.IM_Disp, Entry.F_IVM_Disp );
end SSCF;



duration SSCF., + Entry.l_Dur + Stack.l_Dur + Entry.F_IV_Dur +
Stack.F_IV_Dur + (SSCF., + Entry.l_Dur + Entry.F_IV_Dur)-|#S];

Realization Obvious F C_ Realiz for Flipping_Capability
Definition SSCF,: R**= (Dur, (1) + SSC, + Int.Dur, + Dur._.);
Definition SSCF,: R*® = (SSC, + Int.Dur, + SSCy;; + SSCy,,);
Definition SSCF.,;: N = ...

Procedure Flip( updates S: Stack );

Var Next_Entry: Entry;

Var S_Flipped: Stack;

While Depth_of(S)#0
affecting S, S_Flipped, Next_Entry;
maintaining #S = S_FlippedR® o S and Entry.Is_Init(Next_Entry);
decreasing |S|;
elapsed_time ( SSCF, + Entry.l_Dur +

Entry.F_IV_Dur )-|S_Flipped|;

do
Pop( Next_Entry, S);
Push( Next_Entry, S_Flipped );
end;
S =S _Flipped, 10
end Flip;




Profile SSC short_for Space Conscious for Stack_Template;
Defines SSC,, SSC,;, SSC., SSC._,, SSC;, SSC, SSC,, SSC,,,

S§CRC: R>9;
Type_Family Stack;

Initialization

duration SSC, + (SSC,; + Entry.l_Dur)-Max_Depth;

Operation Pop( replaces R: Entry; updates S: Stack );

duration SSC,_, + Entry.l_Dur + Entry.F_Dur(#R);"
Operation Push( alters E: Entry; updates S: Stack );

ensures Entry.Is_Init(E);*

duration SSC_ ;
Operation Depth_of( preserves S: Stack ): Integer;

duration SSC;

end SSC;

TNote that this duration expression is split between the externally defined terms
for the duration of an Entry initialization, Entry.l_Dur, and the finalization of the
iIncoming value of R, Entry.F_Dur(#R) and the internally defined term SSCg,;.

*Note that this extension of the functional specification for Push is essential for
achieving tight performance specifications. 11



So, the Profile construct is a performance
specification mechanism that supports:

e Abstracting away confusing detaills
 Retaining adequate precision (completeness)
« Scaling for arbitrarily large components

* Verifying correctness of compositions
 Extending functional specifications

e Describing commonalities

It (or something quite similar) should be included
In any serious language for component
specification and verification.
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What Else Is There?

What happens with displacement (space).

How component composition works.
— Multiple profiles for a constituent.

How large components can have simple
orofiles.

How to formally verify profiles.
When to supplement an object model.
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