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ABSTRACT 
A fundamental complexity in understanding and reasoning about 
object-oriented languages is the need for programmers to view 
variables as references to objects rather than directly as objects. 
The need arises because a simplified view of variables as (muta-
ble) objects is not sound in the presence of aliasing. Tako is an 
object-oriented language that is syntactically similar to Java but 
incorporates alias-avoidance techniques. This paper describes 
the features of the Tako language and shows how it allows 
programmers to view all variables directly as objects without 
compromising sound reasoning. It discusses the benefits of such 
a language, including its use as an instructional tool to help 
teach students how to reason formally about their code.   

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Contructs and 
Features – abstract data types, polymorphism, control struc-
tures.  

General Terms 
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1. INTRODUCTION 
References are pervasive in popular object-oriented languages. 
They permit efficient data assignment and parameter passing of 
non-trivial objects and are used to implement object identity. 
However, the need to reason about references and the aliasing 
that results from their use in such languages has frustrated stu-
dents, programmers and formalists alike. As a result, significant 
research has focused on alias control techniques and alias-
avoidance techniques for object-oriented languages [15]. 
Alias control techniques typically involve extending common 
object-oriented languages with annotations to ensure that certain 
types of aliasing do not occur [3][9][14][26]. They strive to 
conform as much as possible with a traditional style of object-
oriented programming. Therefore, potentially aliased objects are 
still the norm, while alias-controlled objects are the exception.  
In contrast, alias avoidance techniques typically involve a fun-

damental change to traditional object-oriented languages by 
replacing reference assignment—the primary cause of aliasing—
with alternatives that do not introduce aliasing, such as value 
copying [3], destructive read [25], or swapping [12]. These 
approaches are also referred to as ones that use unique refer-
ences, because in the implementation of languages that use 
them, each object must have exactly one reference to it. Despite 
the names alias control and alias avoidance, nearly all ap-
proaches to object aliasing—including ours—permits aliasing to 
some degree. In alias avoidance techniques, however, potential 
aliasing is the exception rather than the rule. 
A common theme in languages that use alias control and even 
most alias avoidance techniques is that sound reasoning forces 
their semantics to be referenced-based. Variables that denote 
objects are viewed as mere references into a global heap, and 
method calls modify the heap abstraction rather than the abstract 
values of the variables (because the abstract values of the vari-
ables, according to the semantics, are references). 
The language described in this paper, Tako, is different in this 
respect. It is intended to facilitate a simple value-based seman-
tics called clean semantics [19] that has the following properties: 
(1) the state space is comprised of variables whose abstract 
values are objects rather than references, and (2) the effect of a 
method call is restricted to the abstract values of the variables 
involved: the arguments to the call and any relevant globals. 
The key benefit of this approach is that it greatly simplifies 
reasoning about objects. Representing the state space abstractly 
is straightforward whether programmers are tracing through 
their code or reasoning about it symbolically. The fact that Tako 
supports a simple and sound view of the program state makes it 
particularly useful as an educational tool for introducing stu-
dents to formal reasoning. From the perspective of object-
oriented programming, a drawback of Tako is that it does not 
conform to some of the paradigms of traditional object-oriented 
programming. Despite this, Tako, like Java, contains all of the 
features traditionally found in object-oriented languages, such as 
classes, inheritance, and polymorphism. 
Tako is essentially a redesign of Java that incorporates the alias-
avoidance techniques found in Resolve. The Resolve language 
[30][31] is an integrated programming and specification lan-
guage intended to support full, heavyweight program verifica-
tion. For years, various universities including Ohio State, Clem-
son, and Virginia Tech have offered courses in which variants of 
Resolve have been used to introduce both undergraduate and 
graduate students to formal reasoning. Resolve has many fea-
tures that facilitate formal verification, but as designers of Tako, 
we are primarily interested in the alias-avoidance features of 
Resolve and whether they can be successfully and independently 
applied to a traditional object-oriented language such as Java. 
Section 2 of this paper introduces the features of Tako, with 
emphasis on how it differs from Java. Section 3 describes how 
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Tako supports clean semantics and facilitates reasoning, using 
examples similar to those we have used in courses at Virginia 
Tech. Section 4 discusses related work and future directions. 

