
Automatic Data Environment Construction for Static
Device Drivers Analysis

(Extended Abstract)

Hendrik Post, Wolfgang Küchlin
University of Tübingen / Symbolic Computation Group

72076 Tübingen, Germany

{post,kuechlin}@informatik.uni-tuebingen.de

ABSTRACT
Linux contains thousands of device drivers that are devel-
oped independently by many developers. Though each in-
dividual driver source code is relatively small�≈10k lines
of code�the whole operating system contains a few million
lines of code. Therefore Linux device drivers o�er a useful
application area for modular analysis.
Our �nding is that despite the precise modeling of most
features of the standard systems programming language C,
model checking software veri�cation tools for C fail to pro-
vide means for modular analysis of device drivers. We in-
spected CBMC [2], SLAM-SDV [3], MAGIC [1], BLAST [4]
and others and found that a rich additional environment
model for every device driver is needed. This model must
provide information on out-of-scope initialized pointers and
complex data structures. We present strategies to automat-
ically create feasible, bounded data environments for Linux
device drivers instead of creating them manually. Our so-
lution di�ers from general interface generation mechanisms
(e.g. CUTE[5]), because is it specialised on bounded model
checking of Linux device drivers written in C. Our contri-
bution is a preprocessing step that extends the usability of
CBMC for modular Linux device driver analysis.

Categories and Subject Descriptors
D.2.4 [Software]: Software Veri�cation�Model Checking ;
D.4.5 [Operating Systems]: Reliability�Veri�cation

General Terms
Veri�cation, Experimentation

Keywords
Linux, Bounded Model Checking, Environment Modelling,
Software Veri�cation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Fifth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2006), November 10–11, 2006, Port-
land, Oregon, USA.
Copyright 2006 ACM ISBN 1-59593-586-X/06/11 ...$5.00.

1. INTRODUCTION
Software veri�cation is commonly interpreted as the anal-

ysis of a software system concerning latent or possible errors.
Though the degree of precision and the tradeo� between
completeness and a low false-positive rate di�ers, a common
pragmatic aim of veri�cation is to �nd and eliminate errors.
As veri�cation requires lots of resources, it is preferably ap-
plied to systems where a stable, speci�ed behavior of the
software is of high importance.
The problem we identify with modular veri�cation of Linux

device drivers is external data representation. Data ini-
tialization and data usage are performed on multiple op-
erating system layers. The data interface between layers
includes pointers, and especially those that are subject to
pointer arithmetic. Hence modular analysis faces the prob-
lem that pointers are used extensively, but exact information
about their initialization or targets is commonly not avail-
able within the scope of analysis as discussed in Section 2.2.
As many tools for the analysis or even veri�cation of C

programs exist, we aim to provide preprocessing such that
one of these can be used on device drivers. Our sugges-
tion is to provide concrete targets for all externally initial-
ized pointers, whereas all external variables of primitive data
types remain unconstrained symbolic values. This approach
is therefore located between pure abstract static analysis
and concrete software testing.
The tools for the analysis of C programs we explicitly

reviewed are CBMC[2], BLAST [4], Meta-Compilation [9],
SATURN [8], MAGIC[1] and the Static Driver Veri�er from
the SLAM project [3]. The modular analysis tool MAGIC
for example does not support dereferencing of pointers on
the left side of an assignment at all. The analysis performed
with BLAST in [4] has been made possible by writing a test
driver. The static driver veri�er from the SLAM project
[3] also requires a manually created operating system model
prior to analysis. The Meta-Compilation project also put
an extensive amount of work into the generation of a test
environment via abstracting the Linux kernel [9].
Several sophisticated tools for environment generation ex-

ist, though they target di�erent or more general application
areas and hence provide di�erent strategies. Symstra[7] and
CUTE[5] seem closest to our approach. Symstra generates
environments for static analysis as we do, but its current im-
plementation covers only programs written in Java. CUTE
includes a mechanism to expand the object graph on the �y,
should its analysis indicate the necessity. Its approach is a
mixture of Symbolic Execution and Testing while we aim

89

to provide only preprocessing for model checking tools. As
both tools target general applications instead of the limited
area of Linux device drivers, a direct support of common
Linux abstract data types was not considered. Instead of a
general approach we present a minimal environment gener-
ation in order to facilitate the analysis of device drivers.
We chose the software veri�cation tool CBMC as our anal-

ysis backend due to its extensive support of C language fea-
tures as summarized in Section 2.1. We will also discuss
problems when using CBMC for modular analysis.

