1/36

Class in Isolation
SAVCBS 2006

JML-based Verification of Liveness Properties on a

Julien Groslambert

Jacques Julliand Olga Kouchnarenko

November 10-11th 2006
Portland, Oregon.

LIFC - University of Franche-Conté

A

Formal Verification of Conformity between

@ Requirements
@ Implementation source code

Requirements Implementation

2/26

Formal Verification of Conformity between

@ Requirements
@ Implementation source code

- Conformity ? -
Requirements Implementation

2/26

Motivations
Requirements

@ Absence of null pointer
exception.

@ Class Invariance.

@ Temporal behavior.

2/26

p2RN G

Motivations
Requirements

@ Absence of null pointer
exception.

JML Annotations

@ Class Invariance.

@ Leavens and Al.
@ Temporal behavior.

@ Annotations for Java.

@ Well tool supported.

2/26

p2RN G

Motivations
Requirements

@ Absence of null pointer

exception.

JML Annotations
@ Leavens and Al
o Class Invariance. @ Annotations for Java.

@ Temporal behavior. @ Well tool supported.
(0
Temporal properties

-+ are expressible in JML.
— need a tedious work for annotating.
= Automatic annotation generation from high level temporal
properties.)
2/26

ae

Proposed Approach - Huisman Trentelman [AMAST’02]

2/36

ae

Proposed Approach - Huisman Trentelman [AMAST’02]
@ Expressing security
properties from

Temporal
Logic
requirements

]

2/36

PLN G4

Proposed Approach - Huisman Trentelman [AMAST’02]
@ Expressing security
properties from

Temporal
Logic
requirements
anen o]
Q Translating properties into
a annotation language for
the implementation

2/36

Proposed Approach - Huisman Trentelman [AMAST’02]
@ Expressing security
properties from

Temporal
Logic
requirements
it oo i)
Q Translating properties into
a annotation language for
the implementation Proof
of Consistency
Q@ Verifying the properties on bethej leva
the code o

2/36

PLN G4

Proposed Approach - Huisman Trentelman [AMAST’02]
@ Expressing security
properties from

Temporal
Logic
requirements
anen o]
Q Translating properties into
a annotation language for
the implementation Proof
of Consistency
Q@ Verifying the properties on between Java
the code and JML
Focus of the talk
Extension of the approach to Liveness Properties

2/36

PLN G4

@ Introduction

9 Verification of Liveness Properties with JML

© The JAG Tool

@ Conclusion and Future Work

4/36

A

5/36

v

Running Example: A Transaction System

Behavior

Two steps:

@ |<—| |l—

6/36

p2RN G

Running Example: A Transaction System

Behavior

Two steps:

@ Personalization.

@ Use.

@_’

6/36

p2RN G

Running Example: A Transaction System

Behavior

@

| ——

Two steps:
storeData

@ Personalization.

o storeData: fix the size of
the buffer.
@ Use.

(=@

6/36

p2RN G

Running Example: A Transaction System

Behavior

| ——

Two steps:
storeData

@ Personalization.

o storeData: fix the size of
begin]

the buffer.
@ Use.

@ begin a transaction.

©

6/36

p2RN G

6/36

Running Example: A Transaction System

Behavior

| ——

o

Two steps:
storeData

@ Personalization.

o storeData: fix the size of
begin]

the buffer.
@ Use.

©

@ begin a transaction.
o write a modification.

write

ae

6/36

Running Example: A Transaction System

|
S

Behavior
Two steps:
@ Personalization.

| ——

st

o

reData

the buffer.
@ Use.

begin]commit,abort

@ abort transaction.

o storeData: fix the size of

@ begin a transaction.
o write a modification.
@ commit transaction.

©

write

7/36

Running Example: A Transaction System

public class Buffer {

boolean perso = false;
int len;

byte [] status;

byte [] buffer;

int position = 0;
boolean trDepth = false;

-}

o

)
1
u
it

7/36

Running Example: A Transaction System

perso: boolean describing if
the card is already
personalized.

public class Buffer {

boolean perso = false;
int len;

byte [] status;

byte [] buffer;

int position = 0;
boolean trDepth = false;

-}

o
)
1
u
it

Running Example: A Transaction System

Fields

perso: boolean describing if
ersonaland,
personalized.

len: Integer representing the public class Buffer {
length of the Buffer.

boolean perso = false;
int len;

byte [] status;

byte [] buffer;

int position = 0;
boolean trDepth = false;

-}

o
)
1
u
it
V)
P
?