2. OVERVIEW AND FEATURES 
As illustrated in Figure 1, a Tako stack implementation is syn-
tactically similar to a Java stack implementation. They declare 
the same variables, they have similar methods, and, with one 
exception, they use the same keywords. 

2.1 Data Assignment 
The most important difference between the classes in Figure 1 is 
that wherever Java uses reference assignment—the main source 
of aliasing—Tako uses alternative data assignment mechanisms. 
As in the Resolve language, Tako uses swapping as its primary 
means of data assignment. In the body of the push method, the 
Java code assigns the object in contents[top] to x by copying its 
reference. But the Tako code uses a swapping operator (:=:) to 
swap the values of contents[top] with x. A call to Java’s push 
method creates an alias between the incoming object x and the 
top element of the current stack; a call to Tako’s push method 
transfers x’s object to the top of the stack, and replaces it with 
some unspecified but valid object of its type. 
Swapping is described as simultaneous assignment in [17] and is 
proposed as an alternative to both reference and value copying 
in [12]. Swapping is a constant-time operation because a com-
piler can implement it by swapping object references; swapping 
preserves unique references, so programmers can reason about it 
as if object values are swapped. Swapping never creates aliases. 
For efficiency, a compiler can implement small objects such as 
integers and booleans directly as objects while implementing 
non-trivial objects using references. 
Swapping is symmetric—it requires both objects to be of the 
same type. For assigning a type to a supertype, Tako provides an 
initializing transfer operator (←). The initializing transfer opera-
tion s ← c assigns circle c to shape s and initializes c to a new 

circle object. The approach does not introduce aliasing, but it 
does require the creation of a new object, and—because Tako’s 
underlying implementation guarantees unique references—it 
ultimately requires memory from an old object to be reclaimed. 
Therefore, initializing transfer is less efficient than swapping. 

2.2 Function Assignment 
Both the swap statement and the transfer statement require a 
variable on either side of the operator. For assigning the result of 
an expression evaluation to a variable, Tako provides a function 
assignment operator (:=), as in the new expression that initializes 
the contents array in the stack’s constructor in Figure 1. The 
same operator is used to copy values from one variable to an-
other, as in the statement MAX := n. 
Java methods return references rather than values, potentially 
introducing aliasing. For example, the Java pop method is a 
side-effecting function that returns a reference to contents[top], 
so that the assignment x = s.pop() causes two references to point 
to the same object. Tako avoids this problem with the introduc-
tion of a distinguished result variable that always holds the 
return value of a non-void method. The result variable is auto-
matically initialized at the beginning of the method, and what-
ever object value it holds at the end of the method is returned. 
Since the result variable goes out of scope at the end of the 
method, we know that any returned reference (to the result 
variable’s object) will continue to be unique. The syntax return 
〈expression〉 is not permitted in Tako, though the return key-
word may be used alone to denote that the program should 
return from the method with the current result value. 
Consider the following Tako pop method written as a side-
effecting function. 
    public Object pop() { 
        top--; 
        result :=: contents[top]; 
    } 

The result variable gets a new initial Object as soon as the 

public class BddStack { 
    private final int MAX; 
    private Object[] contents; 
    private int top; 

    public Stack(int n) { 
        MAX := n; 
        contents := new Object[MAX]; 
    } 

    public void push(Object x) { 
        assert depth() < MAX; 
        contents[top] :=: x; 
        top++; 
    } 

    public void pop(Object x) { 
        assert depth() > 0; 
        top--; 
        x :=: contents[top]; 
    } 

    public int depth() { 
        result := top; 
    } 

} 

 public class BddStack { 
    private final int MAX; 
    private Object[] contents; 
    private int top; 

    public Stack(int n) { 
        MAX = n; 
        contents = new Object[MAX]; 
    } 

    public void push(Object x) { 
        assert depth() < MAX; 
        contents[top] = x; 
        top++; 
    } 

    public Object pop() { 
        assert depth() > 0; 
        top--; 
        return contents[top]; 
    } 

