
JML-based Verification of Liveness Properties on a
Class in Isolation

SAVCBS 2006

Julien Groslambert Jacques Julliand Olga Kouchnarenko

November 10-11th 2006
Portland, Oregon.

LIFC - University of Franche-Conté

1/36

Motivations

Formal Verification of Conformity between
Requirements
Implementation source code

Requirements Implementation
Conformity ?

Requirements
Absence of null pointer
exception.
Class Invariance.
Temporal behavior.

JML Annotations
Leavens and Al.
Annotations for Java.
Well tool supported.

Temporal properties
+ are expressible in JML.
− need a tedious work for annotating.

⇒ Automatic annotation generation from high level temporal
properties.

2/36

Motivations

Formal Verification of Conformity between
Requirements
Implementation source code

Requirements Implementation
Conformity ?

Requirements
Absence of null pointer
exception.
Class Invariance.
Temporal behavior.

JML Annotations
Leavens and Al.
Annotations for Java.
Well tool supported.

Temporal properties
+ are expressible in JML.
− need a tedious work for annotating.

⇒ Automatic annotation generation from high level temporal
properties.

2/36

Motivations

Requirements
Absence of null pointer
exception.
Class Invariance.
Temporal behavior.

JML Annotations
Leavens and Al.
Annotations for Java.
Well tool supported.

Temporal properties
+ are expressible in JML.
− need a tedious work for annotating.

⇒ Automatic annotation generation from high level temporal
properties.

2/36

Motivations

Requirements
Absence of null pointer
exception.
Class Invariance.
Temporal behavior.

JML Annotations
Leavens and Al.
Annotations for Java.
Well tool supported.

Temporal properties
+ are expressible in JML.
− need a tedious work for annotating.

⇒ Automatic annotation generation from high level temporal
properties.

2/36

Motivations

Requirements
Absence of null pointer
exception.
Class Invariance.
Temporal behavior.

JML Annotations
Leavens and Al.
Annotations for Java.
Well tool supported.

Temporal properties
+ are expressible in JML.
− need a tedious work for annotating.

⇒ Automatic annotation generation from high level temporal
properties.

2/36

Proposed Approach - Huisman Trentelman [AMAST’02]

1 Expressing security
properties from
requirements

2 Translating properties into
a annotation language for
the implementation

3 Verifying the properties on
the code

Temporal
Logic

JML

Proof
of Consistency
between Java

and JML

Focus of the talk
Extension of the approach to Liveness Properties

3/36

Proposed Approach - Huisman Trentelman [AMAST’02]

1 Expressing security
properties from
requirements

2 Translating properties into
a annotation language for
the implementation

3 Verifying the properties on
the code

Temporal
Logic

JML

Proof
of Consistency
between Java

and JML

Focus of the talk
Extension of the approach to Liveness Properties

3/36

Proposed Approach - Huisman Trentelman [AMAST’02]

1 Expressing security
properties from
requirements

2 Translating properties into
a annotation language for
the implementation

3 Verifying the properties on
the code

Temporal
Logic

JML

Proof
of Consistency
between Java

and JML

Focus of the talk
Extension of the approach to Liveness Properties

3/36

Proposed Approach - Huisman Trentelman [AMAST’02]

1 Expressing security
properties from
requirements

2 Translating properties into
a annotation language for
the implementation

3 Verifying the properties on
the code

Temporal
Logic

JML

Proof
of Consistency
between Java

and JML

Focus of the talk
Extension of the approach to Liveness Properties

3/36

Proposed Approach - Huisman Trentelman [AMAST’02]

1 Expressing security
properties from
requirements

2 Translating properties into
a annotation language for
the implementation

3 Verifying the properties on
the code

Temporal
Logic

JML

Proof
of Consistency
between Java

and JML

Focus of the talk
Extension of the approach to Liveness Properties

3/36

1 Introduction

2 Verification of Liveness Properties with JML

3 The JAG Tool

4 Conclusion and Future Work

4/36

1 Introduction

2 Verification of Liveness Properties with JML

3 The JAG Tool

4 Conclusion and Future Work

5/36

Running Example: A Transaction System

!perso

perso

perso

storeData

write

begin commit,abort

Behavior
Two steps:

Personalization.
storeData: fix the size of
the buffer.

Use.
begin a transaction.
write a modification.
commit transaction.
abort transaction.

6/36

Running Example: A Transaction System

!perso

perso

perso

storeData

write

begin commit,abort

Behavior
Two steps:

Personalization.
storeData: fix the size of
the buffer.

Use.
begin a transaction.
write a modification.
commit transaction.
abort transaction.

6/36

Running Example: A Transaction System

!perso

perso

perso

storeData

write

begin commit,abort

Behavior
Two steps:

Personalization.
storeData: fix the size of
the buffer.

Use.
begin a transaction.
write a modification.
commit transaction.
abort transaction.

6/36

Running Example: A Transaction System

!perso

perso

perso

storeData

write

begin commit,abort

Behavior
Two steps:

Personalization.
storeData: fix the size of
the buffer.

Use.
begin a transaction.
write a modification.
commit transaction.
abort transaction.

