
Performance Modeling of a JavaEE Component
Application using Layered Queuing Networks: Revised

Approach and a Case Study

Alexander Ufimtsev
Performance Engineering Laboratory

School of Computer Science and Informatics,
University College Dublin, Belfield, D4, Ireland

alexu@ucd.ie

Liam Murphy
Performance Engineering Laboratory

School of Computer Science and Informatics,
University College Dublin, Belfield, D4, Ireland

Liam.Murphy@ucd.ie

ABSTRACT
Nowadays component technologies are an integral part of
any enterprise production environment. Performance and
scalability are among the key properties of such systems. Us-
ing Layered Queuing Networks (LQN), one can predict the
performance of a component based system from its design.
This work revises the approach of using LQN templates, and
offers a case study by using the revised approach to model
a realistic component application.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—Reuse
models; D.2.1 [Software Engineering]: Requirements/ Spec-
ifications—Methodologies; D.2.8 [Software Engineering]:
Metrics—Performance measures; D.2.9 [Software Engi-
neering]: Management—Software quality assurance

Keywords
performance modeling, JavaEE, component systems, ECPerf,
Layered Queuing Network.

1. INTRODUCTION AND MOTIVATION
Many large software development projects fail to deliver
the product on time, within budget, and with satisfactory
QoS. Useful software engineering practices such as model
checking, verification, and continuous testing help satisfy
the functional requirements of the projects. However, some
of the non-functional requirements can only be checked when
integrated with other components and during system test-
ing, which is typically done during the final stages of de-
velopment. Performance is one of the non-functional re-
quirements that is commonly difficult to check outside a
test environment.

Software products nowadays include various components de-
veloped by third parties and running on a stack of multiple

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Fifth International Workshop on Specification and Verifica-
tion of Component-Based Systems (SAVCBS 2006), November
10-11, 2006, Portland, Oregon, USA.
Copyright 2006 ACM ISBN 1-59593-586-X/06/11 ...$5.00.

software layers. Such complexity makes it difficult to provide
software performance guarantees - moving functionality to
middleware and third party components reduces the overall
understanding of the system. Nowadays ’buggy’ and poorly
implemented code contributes less problems to enterprise
software development than a problematic architecture or
”short-sighted design”, as well as poor capacity planning [9].
Unfortunately, design problems are not easily resolvable at
the final development stages. Therefore, a system designer
should be able to assess the performance properties of the
system (both software and hardware) early. He or she needs
to ’plan ahead’, leaving room for possible future improve-
ments and requirement changes.

Use of Layered Queuing Networks for modeling of component-
based software can help system designers to assess the out-
come of performance decisions, starting from very early stages
of development. This work builds upon ’layered queuing
network templates’ [8, 11] by analyzing key strengths and
weaknesses of the approach and also by conducting a case
study on a realistic application.

2. LQN OVERVIEW
Layered Queuing Networks (LQN) is an extension of Queu-
ing Networks that allows the software to be represented in
layers, thus separating resources from a model and dividing
a model into multiple submodels. LQN is abstract enough
not to suffer from drawbacks of other popular formalisms,
notably Stochastic Petri Nets (SPN).

Basic LQN notation consists of three basic elements: cir-
cles denote resource type (CPU, disk, network), rectangles
- software blocks. The right rectangle usually denotes an
object/bean, while rectangles to the left from it denote an
action happening with that object, such as method or func-
tion call. Also, control rectangle usually indicates the type
of resource it utilizes. Arrows depict control flow within the
network.

Key advantages of LQN:

• Layered architecture of LQN ’naturally’ maps to com-
ponentized, multi-tiered, and multi-layered enterprise
level software stacks;

• LQN is easily extend able to include newly discovered

11

bottleneck resource or device into existing model;

• LQN avoids state explosion as some other formalisms
(SPN-like) via higher level of abstraction;

• LQN is a formalism and provides robust analytical and
simulation-based tools.