2. VERIFICATION TOOLS AND TARGETS

2.1 CBMC
CBMC 2.1 is a bounded model checker intended to be

used for the analysis of C programs and Verilog descrip-
tions. When running in C analysis mode, it translates ANSI-
C programs into propositional logic. Loops and recursion
are handled by code unwinding. CBMC supports pointer
arithmetic, integer operators, type casts, side e�ects, func-
tion calls, calls through function pointers, non-determinism,
assumptions, assertions, arrays, structs, named unions, and
dynamic memory. Therefore this tool is a good choice to an-
alyze systems code written in C that makes use of these fea-
tures. CBMC itself is capable of �nding double-free and free-
after-use errors beside bounds and pointer validity checking.
CBMC o�ers an extensive treatment of pointers that es-

sentially tracks the object and the o�set a pointer points
to. Nevertheless two technical problems remain unsolved in
the documentation. First, pointers�when dereferenced�
must point to a valid object. Though this is a reasonable
assumption for the runtime behavior of programs, it is not
useful for modular static analysis of programs where tar-
gets of pointers are often unknown. The second shortcom-
ing is the modeling of possible aliases between pointers to
unknown targets. We illustrate both problems by a short
example:

1: struct person_t {
2: int age;
3: } a_person;
4: void set_age_difference(struct person_t* p1,

struct person_t* p2, int diff) {
5: p2->age = p1->age + diff;
6: assert(p2->age == p1->age + diff);
7: }
8: void main() {
9: struct person_t* p1 = &a_person;
10: struct person_t* p2 = &a_person;
11: set_age_difference(p1, p2, 20);
12: }

The example is arti�cial for the sake of simplicity. In
function set_age_difference() two structs are passed by
reference. The age of the second person's record should be
set to the age of the �rst person's record plus an age di�er-
ence. Line 6 contains a check if the assignment was made
correctly. The assertion is invalid because both pointers may
alias each other. In this case both dereferences of the age
�elds are equal which violates the assertion if diff 6= 0.
The two di�erent entry points for an analysis are main and
set_age_difference. Moreover CBMC allows to either en-
able or disable checks for invalid dereferences of pointers.

The latter feature is almost undocumented. We assume that
disabling pointer checks globally disables checks for null or
uninitialized pointers. We identify four di�erent analyses
entering the module either at main or set_age_difference
and either checking for invalid pointers.

1. Entry at main, Pointer Checks disabled. When CBMC
starts at main, p1 and p2 are explicitely aliased and
passed as a reference to set_age_difference. Hence
dereferencing them is allowed and writing to one of the
pointer targets correctly modi�es the aliased pointer
dereferences as well. The assertion is invalid as ex-
pected.

2. Entry at main, Pointer Checks enabled. This case leads
to the same result as case 1.

3. Entry at set_age_difference, Pointer Checks enabled.
This direct entry re�ects the interleaving of modules
within the Linux kernel where dispatch routines may
be directly called from outside the module, and the
environment as provided by main is unknown. When
set_age_difference is analyzed with enabled pointer
checks, CBMC correctly emits a warning that deref-
erencing the parameters in line 5 might be incorrect.
This is due to the correct modeling that unconstrained
pointers may be null. Though the result is technically
correct it seems more reasonable for modular analysis
to assume that the environment is correctly initialized.

4. Entry at set_age_difference, Pointer Checks disabled.
Dereferencing the parameters is not a problem any
more, but nevertheless the assertion is ful�lled. This is
an incorrect analysis result when the scope of analysis
is limited to set_age_difference. CBMC does not
model a possible aliasing between uninitialized point-
ers.

Cases 3 and 4 o�er signi�cant shortcomings to device driver
analysis. The impact on our work is twofold.
The user of CBMC has two choices which both lead to

disadvantages: the user may globally disable pointer checks
which might only be desirable for interface pointers, but
not for pointers manipulated inside the module. Second,
the user of CBMC faces the problem that alias relationships
induced by an unknown operating system environment are
not modelled or taken into account. This leads to an even
less appropriate analysis. We assume that interface objects
are set up correctly and hence we must perform the correct
initialization before calling the entry function of the module.

2.2 Linux Device Driver Interfaces
Linux device drivers often operate on structs, each of

which represents one device [6]. The generic CD-Rom device
driver cdrom.c, for example, may service several hardware
drives, each represented by one struct cdrom_device_info.
This struct is of course passed by reference to all service
routines found in the driver. The struct is partially listed in
Figure 1. Devices are organized in a linked list via the �eld
struct cdrom_device_info * next. When another system
layer steps into the driver dispatch routines, it passes the
currently serviced device via a reference to a struct. The
struct itself is not initialized within any cdrom driver, but in
other system layers. Invoking a veri�cation tool on any ser-
vice routine in cdrom.c leads to a problem. It is not evident

90

struct cdrom_device_ops {
int (*open) (struct cdrom_device_info *, int);
void (*release) (struct cdrom_device_info *);
int (*drive_status)

(struct cdrom_device_info *, int);
...