6/36

Running Example: A Transaction System

!perso

perso

perso

storeData

write

begin commit,abort

Behavior
Two steps:

Personalization.
storeData: fix the size of
the buffer.

Use.
begin a transaction.
write a modification.
commit transaction.
abort transaction.

6/36

Running Example: A Transaction System

!perso

perso

perso

storeData

write

begin commit,abort

Behavior
Two steps:

Personalization.
storeData: fix the size of
the buffer.

Use.
begin a transaction.
write a modification.
commit transaction.
abort transaction.

6/36

Running Example: A Transaction System

Fields
perso: boolean describing if
the card is already
personalized.
len: Integer representing the
length of the Buffer.
status: byte array specifying
the status of the system.
buffer: byte array specifying
a temporal buffer.
position: integer
representing the current
position in the Buffer.
trDepth: boolean describing if
there is a current transaction.

Example
public class Buffer {
. . .

boolean perso = false;
int len;
byte [] status;
byte [] buffer;
int position = 0;
boolean trDepth = false;
. . . }

7/36

Running Example: A Transaction System

Fields
perso: boolean describing if
the card is already
personalized.
len: Integer representing the
length of the Buffer.
status: byte array specifying
the status of the system.
buffer: byte array specifying
a temporal buffer.
position: integer
representing the current
position in the Buffer.
trDepth: boolean describing if
there is a current transaction.

Example
public class Buffer {
. . .

boolean perso = false;
int len;
byte [] status;
byte [] buffer;
int position = 0;
boolean trDepth = false;
. . . }

7/36

Running Example: A Transaction System

Fields
perso: boolean describing if
the card is already
personalized.
len: Integer representing the
length of the Buffer.
status: byte array specifying
the status of the system.
buffer: byte array specifying
a temporal buffer.
position: integer
representing the current
position in the Buffer.
trDepth: boolean describing if
there is a current transaction.

Example
public class Buffer {
. . .

boolean perso = false;
int len;
byte [] status;
byte [] buffer;
int position = 0;
boolean trDepth = false;
. . . }

7/36

Running Example: A Transaction System

Fields
perso: boolean describing if
the card is already
personalized.
len: Integer representing the
length of the Buffer.
status: byte array specifying
the status of the system.
buffer: byte array specifying
a temporal buffer.
position: integer
representing the current
position in the Buffer.
trDepth: boolean describing if
there is a current transaction.

Example
public class Buffer {
. . .

boolean perso = false;
int len;
byte [] status;
byte [] buffer;
int position = 0;
boolean trDepth = false;
. . . }

7/36

Running Example: A Transaction System

Fields
perso: boolean describing if
the card is already
personalized.
len: Integer representing the
length of the Buffer.
status: byte array specifying
the status of the system.
buffer: byte array specifying
a temporal buffer.
position: integer
representing the current
position in the Buffer.
trDepth: boolean describing if
there is a current transaction.

Example
public class Buffer {
. . .

boolean perso = false;
int len;
byte [] status;
byte [] buffer;
int position = 0;
boolean trDepth = false;
. . . }

7/36

Running Example: A Transaction System

Fields
perso: boolean describing if
the card is already
personalized.
len: Integer representing the
length of the Buffer.
status: byte array specifying
the status of the system.
buffer: byte array specifying
a temporal buffer.
position: integer
representing the current
position in the Buffer.
trDepth: boolean describing if
there is a current transaction.

Example
public class Buffer {
. . .

boolean perso = false;
int len;
byte [] status;
byte [] buffer;
int position = 0;
boolean trDepth = false;
. . . }

7/36

Running Example: A Transaction System

Fields
perso: boolean describing if
the card is already
personalized.
len: Integer representing the
length of the Buffer.
status: byte array specifying
the status of the system.
buffer: byte array specifying
a temporal buffer.
position: integer
representing the current
position in the Buffer.
trDepth: boolean describing if
there is a current transaction.

Example
public class Buffer {
. . .

boolean perso = false;
int len;
byte [] status;
byte [] buffer;
int position = 0;
boolean trDepth = false;
. . . }

7/36

Running Example: A Transaction System

Methods
storeData to personalize the
Transaction System.
begin to start a new
transaction.
write to write in the current
Buffer.
getBufferLess to get the
Buffer free place
commit to valid the current
transaction.
getStatus to get the current
status of the transaction.
abort to abort the current
transaction.

Example
public class Buffer {
. . .

void storeData(int l){
len = l;
perso = true;

}
void begin()

throws Exception{
if (perso == false) {
throw new Exception();

}
buffer = new byte[len];
trDepth = true;
}

. . .

8/36

Running Example: A Transaction System

Methods
storeData to personalize the
Transaction System.
begin to start a new
transaction.
write to write in the current
Buffer.
getBufferLess to get the
Buffer free place
commit to valid the current
transaction.
getStatus to get the current
status of the transaction.
abort to abort the current
transaction.

Example
public class Buffer {
. . .

void storeData(int l){
len = l;
perso = true;

}
void begin()

throws Exception{
if (perso == false) {
throw new Exception();

}
buffer = new byte[len];
trDepth = true;
}

. . .