7/36

Running Example: A Transaction System

perso: boolean describing if
the card is already

personalized. Example

len: Integer representing the public class Buffer {
length of the Buffer. sac
status: byte array specifying ?Oglian perso = false;
in en;
the status of the system. i [inainus;
byte [] buffer;

int position = 0;
boolean trDepth = false;

-}

o
)
1
u
it
V)
P
?

7/36

Running Example: A Transaction System

Fields
perso: boolean describing if

P
personalized. xamp'e

len: Integer representing the public class Buffer {
length of the Buffer. sac
status: byte array specifying boolean perso = false;
the status of the system. int len;

e byte [] status;
buffer: byte array specifying byte [] buffers

a temporal buffer. int position = 0;

boolean trDepth = false;

-}

o
)

1
u
it
V)
P
?

7/36

Running Example: A Transaction System

Fields

perso: boolean describing if
the card is already
personalized.
len: Integer representing the public class Buffer {
length of the Buffer. so
status: byte array specifying POOILEEN PEREE = IEllSES
the status of the system. int len;

e . byte [] status;
buffer: byte array specifying byte [] buffer;
a temporal buffer. int position = 0;
position:integer boolean trDepth = false;
representing the current o}
position in the Buffer. ‘

7/36

Running Example: A Transaction System

Fields
perso: boolean describing if

P
personalized. xamp'e

len: Integer representing the public class Buffer {

length of the Bulffer. =

status: byte array specifying Boolsem perso = ialsef
int len;

the status of the system.

buffer: byt o byte [] status;

uffer: byte array specifying byte [] buffer;

a temporal buffer. int position = 0;
position: integer boolean trDepth = false;
representing the current o}

position in the Buffer.
trDepth: boolean describing if
there is a current transaction.

7/36

Running Example: A Transaction System

Methods

public class Buffer {

void storeData(int 1){
len = 1;
perso = true;
}
void begin ()
throws Exception{
if (perso == false) {
throw new Exception();
}
buffer = new byte[len];
trDepth = true;

}

D
O o - = wae

/26

Running Example: A Transaction System

Methods

storeData to personalize the
Transaction System.

/26

public class Buffer {

void storeData(int 1){
len = 1;
perso = true;

}

void begin ()

throws Exception{

if (perso == false) {
throw new Exception();

}

buffer = new byte[len];

trDepth = true;

}

v
u [=4 = = wae

Running Example: A Transaction System

Methods

/26

storeData to personalize the
Transaction System.

begin to start a new
transaction.

public class Buffer {

void storeData(int 1){
len = 1;
perso =
}
void begin ()
throws Exception{
if (perso == false) {
throw new Exception()};

true;

buffer = new byte[len];
trDepth = true;

}

v
AR

Running Example: A Transaction System

Methods

storeData to personalize the

Transaction System. public class Buffer {
begin to start a new o
lensaeben, void write (byte b){
write to write in the current buffer [position] = b;
Buffer. position++;

}

int getBufferLess(){
return len

- buffer.length;
}

/26

Running Example: A Transaction System

Methods
.
storeData to personalize the

Transaction System. public class Buffer {
begin to start a new e

lensaieben, void write (byte b){
write to write in the current buffer [position] = b;
Buffer. position++;
getBufferLess to getthe }

Buffer free place
int getBufferLess(){
return len

— buffer.length;
}

/26

Running Example: A Transaction System

storeData to personalize the
Transaction System.
begin to start a new

public class Buffer {

transaction. void commit () {
write to write in the current status = buffer;
Buffer. position = 0;
getBufferLess to get the J}CrDepth = false;
Buffer free pIaF:e S ——
commit to valid the current return status;
transaction. }
void abort (){
position = 0;
trDepth = false;
}

/26

Running Example: A Transaction System

storeData to personalize the
Transaction System.
begin to start a new

public class Buffer {

transaction. void commit () {
write to write in the current status = buffer;
Buffer. position = 0;
getBufferLess to getthe ’}chepth = false;
Buffer.free pIaF:e syee [gessitetus ()]
commit 10 valid the current e SR s
transaction. }
getStatus to get the current void abort (){
status of the transaction. position = 0;
trDepth = false;
}