LQN’s disadvantages:

• Does not allow any type of dynamism in the running
system, provides only steady state solutions;

• Does not have a notion or possibility to model time-
outs, locks, and workload variation within a run. To
introduce some sort of dynamism to LQN one must
have to solve LQN for different states first and then
bind them together with a form of Markov chain, with
probability of the system changing its state from one
to another.

• Requires a lot of data to be accurately collected, in-
terpreted, and put into a model to produce accurate
results.

3. PROBLEM STATEMENT AND APPROACH
The purpose of this work was to understand how suitable
were LQN templates for modeling JavaEE applications and
what improvements to the approach are needed. Java En-
terprise Edition (JavaEE) is a superset of Java Standard
Edition (JavaSE), designed for multi-tier solutions [6]. It
provides developers with the underlying infrastructure re-
quired by the enterprise systems. J2EE’s core is a family
of component models: on the client side, JavaBeans and
applets; on the web server tier, J2servlets and Java Server
Pages (JSPs); on the application server tier Enterprise Jav-
aBeans (EJB).

Java EE’s ECperf application was selected to be modeled
for a number of reasons. First, ECperf is an industry-
standard JavaEE benchmark meant to measure the scal-
ability and performance of JEE servers and containers. It
stresses the ability of EJB containers to handle the complex-
ities of memory management, connection pooling, passiva-
tion/activation, and caching. ECperf is highly portable and
runs on majority of application servers, which makes it per-
fect for future evaluation of the approach on different soft-
ware and hardware configurations. Second, ECPerf creators
stress its ability to represent real-life business applications.
ECPerf is designed as a typical web business application
that permits customers direct specification of product con-
figuration, ordering, and status checking. It also automates
manufacturing, inventory, supplier chain management, and
customer billing. Third, as a benchmark application it pro-
vides necessary workload drivers and all the performance
data aggregators in useful and professional manner.

4. APPLICATION DESIGN
Originally developed by Sun Microsystems, ECPerf is now
being developed and maintained by SPEC Corporation1. It

1http://www.spec.org

is currently available from SPEC under the name of SPEC-
jAppServer2004. ECPerf is designed to be a typical en-
terprise application. It has four implemented domains in
its code: Manufacturing, Supplier & Service Provider, Cus-
tomer, and Corporate. Each domain has separate database
and applications. They provide the foundation for the ECperf
workload. Customers contact the business through any num-
ber of methods, including directly through the web. All of
the worldwide offices and plants make frequent access to
data held in the other offices or plants, and must, at times,
compare/collate/verify their data against that held world-
wide. The company also interacts with completely separate
supplier companies. Each supplier has its own independent
set of computing resources. The overall setup can be seen
in Figure 1.

Figure 1: High-Level Overview of Testing System

Customer Domain

This domain emulates business interactions with the clients.
Clients can be of two types: individuals and distributors.
Both interact with by placing orders. The difference be-
tween the two is in the quantity of items ordered. Approxi-
mately 57% of work on the system is related to orders from
distributors (i.e contain large number of items), 43% is from
individual customers. Customer domain implementation of
ECperf contains seven beans: OrderSes, OrderEnt, Order-
LineEnt, ItemEnt, OrderCustomerSes, OrderCustomerEnt,
and CartSes.

Manufacturing Domain

The manufacturing domain emulates business product lines,
which process the orders received by customer domain. There
are two types of production lines: Planned lines and Large-
order lines. The planned lines run on schedule and pro-
duce a pre-defined number of widgets. On the other hand,
the largeorder lines run only when a large order is received
from a customer such as a distributor. This domain is im-
plemented with ten beans: WorkOrderSes, LargeOrderSes,
ReceiveSes, PartEnt, AssemblyEnt, WorkOrderEnt, Large-
OrderEnt, ComponentEnt, InventoryEnt, and BOMEnt.