8/36

Running Example: A Transaction System

Methods
storeData to personalize the
Transaction System.
begin to start a new
transaction.
write to write in the current
Buffer.
getBufferLess to get the
Buffer free place
commit to valid the current
transaction.
getStatus to get the current
status of the transaction.
abort to abort the current
transaction.

Example
public class Buffer {
. . .

void storeData(int l){
len = l;
perso = true;

}
void begin()

throws Exception{
if (perso == false) {
throw new Exception();

}
buffer = new byte[len];
trDepth = true;
}

. . .

8/36

Running Example: A Transaction System

Methods
storeData to personalize the
Transaction System.
begin to start a new
transaction.
write to write in the current
Buffer.
getBufferLess to get the
Buffer free place
commit to valid the current
transaction.
getStatus to get the current
status of the transaction.
abort to abort the current
transaction.

Example
public class Buffer {
. . .

void write(byte b){
buffer[position] = b;
position++;
}

int getBufferLess(){
return len

- buffer.length;
}

8/36

Running Example: A Transaction System

Methods
storeData to personalize the
Transaction System.
begin to start a new
transaction.
write to write in the current
Buffer.
getBufferLess to get the
Buffer free place
commit to valid the current
transaction.
getStatus to get the current
status of the transaction.
abort to abort the current
transaction.

Example
public class Buffer {
. . .

void write(byte b){
buffer[position] = b;
position++;
}

int getBufferLess(){
return len

- buffer.length;
}

8/36

Running Example: A Transaction System

Methods
storeData to personalize the
Transaction System.
begin to start a new
transaction.
write to write in the current
Buffer.
getBufferLess to get the
Buffer free place
commit to valid the current
transaction.
getStatus to get the current
status of the transaction.
abort to abort the current
transaction.

Example
public class Buffer {
. . .

void commit(){
status = buffer;
position = 0;
trDepth = false;
}
byte [] getStatus(){
return status;
}
void abort(){
position = 0;
trDepth = false;
}

8/36

Running Example: A Transaction System

Methods
storeData to personalize the
Transaction System.
begin to start a new
transaction.
write to write in the current
Buffer.
getBufferLess to get the
Buffer free place
commit to valid the current
transaction.
getStatus to get the current
status of the transaction.
abort to abort the current
transaction.

Example
public class Buffer {
. . .

void commit(){
status = buffer;
position = 0;
trDepth = false;
}
byte [] getStatus(){
return status;
}
void abort(){
position = 0;
trDepth = false;
}

8/36

Running Example: A Transaction System

Methods
storeData to personalize the
Transaction System.
begin to start a new
transaction.
write to write in the current
Buffer.
getBufferLess to get the
Buffer free place
commit to valid the current
transaction.
getStatus to get the current
status of the transaction.
abort to abort the current
transaction.

Example
public class Buffer {
. . .

void commit(){
status = buffer;
position = 0;
trDepth = false;
}
byte [] getStatus(){
return status;
}
void abort(){
position = 0;
trDepth = false;
}

8/36

JML Class Specification

JML Annotations Example
public class Buffer {

. . .

boolean perso = false;
int len;
byte [] status;
byte [] buffer;
int position = 0;
boolean trDepth = false;

9/36

JML Class Specification

JML Annotations
Main JML Annotations.

1 Class invariant
specification.

2 History constraint
specification.

3 Method Specification.

Example
public class Buffer {

. . .

boolean perso = false;
int len;
byte [] status;
byte [] buffer;
int position = 0;
boolean trDepth = false;

9/36

JML Class Specification

JML Annotations
Main JML Annotations.

1 Class invariant
specification.

2 History constraint
specification.

3 Method Specification.

Example
public class Buffer {
//@ invariant position >= 0;

. . .

boolean perso = false;
int len;
byte [] status;
byte [] buffer;
int position = 0;
boolean trDepth = false;

9/36

JML Class Specification

JML Annotations
Main JML Annotations.

1 Class invariant
specification.

2 History constraint
specification.

3 Method Specification.

Invariant
Properties that have to be
true in all visible states:

Before invocation of a
method
After invocation of a
method

Example
public class Buffer {
//@ invariant position >= 0;

. . .

boolean perso = false;
int len;
byte [] status;
byte [] buffer;
int position = 0;
boolean trDepth = false;

9/36

JML Class Specification

JML Annotations
Main JML Annotations.

1 Class invariant
specification.

2 History constraint
specification.

3 Method Specification.

Example
public class Buffer {
//@ invariant position >= 0;

. . .

boolean perso = false;
int len;
byte [] status;
byte [] buffer;
int position = 0;
boolean trDepth = false;

9/36

JML Class Specification

JML Annotations
Main JML Annotations.

1 Class invariant
specification.

2 History constraint
specification.

3 Method Specification.

Constraint
Property linking two visible
states.

old keyword.
for keyword.

Example
public class Buffer {
//@ invariant position >= 0;
/*@ contraint perso ==>
@ len == \old(len);
@*/

. . .

boolean perso = false;
int len;
byte [] status;
byte [] buffer;
int position = 0;
boolean trDepth = false;

9/36

JML Class Specification

JML Annotations
Main JML Annotations.

1 Class invariant
specification.

2 History constraint
specification.

3 Method Specification.

Constraint
Property linking two visible
states.

old keyword.
for keyword.