/26

Running Example: A Transaction System

storeData to personalize the
Transaction System.
begin to start a new

public class Buffer {

transaction. void commit () {
write to write in the current status = buffer;
Buffer position = 0;

i trDepth = false;
getBufferLess to getthe }r N S
Buffer free place byte [] getStatus(){

commit to valid the current T

transaction. }

getStatus to get the current void abort (){
status of the transaction. position = 0;
abort to abort the current trDepth = false;
transaction. }

/26

JML Class Specification

JML Annotaions

public class Buffer {

boolean perso = false;
int len;

byte [] status;

byte [] buffer;

int position = 0;
boolean trDepth = false;

o
)
1
u
it
V)
P
?

9/36

JML Class Specification

VL Annotations
Main JML Annotations.

public class Buffer {

boolean perso = false;
int len;

byte [] status;

byte [] buffer;

int position = 0;
boolean trDepth = false;

o =) =
9/36

it
V)
P
?

JML Class Specification

VL Amotaions

9/36

Main JML Annotations.

@ Class invariant
specification.

public class Buffer {
//Q invariant position >= 0;

boolean perso = false;
int len;

byte [] status;

byte [] buffer;

int position = 0;
boolean trDepth = false;

o
)
1
u
it
V)
P
?

JML Class Specification

JML Annolations

Main JML Annotations.

@ Class invariant
specification.

Invariant

Properties that have to be
true in all visible states:

@ Before invocation of a
method

@ After invocation of a
method

public class Buffer {
//@ invariant position >= 0;

boolean perso =
int len;

byte [] status;
byte [] buffer;
int position = 0;
boolean trDepth =

false;

false;

o
)
1
u
it

JML Class Specification

VL Amotaions

9/36

Main JML Annotations.

@ Class invariant
specification.

Q@ History constraint
specification.

public class Buffer {
//@ invariant position >= 0;

boolean perso = false;
int len;

byte [] status;

byte [] buffer;

int position = 0;
boolean trDepth = false;

o
)
1
u
it
V)
P
?

JML Class Specification

Main JML Annotations. pub]_j_c class Buffer {
G’ Class invariant //Q@ invariant position >= 0;
specification. /*@ contraint perso ==>
. i @ len == \old(len);
Q@ History constraint ax/
specification. ..
boolean perso = false;
% int len;
. byte [] status;
se 1] ke
Property linking two visible int position = 0;
states. boolean trDepth = false;
9 old keyword.
o =] - =
9/36

JML Class Specification

JML Annolations

Main JML Annotations.

@ Class invariant
specification.

Q@ History constraint
specification.

v

Property linking two visible
states.

9@ for keyword.

9/36

public class Buffer {

//Q@ invariant position >= 0;

/*@ contraint perso ==>

@ len == \old(len);

@*/

/*Q@ contraint
@ position >= \old(position);
@ for write;
@*/

boolean perso = false;

int len;

byte [] status;

byte [] buffer;

int position = 0;

boolean trDepth = false;

JML Class Specification

JML Annotations

Main JML Annotations.

@ Class invariant

specification.

void begin() throws Exception{
}

@ History constraint

specification.

@ Method Specification.

Method Specification

9/36

ae

JML Class Specification

VL Amoiaions

Main JML Annotations.

@ Class invariant
specification.

@ History constraint
specification.

@ Method Specification.

Method Specification

@ Precondition.

9/36

@

@ requires trDepth == false;
@ requires perso == true;

@/

void begin() throws Exception{

JML Class Specification

JMIL Annotaions

Main JML Annotations.

@ Class invariant
specification.

@ History constraint
specification.

@ Method Specification.

Method Specification

@ Precondition.
Q Postcondition.

9/36

@

@ requires trDepth == false;
@ requires perso == true;
@ ensures trDepth == true;
@/

void begin() throws Exception{

JML Class Specification
JML Annotations

Main JML Annotations.

@ Class invariant
specification.

@ History constraint
specification.

@ Method Specification.

Method Specification

@ Precondition.
Q Postcondition.

@ Exceptional
Postcondition.