Supplier Domain

The Supplier Domain decides which supplier to choose based
on the parts that need to be ordered, the time in which they
are required and the price quoted by suppliers. It is imple-
mented in the system with seven beans: BuyerSes, Recei-
verSes, SupplierEnt, SupplierComponentEnt, POEnt, PO-
LineEnt, and SComponentEnt.

12

Table 1: Top cumulative time-consuming methods
Domain Name Time (%)

mfg WorkOrderEnt.process 19
mfg WorkOrderCmpEJB.process 19
mfg WorkOrderSesEJB.scheduleWO 16.1

supplier BuyerSes.purchase 5.3
supplier BuyerSesEJB.purchase 5.3

mfg ComponentEnt.takeInventory 5.3
orders OrderSesEJB.newOrder 5.3
orders OrderEntHome.create 5.3
orders OrderCmpEJB.ejbCreate 5.3
mfg WorkOrderSesEJB.scheduleWO 4.8

Table 2: Top average method time

Domain Name Time (%)
mfg WorkOrderEntHome.create 0.4

orders OrderCustomerEntHome.create 0.2
supplier ReceiverSesHome.create 0.1

mfg WorkOrderEntHome.create 0.1
orders OrderCustomerEntHome.findByPK 0.1

Corporate Domain

This domain manages the global list of customers, parts and
suppliers and is implemented in three beans: CustomerEnt,
DiscountEnt, RuleEnt. The domain is used for obtaining
customer credit status, various discounts and billing.

5. PERFORMANCE AND CODE ANALYSIS
While performing analysis it is important to concentrate on
so-called ”critical paths” within the system. Critical paths
in ECPerf were obtained by analysing its source code and
execution traces while running the system with minimal pos-
sible workload. The latter was necessary to avoid abnormal
behavior due to monitoring overhead and clarity of the de-
rived call graph. It should be noted that despite the use
of smallest possible workload the amount of users in the
system was equal to eight. Therefore, concurrent resource
usage behavior was preserved. The source code was anal-
ysed using Juliet 2, while execution graph and times were
obtained with JProbe 3 tool. The measurements had shown
that that only two domains make a significant performance
impact: cumulative execution time of beans in manufactur-
ing and customer domains consume around 80% of overall
ECPerf execution time (See Table 1). The other two do-
mains did not seem to have any significant influence on the
overall system performance. Also, Table 2 shows top five
non-cumulative averaged method times. It can be noted
that even the worst performing individual methods use very
little resources on their own. Since a lot of complex services
was pushed to middleware, what becomes important is the
”orchestration” of services provided by other methods and
containers.

5.1 Workload Generation
2http://infotectonica.com/
3http://jprobe.quest.com

ECperf workload is generated by so-called ’Driver’ script,
that runs ’agents’. Standard ECperf configuration features
three agents, one per domain: ordersAgent (customers), mf-
gAgent (manufactures), and loAgent (large orders). Strictly
speaking, loAgent is not a new domain, but rather belongs
to both customers and manufactures. Agents, in their turn,
start up and control the client instances that issue requests
to the servers (See Figure 2). The number of planned lines
and order lines depends on scale parameter.

Figure 2: ECperf Workload Overview

All the loops wait for a certain period of time. It is hard-
coded for one second for large order agent, configured to 100
ms for mfgAgent and for orderEntry it is set to a negative
exponential distribution

Tc = −ln(x)/Ir (1)

where ln - natural log (base e), x - random number with at
least 31 bits of precision, Ir - mean Injection Rate.

Figure 3 shows an overview of manufacturing activity in
LQN notation. System sleep is necessary to introduce emu-
lation of activity stations that gradually change workorder
state from ’scheduled’ to ’updated’, and finally to ’com-
pleted’. WorkOrderSes session bean also creates, searches,
and updates a few entity beans.