Example
public class Buffer {
//@ invariant position >= 0;
/*@ contraint perso ==>
@ len == \old(len);
@*/
/*@ contraint
@ position >= \old(position);
@ for write;
@*/

. . .

boolean perso = false;
int len;
byte [] status;
byte [] buffer;
int position = 0;
boolean trDepth = false;

9/36

JML Class Specification

JML Annotations
Main JML Annotations.

1 Class invariant
specification.

2 History constraint
specification.

3 Method Specification.

Method Specification
1 Precondition.
2 Postcondition.
3 Exceptional

Postcondition.
4 Frame Condition.

Example
void begin() throws Exception{
. . .

}

9/36

JML Class Specification

JML Annotations
Main JML Annotations.

1 Class invariant
specification.

2 History constraint
specification.

3 Method Specification.

Method Specification
1 Precondition.
2 Postcondition.
3 Exceptional

Postcondition.
4 Frame Condition.

Example
/*@
@ requires trDepth == false;
@ requires perso == true;
@*/
void begin() throws Exception{
. . .

}

9/36

JML Class Specification

JML Annotations
Main JML Annotations.

1 Class invariant
specification.

2 History constraint
specification.

3 Method Specification.

Method Specification
1 Precondition.
2 Postcondition.
3 Exceptional

Postcondition.
4 Frame Condition.

Example
/*@
@ requires trDepth == false;
@ requires perso == true;
@ ensures trDepth == true;
@*/
void begin() throws Exception{
. . .

}

9/36

JML Class Specification

JML Annotations
Main JML Annotations.

1 Class invariant
specification.

2 History constraint
specification.

3 Method Specification.

Method Specification
1 Precondition.
2 Postcondition.
3 Exceptional

Postcondition.
4 Frame Condition.

Example
/*@ normal behavior
@ requires trDepth == false;
@ requires perso == true;
@ ensures trDepth == true;
@ also
@ exceptional behavior
@ requires perso == false;
@ signals (Exception e) true;
@*/
void begin() throws Exception{
. . .

}

9/36

JML Class Specification

JML Annotations
Main JML Annotations.

1 Class invariant
specification.

2 History constraint
specification.

3 Method Specification.

Method Specification
1 Precondition.
2 Postcondition.
3 Exceptional

Postcondition.
4 Frame Condition.

Example
/*@ normal behavior
@ requires trDepth == false;
@ requires perso == true;
@ assignable buffer;
@ ensures trDepth == true;
@ also
@ exceptional behavior
@ requires perso == false;
@ assignable \nothing;
@ signals (Exception e) true;
@*/
void begin() throws Exception{
. . .

}

9/36

Modular Reasonning

Reasonning Modularly consists in
1 Establishing a property of a class in isolation assuming some

hypothesis of the program using the class.
2 Verifying the hypothesis on the program.

Java Class
Java Program

Using
the class

10/36

Modular Reasonning

Reasonning Modularly consists in
1 Establishing a property of a class in isolation assuming some

hypothesis of the program using the class.
2 Verifying the hypothesis on the program.

Java Class
Java Program

Using
the class

Verification on isolation Hypothesis

10/36

Modular Reasonning

Reasonning Modularly consists in
1 Establishing a property of a class in isolation assuming some

hypothesis of the program using the class.
2 Verifying the hypothesis on the program.

Java Class
Java Program

Using
the class

Verification of the Hypothesis

10/36

Modular Reasonning - Example: Method Correctness

Design by contract approach.

Java Class Contract
Assumes the Precondition.
Establishes the
Postcondition.

Example
/*@ requires trDepth;

@ requires buffer != null;
@ requires position > 0;
@ requires position < buffer.length;
@ ensures position == \old(position)+1;
@*/

void write(byte b){
buffer[position] = b;
position++;
}

Java Program using the
class

Assumes the
Postcondition.
Establishes the
Precondition.

Example
a.storeDate(4);
a.begin();
// assert precondition
a.write(7);

// assume postcondition

11/36

Temporal Properties

Examples of Temporal Requirements for the Buffer
1 The application can be personalized only once.
2 The status is always the same unless a commit happens.
3 A begin must inevitably been followed by a commit or an abort.

12/36

Temporal Properties

Examples of Temporal Requirements for the Buffer
1 The application can be personalized only once.
2 The status is always the same unless a commit happens.
3 A begin must inevitably been followed by a commit or an abort.

12/36

Temporal Properties

Examples of Temporal Requirements for the Buffer
1 The application can be personalized only once.
2 The status is always the same unless a commit happens.
3 A begin must inevitably been followed by a commit or an abort.

12/36

1 Introduction

2 Verification of Liveness Properties with JML

3 The JAG Tool

4 Conclusion and Future Work

13/36

1 Introduction

2 Verification of Liveness Properties with JML

3 The JAG Tool

4 Conclusion and Future Work

14/36

1 Introduction

2 Verification of Liveness Properties with JML

3 The JAG Tool

4 Conclusion and Future Work

15/36

1 Introduction

2 Verification of Liveness Properties with JML

3 The JAG Tool

4 Conclusion and Future Work

16/36

1 Introduction

2 Verification of Liveness Properties with JML

3 The JAG Tool

4 Conclusion and Future Work

17/36

A Loop Modality for Expressing Liveness Properties

Definition (Loop Primitive)
Loop(Q) A state where Q is satisfied must be inevitably followed by a
state where Q is not satisfied.