    public int depth() { 
        return top; 
    } 

} 

Figure 1. A Tako bounded stack implementation (left) compared to a Java bounded stack implementation (right) 
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method is invoked, as if the first statement were Object result := 
new Object(). After the swap operation, result holds the object 
originally held by contents[top] and contents[top] holds the 
newly created object originally held by result. Thus, the method 
returns the object originally at the top of the current stack. Inter-
nally, it places a new initialized object in the cell of the contents 
array that previously held the stack’s top element.  
The function assignment operator can also be used to copy 
objects. The compiler expects the function assignment operator 
to have a variable on the left-hand side and an expression on the 
right-hand side. If it does not find a variable on the left-hand 
side, it will report an error. However, if it finds a variable rather 
than an expression on the right-hand side, it will check to see if a 
replica method has been implemented for the variable’s type. If 
so, it will call the replica method for the variable’s object; if not, 
it will report that no replica method could be found. Thus, the 
compiler considers the statement s := t to be special syntax for 
s := t.replica(). The replica method is intended to be used for 
small objects where copying is the preferred form of data as-
signment, such as integers and booleans. In principle, though, 
any Tako class can be extended with a replica method. 

2.3 Parameter Passing 
Parameter passing in Java is accomplished by copying the refer-
ences of the arguments to the formal parameters without copy-
ing them out again. This approach is problematic for a language 
that intends to facilitate value semantics, because the semantics 
that describe this form of parameter passing are difficult to 
formulate without introducing the notion of reference. Java 
parameter passing cannot be viewed as in-out because assign-
ments to formals inside the body are not reflected in the actuals. 
It cannot be viewed as copying object values in only, because in 
Java you can update an argument’s conceptual object value as 
long as you do not change its reference value. 
Tako avoids this difficulty by fully supporting in-out (also called 
value-result) parameter passing. Conceptually, programmers can 
reason about in-out parameter passing as if object values are 
copied into the method, the method is executed, and object 
values are copied out again. However, a compiler can implement 
in-out parameter passing efficiently by copying references to the 
formal parameters, executing the method, and copying refer-
ences back out, which is what C# does with ref parameters.  
The effects of in-out parameter passing with references and in-
out parameter passing with objects are semantically equivalent 
whenever the arguments are not aliased [11]. Since Tako avoids 
aliasing, in-out parameter passing is an appropriate choice. Note 
that Tako uses in-out parameter passing by default for all pa-
rameters, even the current this parameter, which cannot be a ref 
parameter in C#. 
Using in-out parameter passing gives programmers the option of 
writing certain methods as procedures (i.e., void methods) rather 
than side-effecting functions. For example, the Tako pop method 
is a procedure whereas the Java pop method must be written as a 
side-effecting function. A function is free of side-effects if its 
execution does not change the program state. Keeping functions 
free from side-effects simplifies reasoning about programs that 
include conditions, as in if and while statements. 
One aliasing problem that in-out parameter passing does not 
solve is the repeated argument problem [19]. As long as parame-
ter passing is implemented by copying references—whether in-

out or in-only—aliasing can be introduced when arguments are 
repeated in a call. For example, the call q.append(q) introduces 
aliasing between the implicit formal parameter this and the 
explicit formal parameter in the body of the append method.  
The call a[i].append(a[j]) does the same when i and j are equal. 
We are currently exploring alternative designs for handling 
repeated arguments. One option is to throw a runtime error when 
repeats occur, another is to initialize the second and subsequent 
repeats, as described in [19]. In either case, the compiler will 
warn programmers when arguments are potentially repeated.  
Tako includes an eval parameter mode that indicates that a 
function is expected for evaluation. The eval mode is often used 
for small types such as integers and booleans. As with function 
assignment, if a variable a is given where a function is expected, 
the compiler will translate it as a.replica(). If no replica function 
is found, the compiler will report an error. Since the result of an 
expression evaluation is always a new object, repeated argu-
ments do not pose a problem for eval parameters. 
A potential problem with in-out parameter passing and Java-like 
inheritance concerns the passing of subtypes. If c has type Cat 
and d has type Dog, what should the effect be of “s.push(c); 
s.pop(d);”? If we blindly permit this, it results in the dog vari-
able d holding a cat object, causing a type violation. Some ob-
ject-oriented languages that support the conceptual equivalent of 
in-out parameters (such as C#) do not allow programmers to 
pass subtype objects to them. In Tako, this is not an option—
particularly since Tako does not yet support generics. The stack 
class in Figure 1 would be of little value if we were restricted to 
populating the stack with objects of type Object. 
One option is that when a parameter is transferred back, an 
implicit cast is done. If the cast cannot be made, a runtime error 
occurs. Due to the poor performance of runtime casts in Java, 
this solution, though adequate, is not the most efficient, and we 
are currently exploring alternatives. 