Figure 3: High-level overview of Manufacturer Sys-
tem Activity

Large orders agent just pulls information from the database
about large orders once per second and updates its statistics

13

Figure 4: Large Orders Agent activity

Order entry represents a significant amount of system ac-
tivity. The stream of order entry transactions is split in the
following way:

• newOrder - 50%

• getOrderStatus - 20%

• changeOrder - 20%

• getCustStatus - 10%

There is also 10% chance that order is going to be large, 50%
chance that people buy goods right away and another %50
- that they will use a shopping cart. In 90 percent of cases,
people delete the content of their shopping cart. The Metric
for the Customer Domain is Transactions/min. The metric
for the Manufacturing Domain isWorkorders/min, whether
produced on the Planned lines or on the LargeOrder lines.
The numbers described are based on real world experience of
Sun Microsystems building typical enterprise applications.
This particular transaction mix and probabilities of state
changes is built into ECPerf and should not be altered.

newOrder call path is presented in Figure 5. Please note that
other paths, such as changeOrder, orderStatus, customerSta-
tus, and createNewShoppingCart were not expanded due to
cluttering of space. Numbers on call arrows show probabil-
ities.

5.2 Addressing Ambiguity
A few features or implementation details of ECperf pre-
sented a modeling challenge. First, since ECperf was de-
signed after typical web-based enterprise applications, it in-
tentionally did not keep the database size stable. In fact, it
kept growing throughout each test and had to be reinitial-
ized before a new one. Second, even the initial database size,
e.g. the initial number of customers and products depends
on the expected (configurable) workload. This is another
reason why databases have to be swept clean and repopu-
lated with data upon startup of another test. Third, ECperf
authors made some provisions for unstable environment. If
a transaction fails for whatever reason (timeouts, database
lock, etc.), ECperf handles this exception and retries it from
5 to 20 times before failing.

All of the above uncertainties had to be abstracted in order
to keep the scope of the use case feasible. Database size for

the model was chosen as an average of the real database size
before and after test run. We presume this is correct since
database never becomes a bottleneck device throughout the
test. We also had to average in all the retries and transaction
rollback that happened.

The rest of the testsuit was modeled using the following
refined principles:

• Communication is broken into two types: local and
remote. Remote one is modeled with a network re-
source/processor. Local calls that don’t exercise Re-
mote Method Invocation (RMI) are modeled as simple
LQN calls without any resource consumption.

• Container services is an aggregate term for any ad-
ditional activities performed by container. It is not
modeled separately, but spread across execution times.

• Reflection - included in container services times.

• Connection pooling - two essential queues are modeled:
container threads and database threads.

• Transaction manager - again, included in overall con-
tainer services for model simplicity. No specific model
for the actually transaction rollback is specified.

• Security - security checks are modeled with submodels
of beans.

• Garbage Collection (GC) is not addressed in the cur-
rent version of model, since the complexity and closed
source code of JVM makes it hard to derive correct
models. GC time is generally spread across container
services.

• Naming - modeled through container services

• Database - modeled with an average response time.
It is possible, however, to model it with any specified
distribution of response times.

6. MODELING APPROACH
The proof of concept use of LQN for modeling of EJB-based
applications has been demonstrated by Xu et al. [11]. Pro-
duced LQN-EJB templates can be instantiated according to
specific function requirement in each scenario for system us-
age, and then be assembled into a complete LQN model for
the whole scenario. General information on functional as-
pects of EJB technology as well as specific models for each
bean type were presented in [11].

A system is modeled by presenting the beans as tasks with
estimated parameters, then instantiating the template to
wrap each class of beans in a container, and finally adding
the execution environment including the database. Calls
between beans, and calls to the database, are part of the
final assembly. The model may be calibrated from running
data, or by combining

• knowledge of the operations of each bean;

• pre-calibrated workload parameters for container ser-
vices, communication, and database operations.

14

Figure 5: Part of the Orders Domain

15

7. MODEL CALIBRATION AND TESTING

7.1 Hardware platform
The testing environment includes four x86 machines:

• application server Pentium III-866 Mhz with 512 Mb
RAM;

• database Pentium III-800Mhz with 512 Mb RAM; and
client

• client Pentium IV-2.2 Ghz, 1024 Mb RAM.