∀i .((i ≥ 0 ∧ σi |= Q) ⇒ (∃j .j > i ∧ σj |= ¬Q)).

Illustration

!Q Q Q !Q Q !Q !Q

Example
A begin must inevitably been followed by a commit or an abort.

Loop(TrDepth == true)

18/36

Modular Reasonning - Application to liveness
properties

Java Class contract
Assumes a Progress
Hypothesis
Establishes the Liveness
on a class in isolation.

Java Program Contract
Assumes the liveness on a
class in Isolation.
Establishes a Progress
Hypothesis.

Satisfaction of the liveness by the whole program.

19/36

Progress Hypothesis

Definition (Progress Hypothesis PH(Q, M))

(F∞pre(M)) ∨ (G∞¬Q)

where pre(M) denotes the predicate
∨

m∈M pre(m).

Progress methods are infinitely often called.
The program stay in a state satisfying ¬Q.

20/36

Variant Introduction

Need a variant V like a proof termination.
Given by the user
Well founded ⇒ Expression from a subset of the class variables to
the positive integers
must decrease for each method invocation until Q

!Q Q Q !Q Q !Q !Q

Example
Loop(TrDepth) The variant V is getBufferLess().

21/36

Annotation for Loop

Annotations

//@ invariant V >= 0; (A1)
//@ constraint Q ==> V< \ old(V) for M ; (A2)
//@ constraint Q ==> V<= \ old(V) ; (A3)

//@ invariant Q ==>
∨

m∈M

requires(m) (A4)

//@ invariant Q ==>
∧

m∈MC

(requires(m) ==> !diverges(m)); (A5)

Example (Loop(TrDepth))

22/36

Annotation for Loop

Well-foundation of V

//@ invariant V >= 0; (A1)
//@ constraint Q ==> V< \ old(V) for M ; (A2)
//@ constraint Q ==> V<= \ old(V) ; (A3)

//@ invariant Q ==>
∨

m∈M

requires(m) (A4)

//@ invariant Q ==>
∧

m∈MC

(requires(m) ==> !diverges(m)); (A5)

Example (Loop(TrDepth))
//@ invariant getBufferLess() >= 0

22/36

Annotation for Loop

Each progress method decreases V

//@ invariant V >= 0; (A1)
//@ constraint Q ==> V< \ old(V) for M ; (A2)
//@ constraint Q ==> V<= \ old(V) ; (A3)

//@ invariant Q ==>
∨

m∈M

requires(m) (A4)

//@ invariant Q ==>
∧

m∈MC

(requires(m) ==> !diverges(m)); (A5)

Example (Loop(TrDepth))
/*@ constraint trDepth
@ ==> getBufferLess() < \ old(getBufferLess()) for
storeData,begin,abort,commit,write;

22/36

Annotation for Loop

Each method does not increase V

//@ invariant V >= 0; (A1)
//@ constraint Q ==> V< \ old(V) for M ; (A2)
//@ constraint Q ==> V<= \ old(V) ; (A3)

//@ invariant Q ==>
∨

m∈M

requires(m) (A4)

//@ invariant Q ==>
∧

m∈MC

(requires(m) ==> !diverges(m)); (A5)

Example (Loop(TrDepth))
//@ constraint trDepth
@ ==> getBufferLess() <= \ old(getBufferLess()) ;

22/36

Annotation for Loop

No dead-lock for the class

//@ invariant V >= 0; (A1)
//@ constraint Q ==> V< \ old(V) for M ; (A2)
//@ constraint Q ==> V<= \ old(V) ; (A3)

//@ invariant Q ==>
∨

m∈M

requires(m) (A4)

//@ invariant Q ==>
∧

m∈MC

(requires(m) ==> !diverges(m)); (A5)

Example (Loop(TrDepth))
/*@ invariant trDepth ==> (perso == false ‖
@ (trDepth == false && perso == true) ‖
@ (trDepth == true && perso == true
@ && position < len)) @*/

22/36

Annotation for Loop

No divergence for the class

//@ invariant V >= 0; (A1)
//@ constraint Q ==> V< \ old(V) for M ; (A2)
//@ constraint Q ==> V<= \ old(V) ; (A3)

//@ invariant Q ==>
∨

m∈M

requires(m) (A4)

//@ invariant Q ==>
∧

m∈MC

(requires(m) ==> !diverges(m)); (A5)

Example (Loop(TrDepth))
obvious Annotation

22/36

Soundness of the method

Theorem

If C : A1−5 ∧ PH(Q, M) thenLoop(Q).

23/36

Soundness of the method

Theorem

If C : A1−5 ∧ PH(Q, M) thenLoop(Q).

Intuition.

!Q Q Q Q Q !Q

A4. No dead-lock for the class
A5. No divergence for the class
A2. Each progress method decreases V
A3. Each method does not increase V
Decrease of the variant
A1.Well-foundation of V

23/36

Soundness of the method

Theorem

If C : A1−5 ∧ PH(Q, M) thenLoop(Q).