9/36

/*@ normal_behavior

@ requires trDepth == false;
@ requires perso == true;
@ ensures trDepth == true;
@ also

@ exceptional_behavior

J @ requires perso == false;

@ signals (Exception e) true;
@/

void begin() throws Exception{

JML Class Specification
JML Annotations

Main JML Annotations. /*@ normal_behavior
@ Class invariant @ requires trDepth == false;
specification. @ requires perso == true;
Q History constraint @ assignable buffer;
specification. @ ensures trDepth == true;
@ also

O Method Specification. J @ exceptional_behavior

— @ requires perso == false;
Method Specification @ assignable \nothing;

@ Precondition. @ signals (Exception e) true;

@ Postcondition. @/ |
Q Exceptional void begin() throws Exception{

Postcondition. } '

@ Frame Condition.) /
9/36

Modular Reasonning

Reasonning Modularly consists in

Java Class

Java Program
Using
the class

10/36

p2RN G

Modular Reasonning
Reasonning Modularly consists in

@ Establishing a property of a class in isolation assuming some

hypothesis of the program using the class.

Java Program
Using
the class
Verification on isolation Hypothesis
10/36

ae

Modular Reasonning
Reasonning Modularly consists in
@ Establishing a property of a class in isolation assuming some

hypothesis of the program using the class.
Q Verifying the hypothesis on the program.

Java Class

Java Program
Using
the class

10/36

Verification of the Hypothesis

ae

Modular Reasonning - Example: Method Correctness

11/36

Design by contract approach.

Java Class Contract
@ Assumes the Precondition.

@ Establishes the
Postcondition.

y

/*@ requires trDepth;
@ requires buffer |= null;
@ requires position > 0;
@ requires position < buffer.length;
@ ensures position == \old(position)+1;
@/
void write(byte b){
buffer[position] = b;
position++;

}

Java Program using the
class

@ Assumes the
Postcondition.

@ Establishes the
Precondition.

.

a.storeDate(4);
a.begin();

/I assert precondition
a.write(7);

// assume postcondition

Temporal Properties

Examples of Temporal Requirements for the Buffer

@ The application can be personalized only once.
@ The status is always the same unless a commit happens.

@ A begin must inevitably been followed by a commit or an abort.

12/26

p2RN G

Temporal Properties

Examples of Temporal Requirements for the Buffer

@ The application can be personalized only once.
@ The status is always the same unless a commit happens.

@ A begin must inevitably been followed by a commit or an abort.

12/26

p2RN G

Temporal Properties

Examples of Temporal Requirements for the Buffer

@ The application can be personalized only once.
@ The status is always the same unless a commit happens.

Q A begin must inevitably been followed by a commit or an abort.

12/26

p2RN G

13/36

v

@ Introduction

9 Verification of Liveness Properties with JML

© The JAG Tool

@ Conclusion and Future Work

14/36

A

e Verification of Liveness Properties with JML

15/36

p2RN G

@ Introduction

9 Verification of Liveness Properties with JML

© The JAG Tool

@ Conclusion and Future Work

16/36

A

e Verification of Liveness Properties with JML

17/36

p2RN G

A Loop Modality for Expressing Liveness Properties
Definition (Loop Primitive)

Loop(Q) A state where Q is satisfied must be inevitably followed by a
state where Q is not satisfied

(iZ0N0i EQ) = (Fjj> i/\Uj E=-Q)).
lllustration
A begin must inevitably been followed by a commit or an abort.

Loop(TrDepth
18/36

== true)

o =2

PLN G4

Modular Reasonning - Application to liveness
properties

Java Class contract

Java Program Contract
@ Assumes a Progress
Hypothesis

@ Establishes the Liveness

@ Assumes the liveness on a
on a class in isolation.

class in Isolation.

o Establishes a Progress
Hypothesis.

Satisfaction of the liveness by the whole program.

19/36

p2RN G

Progress Hypothesis

Definition (Progress Hypothesis PH(Q, M))

(F>pre(M)) v (G=-Q)

where pre(M) denotes the predicate \/ ., pre(m).
(O
Progress methods are infinitely often called.

The program stay in a state satisfying —Q.

20/36

Variant Introduction

Need a variant V like a proof termination.
@ Given by the user

@ Well founded =- Expression from a subset of the class variables to
the positive integers

@ must decrease for each method invocation until Q

Loop(TrDepth) The variant V is getBufferLess ().