The client machine is more or as powerful as servers to en-
sure it does not become a bottleneck when generating the
test load.

7.2 The software environment
The following software was used for testing purposes:

• operating system: Debian GNU/Linux 3.1 ’sarge’, ker-
nel v 2.6.8-3;

• database server : MySQL v. 5.0.7beta-1;

• application server : JBoss v. 4.01sp1;

• JVM : Java2SDK 1.4.2 09.

Measurements on the container and program execution were
obtained by running JProbe 5.2.1 Freeware profiler for Linux.
The following options were used for JVM startup:

• The initial Java heap size was 480MB;

• parameter -XX:+PrintCompilation was set to monitor
the runtime behavior of the JVM.

7.3 Benchmarking results
Performance benchmarking of ECPerf produced the follow-
ing results (See Figure 6). The X-axis shows the value of
SCALE parameters while Y-axis shows the number of busi-
ness operations per minute (BBops/min).

Scale value is not equal to number of users, but rather
user num = f(scale). In our case, user num = 5 ∗ scale.
The minimal number of users in the system is 5, and the
maximum measured is 250. The second line of in bench-
marking figure shows standard deviation of the results ob-
tained. It can be noted that results become quite unsta-
ble once SCALE goes over 10, while overall performance
does not seem to increase. Also, once load reaches 50 users
(SCALE=10) the system starts producing errors (time outs,
etc) due to overload. Therefore, system achieves its peak
performance with SCALE=7, or 35 users. Figure 7 shows
response times for Manufacturing and Orders for the respec-
tive workload.

Figure 6: Results of ECPerf benchmarking

Figure 7: Response Time of ECPerf

16

7.4 Resource Utilization
Various resource were used during benchmarking, including
CPUs of the test machines, network, HDDs, etc. Except
for SCALE=1, the CPU of the application server was the
bottleneck. CPU usage of client and db machines reached
17 percent at max with average utilization of 5-7 per cent.
Network utilization was around 1%. Disk usage for both
database and application server was also negligible.

7.5 Model Calibration
The model constructed in Section 7 was calibrated from the
profiling data under a minimal workload. During the mea-
surement phase JProbe profiling tool introduced significant
overhead, so the execution demand values extracted from
profiling data are adjusted to remove the contribution of
overhead. This was done by using a Profiling Ratio Factor
(PFC) based on the assumption that the profiling overhead
is proportionally distributed across the operations within
some section of the scenario. The factor was obtained for
each section by measuring the service time with and with-
out profiling and taking the ratio. For the configuration
of Jboss, PFC varied from 1 (for low-level operations) to
7.49 for business method related operations. Ultimately,
when profiling was on and every method call in JBoss and
ECperf was logged, the response times slowed down 7.49
times. By proportionally dividing each response time ob-
tained with the monitoring on PFC, we can get averaged
execution times for individual methods. It should be noted
that this approach becomes highly inaccurate for monitor-
ing a lot of methods simultaneously. The best results are
shown when PFC → 1, which happens when monitoring is
turned on for a very small number of methods 1...10.

The problems also included the fact that the cycle times in
ECPerf were very dynamic and depended on the response
time.

7.6 Result Analysis
Calibrated LQN simulation gave quite close results to the
tested real-life configuration (See Figure 8). The upper line
is a modeled result, while the lower - a real system test,
which is identical to Figure 6 on the scale from 1 to 7. The
modeled results were aggregated using predefined data in
Subsection 5.1.

For small and average workloads the LQN results were a bit
more pessimistic than real ones, but they are quite close. We
consider that a good result taking into account that mea-
surements for the model where conducted on the system only
once with minimum workload possible, e.g. SCALE = 1.
However, at the higher loads LQN result becomes more op-
timistic. The worrying trend is that LQN model contin-
ues to predict higher performance than the real system. At
SCALE = 7 the real system reaches its optimal workload
and its throughput stabilises. The LQN model shows al-
most linear increase in predicted performance. We were un-
able to identify the reasons for such behavior, though we
noticed that the variance for the overall response time in
the model greatly increased when the workload reached its
peak. This could be due to lack of locking in LQN, or a
missed bottleneck in the model. The most likely ’offenders’
are transaction and security features of application server,
and database record locking. We suspect that when the

load reaches its peak, some transactions might timeout and
be subsequently retried. Since transactions are resource-
expensive, it might deviate the system’s throughput away
from the ’ideal’ situation as demonstrated by the model.