Intuition.

!Q Q Q Q Q !Q

A4. No dead-lock for the class
A5. No divergence for the class
A2. Each progress method decreases V
A3. Each method does not increase V
Decrease of the variant
A1.Well-foundation of V

23/36

Soundness of the method

Theorem

If C : A1−5 ∧ PH(Q, M) thenLoop(Q).

Intuition.

!Q Q Q Q Q !Q

A4. No dead-lock for the class
A5. No divergence for the class
A2. Each progress method decreases V
A3. Each method does not increase V
Decrease of the variant
A1.Well-foundation of V

23/36

Soundness of the method

Theorem

If C : A1−5 ∧ PH(Q, M) thenLoop(Q).

Intuition.

!Q Q Q Q Q !Q

A4. No dead-lock for the class
A5. No divergence for the class
A2. Each progress method decreases V
A3. Each method does not increase V
Decrease of the variant
A1.Well-foundation of V

23/36

Soundness of the method

Theorem

If C : A1−5 ∧ PH(Q, M) thenLoop(Q).

Intuition.

!Q Q Q Q Q !Q

A4. No dead-lock for the class
A5. No divergence for the class
A2. Each progress method decreases V
A3. Each method does not increase V
Decrease of the variant
A1.Well-foundation of V

23/36

Soundness of the method

Theorem

If C : A1−5 ∧ PH(Q, M) thenLoop(Q).

Intuition.

!Q Q Q Q Q !Q

A4. No dead-lock for the class
A5. No divergence for the class
A2. Each progress method decreases V
A3. Each method does not increase V
Decrease of the variant
A1.Well-foundation of V

23/36

Soundness of the method

Theorem

If C : A1−5 ∧ PH(Q, M) thenLoop(Q).

Proof.
PH C :: A1−5 Loop(Q)

23/36

Soundness of the method

Theorem

If C : A1−5 ∧ PH(Q, M) thenLoop(Q).

Proof.
PH C :: A1−5 Loop(Q)

Trace
Semantics ΣPH ΣA1−5 ΣLoop(Q)

23/36

Soundness of the method

Theorem

If C : A1−5 ∧ PH(Q, M) thenLoop(Q).

Proof.
PH ∧ C :: A1−5 ⇒ Loop(Q)

Trace
Semantics ΣPH ∩ ΣA1−5 ⊆ ΣLoop(Q)

23/36

1 Introduction

2 Verification of Liveness Properties with JML

3 The JAG Tool

4 Conclusion and Future Work

24/36

1 Introduction

2 Verification of Liveness Properties with JML

3 The JAG Tool

4 Conclusion and Future Work

25/36

1 Introduction

2 Verification of Liveness Properties with JML

3 The JAG Tool

4 Conclusion and Future Work

26/36

JAG: General Approach

JAG 0.1 input: JTPL
Properties [Huisman
Trentelman - AMAST’02].
Generates JML annotations
ensuring the JTPL properties.
Annotations traceability

Temporal
Property

φ

Java
Implementation

(I)

JAG

JML Annotated
Java

Implementation
(Iφ)

27/36

JAG: Example of JTPL Properties

Example (Unique personalization)
after storeData normal

always (perso == true
and storeData not enabled)

Example (Command not enabled before personnalization)
always (begin not enabled

and commit not enabled)
unless storeData normal

Example (Begin eventually followed by Commit or Abort)

after begin normal
(eventually commit called),

abort called)

28/36

JAG: Example of JTPL Properties

Example (Unique personalization)
after storeData normal

always (perso == true
and storeData not enabled)

Example (Command not enabled before personnalization)
always (begin not enabled

and commit not enabled)
unless storeData normal

Example (Begin eventually followed by Commit or Abort)

after begin normal
(eventually commit called),

abort called)

28/36

JAG: Annotation Generation

Example (JTPL Property)
after begin normal

(eventually commit called),
abort called)

Annotation Generation
Declaration of a ghost
variable.
Assignement of the
ghost variable.
Loop(Witness).

Example (Java Code)
public class Buffer {
//@ ghost witness = false;
boolean perso = false;
. . .

void begin(){
. . .

//@ set witness = true;
}
void commit(){
//@ set witness = false;
. . .

}
void abort(){
//@ set witness = false;
. . .

}
. . .

}

29/36

JAG: Annotation Generation

Example (JTPL Property)
after begin normal

(eventually commit called),
abort called)

Annotation Generation
Declaration of a ghost
variable.
Assignement of the
ghost variable.
Loop(Witness).

Example (Java Code)
public class Buffer {
//@ ghost witness = false;
boolean perso = false;
. . .

void begin(){
. . .

//@ set witness = true;
}
void commit(){
//@ set witness = false;
. . .

}
void abort(){
//@ set witness = false;
. . .

}
. . .

}

29/36

JAG: Annotation Generation

Example (JTPL Property)
after begin normal

(eventually commit called),
abort called)

Annotation Generation
Declaration of a ghost
variable.
Assignement of the
ghost variable.
Loop(Witness).

