
Specifying Java Iterators using
JML and Esc/Java2

David R. Cok
Eastman Kodak Company

10 November 2006
at

SAVCBS 2006

The Problem

Iterators walk through a sequence of
values
May have many independent iterators
for a given iterable object
Iterators may modify the parent object
No requirements on the sequence of
values returned by an iterator

The Problem: iteractions

If a set of Java iterators have a common parent
object, there is an interaction among them

an iterator may remove an object only once
if an iterator removes an object from the parent, all
other iterators subsequently may have undefined
behavior
if the parent object is modified, all iterators may have
undefined behavior
Note: subclasses may define the behavior

In this paper

Discuss only the second issue –
interactions
Specify the interfaces, not specific
instantiations
Use JML and Esc/Java2
Goal: determine where the specification
language falls short

The Iterable<E> interface

package java.lang;

public interface Iterable<E> {

public Iterator<E> iterator();

}

The only functionality is to produce an Iterator.
An Iterator need not have a parent Iterable.

The Iterator<E> interface

package java.lang;

public interface Iterator<E> {

public boolean hasNext();

public E next();

public void remove();

}

An easy piece:
no duplicate remove

package java.lang;

public interface Iterator<E> {

...

//@ public instance model boolean removeOK;

//@ initially !removeOK;

/*@

assignable removeOK;

ensures removeOK;

*/

public E next();

/*@

public behavior

requires removeOK;

assignable removeOK;

ensures !removeOK;

also public exceptional_behavior

requires !removeOK;

signals_only IllegalStateException;

*/

public void remove();

}

A state machine!

This actually encodes a little state machine:

The state machine, or some equivalent, is a better
specification – more obviously correct to a human.

S

next

remove remove

next

Other examples

A class that requires the calling of an
initialization method before any other
methods
Iterator: if hasNext() returns false, then
next() is illegal

See Cheon & Perumendla, 2005, 2006
for some initial work on this issue

What sort of syntax?

Regular expressions?
((next)+ (remove))* is OK
?* (remove)(remove) is ERROR
(remove) is ERROR

What about nested pairs (e.g. open/close)?
method arguments? return values?

A research question

What is the best way to specify method
call sequences?
What amount of syntax is helpful?
How much is too much?
Need lots of case studies and analysis
of real code

Modification interactions

Iterators store a proxy for the state of
the Iterable
If that state changes, except by the
iterator itself, the iterator becomes
invalid

(See the paper for details)
(Actual Java implementation is similar)

Highlights of the spec

package java.lang;

public interface Iterator<E> {

//@ public instance model Iterable iterable;

//@ public instance model int iteratorTime;

...

/*@ public normal_behavior

ensures iteratorTime>=iterable.lastModified;

public pure model boolean isValid();

*/

/*@ requires isValid() ...

*/ // No spec if !isValid() – up to subclasses

public E next();

/*@

public behavior

requires isValid(); ...

ensures iterable.lastModified >

\old(iterable.maxIterator);

ensures isValid();

*/

public void remove();

}

Highlights of the spec

package java.lang;

public interface Iterable<E> {

/*@ public instance model int lastModified;

public instance model int maxIterator;

constraint lastModified >=

\old(lastModified);

...

/*@ ensures \result.iterable = this;

ensures \result.isValid();

ensures maxIterator >=

\result.iteratorTime; */

public Iterator<E> iterator();

// Any subclass method that modifies

// the Iterable must include specs

// that invalidate the associated

// Iterators, like this:

/*@

ensures lastModified >

maxIterator;

*/

public void clear();

A few notes

No object alters fields within a different
object
Iterators must be able to see the fields
of the parent Iterable

Requirement on the specifications of all
methods that mutate the Iterable

Another research topic

How to apply specs to groups of methods?
Would like the default to be such that forgetting to
add a specification causes warnings
history constraints impose a requirement on all
methods; is there a way to impose a requirement on
some methods – and how does one say which ones?:

by labeling with a Java annotation?
list method names?
defining a property?

/*@ constraint for (@Modifying) lastModified > maxIterator; */

/*@constraint except (@NonModifying) lastModified>maxIterator;*/

Ghost fields vs. model fields

Ghost fields are additional spec-only fields
Model fields are abstractions of the state
Both work fine for static checking
Both need implementations for runtime checking,
inconvenient especially for classes without source

Ghost fields: altered through “set” statements (but one
does not always have access to the implementation)
Model fields: need an implementation in terms of Java or
ghost fields (which can be duplicative)

Testing using Esc/Java2

Wrote a number of Java classes that
utilized these specified interfaces
Esc/Java2 successfully warned about
invalid uses and was quiet about valid
uses

Additional issue

The validation of the interface specifications
is through writing test cases and running a
code verifier/bug finder.
No tools to check that the specification is
well-covered by the test cases (jmlc does
capture some metrics)
For classes there is the implementation to
check, but coverage is still unchecked

Conclusion

JML and Esc/Java2 “worked” for this
part of the iterator problem
Two research questions:

Facilities are needed for specifying
sequences of method calls
How to write specs that apply to many
methods

	Specifying Java Iterators using JML and Esc/Java2
	The Problem
	The Problem: iteractions
	In this paper
	The Iterable<E> interface
	The Iterator<E> interface
	An easy piece: no duplicate remove
	A state machine!
	Other examples
	What sort of syntax?
	A research question
	Modification interactions
	Highlights of the spec
	Highlights of the spec
	A few notes
	Another research topic
	Ghost fields vs. model fields
	Testing using Esc/Java2
	Additional issue
	Conclusion