21 /36

PLN G4

Annotation for Loop

Example (Loop(TrDepth))

22/26

Annotation for Loop
Well-foundation of V
//@ invariant V >= 0;

(A1)
(A2)

(As)

(Ag)

(As)
Example (Loop(TrDepth))
//Q@ invariant getBufferLess() >= 0

22/26 °

Annotation for Loop

Each progress method decreases V

//@ invariant V >= 0; (Aq
//@ constraint Q==> V< \ old (V) for M;

Example (Loop(TrDepth))

/*@ constraint trDepth
@==> getBufferless() <\ old(getBufferlLess()) for
storeData, begin, abort, commit,write;

o o = = APANGS

22/26

Annotation for Loop

Each method does not increase V
//@ invariant V >= 0;

//@ constraint Q==> V< \ o0ld(V) for M
//@ constraint Q==> V<= \ old(V)

Example (Loop(TrDepth))

//@ constraint trDepth

22/26

@==> getBufferless() <= \ old(getBufferless())

)
=] =2

ae

Annotation for Loop

No dead-lock for the class

//Q@ invariant V >= 0; (A4)

//@ constraint Q==> V< \ old (V) for M; (A2)

//@ constraint Q==> V<= \ old(V) (As)

//Q invariant Q==> \/ requires(m) (Aq)
meM

(As)

Example (Loop(TrDepth))

/*@ invariant trDepth ==> (perso == false |
@ (trDepth == false && perso == true) ||
@ (trDepth == true && perso == true

@ && position < len)) @*/

22/26

Annotation for Loop

No divergence for the class

//@ invariant V >= 0; (A1)

//@ constraint Q==> V< \ old(V) for M; (A2)

//@ constraint Q==> V<= \ old(V) ; (As)

//@ invariant Q==> \/ requires(m) (Ag)
meM

//@ invariant Q==> [\ (requires(m)==> Idiverges(m)); (As)

meMg

Example (Loop(TrDepth))
obvious Annotation

o
)

1
u
it
N)
P
?

22/26

Soundness of the method

If C:Ai_s/ANPH(Q,M) thenLoop(Q).

22/26

p2RN G

Soundness of the method

If C:Ai_sA\PH(Q,M) thenLoop(Q).

v

@ A4. No dead-lock for the class

22/26

Soundness of the method

If C:Ai_sA\PH(Q,M) thenLoop(Q).

v

@ A4. No dead-lock for the class
@ As. No divergence for the class

22/26

Soundness of the method

If C:Ai_sA\PH(Q,M) thenLoop(Q).

v

@ A4. No dead-lock for the class
@ As. No divergence for the class
@ A,. Each progress method decreases V

22/26

Soundness of the method

If C:Ai_sA\PH(Q,M) thenLoop(Q).

v

@ A4. No dead-lock for the class

@ As. No divergence for the class

@ A,. Each progress method decreases V
@ As. Each method does not increase V

22/26

Soundness of the method

If C:Ai_sA\PH(Q,M) thenLoop(Q).

@ A4. No dead-lock for the class

@ As. No divergence for the class

@ A,. Each progress method decreases V
@ As. Each method does not increase V
@ Decrease of the variant

22/26

Soundness of the method

If C:Ai_sA\PH(Q,M) thenLoop(Q).

v

@ A4. No dead-lock for the class

@ As. No divergence for the class

@ A,. Each progress method decreases V
@ As. Each method does not increase V
@ Decrease of the variant

@ A;.Well-foundation of V

22/26

Soundness of the method

Theorem

If C:Ai_s/ANPH(Q,M) thenLoop(Q).
PH C: A5 Loop(Q)

O

22/26

Soundness of the method
If C:Ai_s/APH(Q,M) thenLoop(Q).
PH C: A1_5

Loop(Q)

Trace

Semantics =M

X4

X Loop(Q)
22/26

Soundness of the method
If C:Ai_s/APH(Q,M) thenLoop(Q).
PH AC:Ai_s

= Loop(Q)

Trace

Semantics =M

NX 4 s

- ZLoop(Q)
22/26

e Verification of Liveness Properties with JML

24/36

p2RN G

@ Introduction

9 Verification of Liveness Properties with JML

© The JAG Tool

@ Conclusion and Future Work

25/26

A

26/36

v

JAG: General Approach

@ JAG 0.1 input: JTPL
Properties [Huisman

Temporal Java
Property Implementation
¢ (0
Trentelman - AMAST’02].
@ Generates JML annotations /
ensuring the JTPL properties.
@ Annotations traceability