Example (Java Code)
public class Buffer {
//@ ghost witness = false;
boolean perso = false;
. . .

void begin(){
. . .

//@ set witness = true;
}
void commit(){
//@ set witness = false;
. . .

}
void abort(){
//@ set witness = false;
. . .

}
. . .

}

29/36

JAG: Annotation Generation

Example (JTPL Property)
after begin normal

(eventually commit called),
abort called)

Annotation Generation
Declaration of a ghost
variable.
Assignement of the
ghost variable.
Loop(Witness).

Example (Java Code)
public class Buffer {
//@ ghost witness = false;
boolean perso = false;
. . .

void begin(){
. . .

//@ set witness = true;
}
void commit(){
//@ set witness = false;
. . .

}
void abort(){
//@ set witness = false;
. . .

}
. . .

}

29/36

Feature of JAG 0.1

Automatic generation of ghost variables for observing events and
states.
Automatic generation of invariants for safety properties [Huisman
Trentelman AMAST’02]
All liveness formulae of the language are rewrited in Loop
primitive.
Generation of standard JML file
⇒ Compatibility with all other JML tools

Runtime Verification (jmlc - Iowa State University)
Symbolic Animation, Test Generation (JML-TT - LIFC, Tobias,
Jartege - LSR)
JML annotations consistency (JML2B - LIFC)
Consistency of JML annotations with Java code

ESC-Java
Krakatoa - LRI
Jack - INRIA Sophia

30/36

Feature of JAG 0.1

Automatic generation of ghost variables for observing events and
states.
Automatic generation of invariants for safety properties [Huisman
Trentelman AMAST’02]
All liveness formulae of the language are rewrited in Loop
primitive.
Generation of standard JML file
⇒ Compatibility with all other JML tools

Runtime Verification (jmlc - Iowa State University)
Symbolic Animation, Test Generation (JML-TT - LIFC, Tobias,
Jartege - LSR)
JML annotations consistency (JML2B - LIFC)
Consistency of JML annotations with Java code

ESC-Java
Krakatoa - LRI
Jack - INRIA Sophia

30/36

Feature of JAG 0.1

Automatic generation of ghost variables for observing events and
states.
Automatic generation of invariants for safety properties [Huisman
Trentelman AMAST’02]
All liveness formulae of the language are rewrited in Loop
primitive.
Generation of standard JML file
⇒ Compatibility with all other JML tools

Runtime Verification (jmlc - Iowa State University)
Symbolic Animation, Test Generation (JML-TT - LIFC, Tobias,
Jartege - LSR)
JML annotations consistency (JML2B - LIFC)
Consistency of JML annotations with Java code

ESC-Java
Krakatoa - LRI
Jack - INRIA Sophia

30/36

Feature of JAG 0.1

Automatic generation of ghost variables for observing events and
states.
Automatic generation of invariants for safety properties [Huisman
Trentelman AMAST’02]
All liveness formulae of the language are rewrited in Loop
primitive.
Generation of standard JML file
⇒ Compatibility with all other JML tools

Runtime Verification (jmlc - Iowa State University)
Symbolic Animation, Test Generation (JML-TT - LIFC, Tobias,
Jartege - LSR)
JML annotations consistency (JML2B - LIFC)
Consistency of JML annotations with Java code

ESC-Java
Krakatoa - LRI
Jack - INRIA Sophia

30/36

Feature of JAG 0.1

Automatic generation of ghost variables for observing events and
states.
Automatic generation of invariants for safety properties [Huisman
Trentelman AMAST’02]
All liveness formulae of the language are rewrited in Loop
primitive.
Generation of standard JML file
⇒ Compatibility with all other JML tools

Runtime Verification (jmlc - Iowa State University)
Symbolic Animation, Test Generation (JML-TT - LIFC, Tobias,
Jartege - LSR)
JML annotations consistency (JML2B - LIFC)
Consistency of JML annotations with Java code

ESC-Java
Krakatoa - LRI
Jack - INRIA Sophia

30/36

Feature of JAG 0.1

Automatic generation of ghost variables for observing events and
states.
Automatic generation of invariants for safety properties [Huisman
Trentelman AMAST’02]
All liveness formulae of the language are rewrited in Loop
primitive.
Generation of standard JML file
⇒ Compatibility with all other JML tools

Runtime Verification (jmlc - Iowa State University)
Symbolic Animation, Test Generation (JML-TT - LIFC, Tobias,
Jartege - LSR)
JML annotations consistency (JML2B - LIFC)
Consistency of JML annotations with Java code

ESC-Java
Krakatoa - LRI
Jack - INRIA Sophia

30/36

Feature of JAG 0.1

Automatic generation of ghost variables for observing events and
states.
Automatic generation of invariants for safety properties [Huisman
Trentelman AMAST’02]
All liveness formulae of the language are rewrited in Loop
primitive.
Generation of standard JML file
⇒ Compatibility with all other JML tools

Runtime Verification (jmlc - Iowa State University)
Symbolic Animation, Test Generation (JML-TT - LIFC, Tobias,
Jartege - LSR)
JML annotations consistency (JML2B - LIFC)
Consistency of JML annotations with Java code