};
...
/* Uniform cdrom data structures for cdrom.c */
struct cdrom_device_info {

struct cdrom_device_ops *ops;
struct cdrom_device_info *next;
struct gendisk *disk;
...
int speed; ...

};

Figure 1: The operation interface struct and

the cdrom_drive_info struct listed from �le

drivers/cdrom/cdrom.c of Linux kernel 2.6.15.

that all references passed as a parameter are correctly ini-
tialized. Hence CBMC would correctly emit a warning that
dereferencing one of them may lead to a potential null deref-
erence. Though this message may be suppressed the better
assumption would be to assume that the device structs are
properly initialized.
In the next section we give a solution to this problem using

automatically created data environments.

3. CREATING DATA ENVIRONMENTS
The general approach to create a suitable environment is

to identify potentially uninitialized pointers that are either
declared in the global scope of the module, or parameters to
the analyzed entry point in the module. For each pointer, a
fresh object can be created and the pointer is initialized by
pointing to this object. This strategy is also used in Sym-
stra[7] and CUTE[5]. This could lead to new uninitialized
pointers if the object created is of a pointer type, contains
�elds of pointer type or is an array with elements of pointer
type. In all three cases fresh objects are created for these
pointers as well, up to a bounded object graph depth. This
depth-bound re�ects the size of a recursive data structure,
e.g. a list. For binary trees this bound limits the depth of
the tree. For bounded model checking this depth should be
smaller than or equal to the CBMC bound for loops and
recursion, as a loop iterating over all elements of a list or a
recursive search for an element in a tree won't violate the
unwinding assertions. Then CBMC may capture the exact
behavior of functions on bounded data structures.
We identify two sources of pointers that must be initial-

ized:

1. Pointers within the global scope of the translation unit.

2. Parameters of pointer type within the module entry
function to be analyzed.

The main algorithm performs a breadth-�rst search on
the object graph with bounded depth:

1: worklist = union(global_pointers(file),
parameters(entry_function));

2: object stub_obj; depth = 1;
3: new_worklist = {};
4: while (!is_empty(worklist)

&& depth < depth_bound) {
5: for each pointer p in worklist {
6: stub_obj = create_object_for_pointer(p);
7: create_assignment_for(p,stub_obj);
8: new_worklist = union(new_worklist,

pointer_members(stub_obj);
9: }
10: worklist = new_worklist;
11: new_worklist = {};
12: depth = depth +1;
13:}

The search for uninitialized pointers begins with param-
eters of the entry function and all globally declared point-
ers (line 1). We do not restrict the seed set of pointers to
extern variables (CUTE) as a routine may also rely on ob-
jects created within the module. If the global scope de�nes
nested structs, pointer members of substructs are included
recursively. Then a breadth-�rst search is performed un-
til no new pointers are exhibited or a �xed depth bound
is exceeded (line 4-13). The search follows the well known
worklist pattern.
Some considerations complement the algorithm though

they are not included in the above pseudo-code.

• In order to create a reasonable environment for point-
ers we face the problem that an int * may point to
a single int or to an int []. We propose to decide
whether to create an array or a single object dependent
on a source code analysis that reports if the pointer is
subject to any pointer arithmetic or index operation.
In this case it seems reasonable to create an array of
simple objects instead of a single one.

• If the depth bound terminates our algorithm, we must
decide how the uninitialized pointers in the current
worklist are treated. We suggest that these should be
initialized to null.

• Common abstract data types in Linux can be created
by detailed templates. The most prominent example
is the de�nition of linked lists. List elements are then
required to be structs with one �eld having the type
struct list_head from include/linux/list.h. For
each list implemented in this way, we suggest to create
a bounded stub of this list with pointers pointing to
the next list element. The last element terminates the
list by a null next �eld. For other prede�nied data
types initialization can be accomplished in a similar
fashion.

• Class invariants over primitive data types, e.g. sorted
lists with a int key �eld, can be encoded by assume
statements.

• The unrolling depth of each single data structure may
be independently, non-deterministically chosen.

Using this strategy, aliasing occurs only when it is ex-
plicitely speci�ed by a Linux abstract data type template.
A short example of results produced by our algorithm is
presented in Figure 2. For further aliasing between other
arbitrary objects we o�er a generic model in the next sec-
tion.

91

struct cdrom_device_info_stub1;
struct cdrom_device_info_stub2;
struct cdrom_device_info_stub3;
...
void init_environment() {
// pointer initialization

struct cdrom_device_info *
parameter_stub = &cdrom_device_info_stub1;

cdrom_device_info_stub1.next =
&cdrom_device_info_stub2;

cdrom_device_info_stub2.next =
&cdrom_device_info_stub3;

// bound reached
cdrom_device_info_stub3.next = null;

// call to entry point of module
int parameter_stub2;
open(parameter_stub,parameter_stub2);

}

Figure 2: Result of a manual execution of our algo-

rithm.