JML Annotated
Java
Implementation

(Is)
27/36

ae

JAG: Example of JTPL Properties

after storeData normal
always (perso == true
and storeData not enabled)

Example (Command not enabled before personnalization)

always (begin not enabled
and commit not enabled)
unless storeData normal

Example (Begin eventually followed by Commit or Abort)

after begin normal
(eventually commit called),
abort called)

22/26

JAG: Example of JTPL Properties

after storeData normal
always (perso == true
and storeData not enabled)

Example (Command not enabled before personnalization)

always (begin not enabled
and commit not enabled)
unless storeData normal

Example (Begin eventually followed by Commit or Abort)

after begin normal
(eventually commit called),
abort called)

22/26

JAG: Annotation Generation

Example (JTPL Property)

after begin normal
(eventually commit called),
abort called)

Annotation Generation Example (Java Code)

public class Buffer {

boolean perso = false;

void begin(){

s

void commit (){

void abort (){

29/36 }

JAG: Annotation Generation

Example (JTPL Property)

after begin normal
(eventually commit called),
abort called)

Annotation Generation Example (Java Code)

@ Declaration of a ghost
variable.

29/36

public class Buffer {
//Q@ ghost witness = false;
boolean perso = false;

void begin(){

}

void commit (){

void abort (){

JAG: Annotation Generation

Example (JTPL Property)

after begin normal
(eventually commit called),
abort called)

Annotation Generation Example (Java Code)

@ Declaration of a ghost
variable.

@ Assignement of the
ghost variable.

29/36

public class Buffer {
//Q@ ghost witness = false;
boolean perso = false;

void begin(){
//Q@ set witness = true;

}

void commit (){

void abort (){

JAG: Annotation Generation

Example (JTPL Property)

after begin normal
(eventually commit called),
abort called)

Annotation Generation Example (Java Code)

@ Declaration of a ghost public class Buffer {
variable. //Q@ ghost witness = false;
boolean perso = false;

@ Assignement of the
ghost variable.

Q LOOp(Witness). ;/@ set witness = true;
v

void commit (){

//Q@ set witness = false;

void abort (){
//Q@ set witness = false;

void begin(){

v
29/36 } |

Feature of JAG 0.1
states.

@ Automatic generation of ghost variables for observing events and

20/36

A

Feature of JAG 0.1
@ Automatic generation of ghost variables for observing events and
states.

@ Automatic generation of invariants for safety properties [Huisman
Trentelman AMAST’02]

20/36

p2RN G

Feature of JAG 0.1
@ Automatic generation of ghost variables for observing events and
states.

Trentelman AMAST 02]

@ Automatic generation of invariants for safety properties [Huisman
primitive.

@ All liveness formulae of the language are rewrited in Loop

20/36

ae

Feature of JAG 0.1
@ Automatic generation of ghost variables for observing events and
states.

Trentelman AMAST 02]

@ Automatic generation of invariants for safety properties [Huisman
primitive.

@ All liveness formulae of the language are rewrited in Loop
@ Generation of standard JML file
= Compatibility with all other JML tools

20/36

ae

Feature of JAG 0.1
@ Automatic generation of ghost variables for observing events and
states.

Trentelman AMAST 02]

@ Automatic generation of invariants for safety properties [Huisman
primitive.

@ All liveness formulae of the language are rewrited in Loop
@ Generation of standard JML file
= Compatibility with all other JML tools

o Runtime Verification (jmlc - lowa State University)

20/36

ae

Feature of JAG 0.1
@ Automatic generation of ghost variables for observing events and
states.

Trentelman AMAST 02]

@ Automatic generation of invariants for safety properties [Huisman
@ All liveness formulae of the language are rewrited in Loop
primitive.

@ Generation of standard JML file
= Compatibility with all other JML tools

Jartege - LSR)

o Runtime Verification (jmlc - lowa State University)
@ Symbolic Animation, Test Generation (JML-TT - LIFC, Tobias,

20/36

ae

Feature of JAG 0.1
@ Automatic generation of ghost variables for observing events and
states.
@ Automatic generation of invariants for safety properties [Huisman
Trentelman AMAST 02]
primitive.