ESC-Java
Krakatoa - LRI
Jack - INRIA Sophia

30/36

Feature of JAG 0.1

Automatic generation of ghost variables for observing events and
states.
Automatic generation of invariants for safety properties [Huisman
Trentelman AMAST’02]
All liveness formulae of the language are rewrited in Loop
primitive.
Generation of standard JML file
⇒ Compatibility with all other JML tools

Runtime Verification (jmlc - Iowa State University)
Symbolic Animation, Test Generation (JML-TT - LIFC, Tobias,
Jartege - LSR)
JML annotations consistency (JML2B - LIFC)
Consistency of JML annotations with Java code

ESC-Java
Krakatoa - LRI
Jack - INRIA Sophia

30/36

Experiments

Case study: Demoney
JavaCard Electronic Purse
Over 500 lines of JML

Case study: Demoney
Annotation Generation with JAG on the JML model and proof with
JML2B [B’07].
Generation of tests with JML-TT and verification of the
annotations generated by JAG at the runtime [FATES’06]

31/36

1 Introduction

2 Verification of Liveness Properties with JML

3 The JAG Tool

4 Conclusion and Future Work

32/36

1 Introduction

2 Verification of Liveness Properties with JML

3 The JAG Tool

4 Conclusion and Future Work

33/36

1 Introduction

2 Verification of Liveness Properties with JML

3 The JAG Tool

4 Conclusion and Future Work

34/36

Conclusion

Sound method for verifying liveness on a class in isolation with
JML.
Trace-based semantics framework for reasonning about Java/JML.
Reusable Liveness Primitive Operator.
Tool supported: JAG.
Generation of standard JML annotations.
Experiment on a Java Card Application.

35/36

Conclusion

Sound method for verifying liveness on a class in isolation with
JML.
Trace-based semantics framework for reasonning about Java/JML.
Reusable Liveness Primitive Operator.
Tool supported: JAG.
Generation of standard JML annotations.
Experiment on a Java Card Application.

35/36

Conclusion

Sound method for verifying liveness on a class in isolation with
JML.
Trace-based semantics framework for reasonning about Java/JML.
Reusable Liveness Primitive Operator.
Tool supported: JAG.
Generation of standard JML annotations.
Experiment on a Java Card Application.

35/36

Conclusion

Sound method for verifying liveness on a class in isolation with
JML.
Trace-based semantics framework for reasonning about Java/JML.
Reusable Liveness Primitive Operator.
Tool supported: JAG.
Generation of standard JML annotations.
Experiment on a Java Card Application.

35/36

Conclusion

Sound method for verifying liveness on a class in isolation with
JML.
Trace-based semantics framework for reasonning about Java/JML.
Reusable Liveness Primitive Operator.
Tool supported: JAG.
Generation of standard JML annotations.
Experiment on a Java Card Application.

35/36

Conclusion

Sound method for verifying liveness on a class in isolation with
JML.
Trace-based semantics framework for reasonning about Java/JML.
Reusable Liveness Primitive Operator.
Tool supported: JAG.
Generation of standard JML annotations.
Experiment on a Java Card Application.

35/36

Work in Progress

Verification of the progress of the program.
Extension to other input/output languages

SPEC]

B [B’07]
Aspect J

Extension to other formalisms
LTL
Transition Diagram
Regular Expression
CaRet

Temporal Properties conformance testing [FATES’06]
Collaboration of proof and test techniques [JML-TT]

Generating specific test cases when the proof fails.
⇒ Trying to find a counter-example.

36/36

Work in Progress

Verification of the progress of the program.
Extension to other input/output languages

SPEC]

B [B’07]
Aspect J

Extension to other formalisms
LTL
Transition Diagram
Regular Expression
CaRet

Temporal Properties conformance testing [FATES’06]
Collaboration of proof and test techniques [JML-TT]

Generating specific test cases when the proof fails.
⇒ Trying to find a counter-example.

36/36

Work in Progress

Verification of the progress of the program.
Extension to other input/output languages

SPEC]

B [B’07]
Aspect J

Extension to other formalisms
LTL
Transition Diagram
Regular Expression
CaRet

Temporal Properties conformance testing [FATES’06]
Collaboration of proof and test techniques [JML-TT]

Generating specific test cases when the proof fails.
⇒ Trying to find a counter-example.

36/36

Work in Progress

Verification of the progress of the program.
Extension to other input/output languages

SPEC]

B [B’07]
Aspect J

Extension to other formalisms
LTL
Transition Diagram
Regular Expression
CaRet

Temporal Properties conformance testing [FATES’06]
Collaboration of proof and test techniques [JML-TT]

Generating specific test cases when the proof fails.
⇒ Trying to find a counter-example.

36/36

Work in Progress

Verification of the progress of the program.
Extension to other input/output languages

SPEC]

B [B’07]
Aspect J

Extension to other formalisms
LTL
Transition Diagram
Regular Expression
CaRet

Temporal Properties conformance testing [FATES’06]
Collaboration of proof and test techniques [JML-TT]

Generating specific test cases when the proof fails.
⇒ Trying to find a counter-example.

36/36

	Introduction
	Verification of Liveness Properties with JML
	The JAG Tool
	Conclusion and Future Work