Figure 8: ECPerf Response Time

8. RELATED WORK
The following solutions have been offered so far. Lui et al. [7]
proposed a method for predicting performance of J2EE ap-
plications at design level, which seems to rely mostly on
profiling information instead of models. Denaro et al. [2]
came up with generic framework for performance testing of
distributed component architectures. The evaluation of the
approach is not formal and based on creating a stub appli-
cation, which then is run in the real environment.

9. CONCLUSIONS AND FUTURE WORK
We have presented an evaluation of a Layered Queuing Net-
work (LQN) templates approach by building a model of
ECPerf - a JavaEE component application. Various mod-
eling problems have been addressed within the limitations
allowed by LQN formalism. We showed that despite our
efforts, ECperf performance prediction model was overop-
timistic when compared to a real system. This suggests a
missed resource congestion point due to inaccurate modeling
assumptions or LQN limitations.

We plan to improve the existing model by adding JavaEE
container services, such as transaction & security. This way
we hope to eliminate the current inaccuracies within the
LQN templates model. Additional services outside JVM
layer can also be added to the model. For instance, Virtual
Memory Manager was shown to have a significant effect on
component-based application performance [10].

10. ACKNOWLEDGMENT
The support of the Informatics Commercialization initiative
of Enterprise Ireland is gratefully acknowledged.

11. REFERENCES
[1] Cecchet, E., Marguerite, J., Zwaenepoel, W.:

Performance and Scalability of EJB Applications Proc
of 17th ACM Conference on Object-Oriented
Programming, Seattle, Washington, (2002).

17

[2] Denaro, G., Polini, A., and Emmerich, W.: Early
performance testing of distributed software
applications Proc of the Fourth international
Workshop on Software and Performance, Redwood
Shores, California, (2004) 94-103

[3] Descripton of LQN XML Schema
http://www.sce.carleton.ca/rads/lqn/lqn-
documentation/schema/

[4] ECperf Kit Sun Microsystems
http://java.sun.com/developer/releases/j2ee/ecperf/

[5] Gorton, I., Liu, A.: Performance Evaluation of
Alternative Component Architectures for Enterprise
JavaBean Applications in IEEE Internet Computing,
vol.7, no. 3, pages 18-23, 2003

[6] Java Enterprise Edition Sun Microsystems
http://java.sun.com/javaee/

[7] Liu, Y., Fekete, A., Gorton, I.: Predicting the
Performance of middleware-based applications at the
design level Proc of Fourth International Workshop on
Software and Performance, Redwood Shores,
California (2004) 166-170.

[8] Oufimtsev, A. and Murphy, L.: Predicting
Performance of EJB-based Systems Using Layered
Queueing Networks Proc. of OOPSLA conference,
ACM, Oct. 2004 (poster)

[9] The State of J2EE Application Management: Analysis
of 2003 Benchmark Survey Survey Analysis by Ptak,
Noel & Associates
http://ptaknoelassociates.com/members/J2EE app mgmt survey.pdf

[10] Ufimtsev, A., Murphy, L., Kucharenka A.: Impact of
Virtual Memory Managers on Performance of J2EE
Applications In Proceedings of Component-Based
Software Engineering (CBSE) conference, Vesteras,
Sweden, June 2006

[11] Xu, J., Oufimtsev, A., Woodside, M., Murphy, L.:
Performance Modeling and Prediction of Enterprise
JavaBeans with Layered Queuing Network Templates
Proc of SAVCBS Workshop, FSE, Lisbon (2005)

18