@ All liveness formulae of the language are rewrited in Loop

@ Generation of standard JML file
= Compatibility with all other JML tools

o Runtime Verification (jmlc - lowa State University)
@ Symbolic Animation, Test Generation (JML-TT - LIFC, Tobias,
Jartege - LSR)

@ JML annotations consistency (JML2B - LIFC)

20/36

Feature of JAG 0.1
@ Automatic generation of ghost variables for observing events and
states.

Trentelman AMAST 02]

@ Automatic generation of invariants for safety properties [Huisman
primitive.

@ All liveness formulae of the language are rewrited in Loop

@ Generation of standard JML file
= Compatibility with all other JML tools

Jartege - LSR)

o Runtime Verification (jmlc - lowa State University)
@ Symbolic Animation, Test Generation (JML-TT - LIFC, Tobias,

@ JML annotations consistency (JML2B - LIFC)
@ Consistency of JML annotations with Java code
o ESC-Java

@ Krakatoa - LRI
@ Jack - INRIA Sophia
20/36

Case study: Demoney

@ JavaCard Electronic Purse

@ Over 500 lines of JML

Case study: Demoney

JML2B [B'07].

@ Annotation Generation with JAG on the JML model and proof with

@ Generation of tests with JML-TT and verification of the
annotations generated by JAG at the runtime [FATES’06]

21/36

ae

22/26

v

@ Introduction

9 Verification of Liveness Properties with JML

© The JAG Tool

@ Conclusion and Future Work

22/26

A

@ Conclusion and Future Work

24/36

p2RN G

Conclusion

@ Sound method for verifying liveness on a class in isolation with
JML.

25/36

A

Conclusion

@ Sound method for verifying liveness on a class in isolation with
JML.

@ Trace-based semantics framework for reasonning about Java/JML.

25/36

p2RN G

Conclusion

@ Sound method for verifying liveness on a class in isolation with
JML.

o Trace-based semantics framework for reasonning about Java/JML.
o Reusable Liveness Primitive Operator.

25/36

p2RN G

Conclusion

@ Sound method for verifying liveness on a class in isolation with
JML.

o Trace-based semantics framework for reasonning about Java/JML.
o Reusable Liveness Primitive Operator.
@ Tool supported: JAG.

25/36

Conclusion

@ Sound method for verifying liveness on a class in isolation with
JML.

o Trace-based semantics framework for reasonning about Java/JML.
o Reusable Liveness Primitive Operator.
@ Tool supported: JAG.

@ Generation of standard JML annotations.

25/36

Conclusion

@ Sound method for verifying liveness on a class in isolation with
JML.

o Trace-based semantics framework for reasonning about Java/JML.
o Reusable Liveness Primitive Operator.

@ Tool supported: JAG.

@ Generation of standard JML annotations

@ Experiment on a Java Card Application.

25/36

Work in Progress

@ Verification of the progress of the program.

26/36

A

Work in Progress

@ Verification of the progress of the program
@ Extension to other input/output languages
o SPECt

o B[B07]
@ AspectJ

26/36

p2RN G

Work in Progress

@ Verification of the progress of the program
@ Extension to other input/output languages
o SPECt
o B[B07]
@ AspectJ
@ Extension to other formalisms
o LTL

o Transition Diagram

@ Regular Expression
o CaRet

26/36

p2RN G

Work in Progress

@ Verification of the progress of the program.
@ Extension to other input/output languages
o SPECt

o B[B07]
@ AspectJ

@ Extension to other formalisms
o LTL

o Transition Diagram

@ Regular Expression
o CaRet

@ Temporal Properties conformance testing [FATES’06]

26/36

ae

Work in Progress

@ Verification of the progress of the program.
@ Extension to other input/output languages
o SPECH

o B[B07]
@ AspectJ

@ Extension to other formalisms
o LTL

o Transition Diagram

@ Regular Expression
o CaRet

@ Temporal Properties conformance testing [FATES’06]
@ Collaboration of proof and test techniques [JML-TT]
o Generating specific test cases when the proof fails.

= Trying to find a counter-example.

26/36

	Introduction
	Verification of Liveness Properties with JML
	The JAG Tool
	Conclusion and Future Work