3.1 Alias Modeling
In the above section we initialized all pointers by di�erent

objects. Though many device driver environments might
be modeled successfully using this conservative alias policy,
a �ner-grained analysis might be included into our environ-
ments. A classical must / may alias analysis, or a user speci-
�ed equivalent description, could specify which pointers may
alias each other. These speci�cations may be implemented
easily in a small initialization code block that can be auto-
matically generated.
For each must alias analysis we insert a new assignment

statement into the code block: we translate p1 must alias p2
into a statement p1 = p2; . For may alias relationships,
we could exploit the modeling of non-deterministic data val-
ues in CBMC. The built-in CBMC function nondet_bool()
returns either true or false. Hence we may easily translate
may alias relations: p1 may alias p2 results in a statement

if (nondet_bool()) p2 = p1;

The aliasing may hence lead to an exponential number of
di�erent initialization paths.

4. SUMMARY
Many tools for model checking C code exist. Though these

tools o�er a sophisticated treatment of most features of the
language, our �nding is that they are not yet stand-alone
solutions for the modular analysis of Linux device drivers.
In most cases the tools have to be complemented by an ex-
tensive operating systems model or at least a test driver that
invokes and initializes all necessary members in the driver.
It has been described that the construction of environments
needs considerable e�ort. In [9] the e�ort dominated the
overall work.
The contribution of our paper is an algorithm to automat-

ically construct simple data environments for device drivers.
We have shown that these environments might improve the
precision of CBMC when analysing Linux device drivers.
Other solutions for interface generations exist, though they
seem either dedicated to Java programs (e.g. [7]) or they

aim to provide a general solution loosing the advantages the
prede�ned Linux abstract data types. Our solution only
needs a speci�ed entry point for each module and templates
for the few abstract data types in Linux.
Despite the expected advance by widening the applica-

tion domain in CBMC to modular programs, we left sev-
eral problems unsolved. The creation of the environment is
heuristic and requires an external speci�cation of possible
alias relationships. The identi�cation of abstract data types
is heuristically inferred and must be checked and potentially
corrected by the user. The same situation is given for the
inference whether a pointer points to a single element or an
element within an array.
Early prototypes result in hundreds of generated initial-

ization code lines even for small list bounds of 3. CBMC was
able to process the examples and �nd some known pointer
errors that could not have been checked without our data
environment.

5. REFERENCES
[1] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith.

Modular veri�cation of software components in c. In
Proc. of the 25th Int. Conf. on Software Engineering
(ICSE), pages 385�395, Washington, DC, USA, 2003.
IEEE Computer Society.

[2] E. Clarke, D. Kroening, and F. Lerda. A tool for
checking ANSI-C programs. In K. Jensen and
A. Podelski, editors, Tools and Algorithms for the
Construction and Analysis of Systems (TACAS),
volume 2988 of LNCS, pages 168�176. Springer, 2004.

[3] V. Contributors. The SLAM Project.
http://research.microsoft.com/slam/, 2006.

[4] T. Henzinger, R. Jhala, R. Majumdar, and G. SUTRE.
Software veri�cation with BLAST. In Proc. 10th Int.
SPIN Workshop (SPIN'2003), Portland, OR, USA,
May 2003, volume 2648 of LNCS, pages 235�239.
Springer, 2003.

[5] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic
unit testing engine for c. In Proc. of the 10th European
Software Engineering Conference (ESEC/FSE-13),
pages 263�272, New York, NY, USA, 2005. ACM Press.

[6] D. van Leeuwen, E. Anderson, and J. Axboe. A Linux
Cdrom Standard, kernel 2.6.15 edition, March 1999.
Found in Documentation/cdrom.

[7] T. Xie, D. Marinov, W. Schulte, and D. Notkin.
Symstra: A framework for generating object-oriented
unit tests using symbolic execution. In Tools and
Algorithms for the Construction and Analysis of
Systems (TACAS), pages 365�381, Edinburgh, UK,
April 2005.

[8] Y. Xie and A. Aiken. Scalable error detection using
boolean satis�ability. In Proc. of the 32nd ACM
SIGPLAN-SIGACT symposium on Principles of
programming languages (POPL), pages 351�363, New
York, NY, USA, 2005. ACM Press.

[9] J. Yang, P. Twohey, D. R. Engler, and M. Musuvathi.
Using model checking to �nd serious �le system errors.
In Proc. of the 16th Int. Conf. on Computer Aided
Veri�cation (CAV), volume 3114 of LNCS, pages
273�288. Springer Berlin / Heidelberg, 2004.

92