2.4 Initialization 
As in the case of the initializing transfer operator, Tako some-
times requires the compiler to automatically create new, initial-
ized objects. This is done for newly declared variables as well. 
In Java, the declaration “Circle c;” does not initialize c, and if c 
is not assigned to before it is used, a compile-time error occurs. 
In Tako, the declaration Circle c is interpreted by the compiler 
as Circle c := new Circle(). 
Types that do not have a default constructor get initialized to 
null. Tako tries to facilitate a view of all variables as objects, so 
including null values in the language may seem odd. Techni-
cally, a value semantics can accommodate null values by intro-
ducing them as distinguished “object” values. Specifications are  
complicated when null values are permitted [7]. However, types 
derived from interfaces cannot have constructors, and some 
classes, such as the bounded stack class in Figure 1, effectively 
require parameters in their constructors. Therefore, in the current 
version of Tako, types may be nullable or non-nullable, based on 
whether a default constructor is provided for the class. Non-
nullable classes are encouraged because they simplify reasoning. 
Null pointer exceptions do not occur with non-nullable classes. 

2.5 Pointer Component  
One of the primary motivations for Tako is the simplification of 
object-based reasoning through alias avoidance. By providing 
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efficient alternatives to data assignment and parameter passing 
that avoid aliasing, Tako supports the construction of typical 
classes as pure value types, allowing programmers to reason 
about variables directly as objects. There are circumstances, 
however, in which aliasing cannot be avoided without sacrific-
ing efficiency. For example, references and aliasing are needed 
to implement all the methods in the list component in constant 
time. For the efficient implementation of lists and other typically 
linked data structures, Tako provides a pointer component that 
models a system of linked locations. Each location holds data 
(objects) and has a fixed number of links to other locations. 
Position variables reside at the various locations. In the follow-
ing Position interface, k is the number of outgoing links at each 
location. 

  interface Position { 
    static final int k; 
    public void takeNew(); 
    public void moveTo(Position p); 
    public void redirectLink(int k, Position p); 
    public void followLink(int k); 
    public void swapContents(Object x); 
    public boolean isWith(Position p); 
    public boolean isAtVoid(); 
  } 

Presenting pointers in the form of a class has the advantage that 
programmers can reason about pointers the same way they 
reason about any other object. No special proof rules are needed 
for pointers, and no universal heap structure needs to be in-
cluded in the semantics. Programmers can maintain a sound 
view of position variables as abstract object values just as they 
can with any other variable in Tako. 

allocate p;      p.takeNew(); 

  p -> q;          p.moveTo(q); 

  p -> q^PREV;     p.moveTo(q); p.follow(PREV); 

  p^NEXT -> q;     p.redirectLink(NEXT, q); 

  p <-> q;         p :=: q; 

  p *:=: s;        p.swapContents(s); 

Figure 2. Special syntax for position objects 

The Position interface provides a way for programmers to view 
pointers in a value-based reasoning environment. However, the 
compiler cannot implement a Position class as it can other 
classes because position variables must not only provide the 
functional benefits of pointers but the performance benefits as 
well. For example, the call p.moveTo(q) moves p to q’s location, 
effectively resulting in p and q being aliases. Although the 
programmer can reason about the statement as a method call, the 
Tako compiler will implement it by copying a single reference.  
With the help of the special syntax shown in Figure 2, the im-
plementation of linked data structures using Tako pointers has a 
relatively straightforward translation into Java, as illustrated in 
Figure 3. The Tako pointer component shares many similarities 
with Resolve’s Location_Linking_Template, whose specification 
and reasoning in terms of clean semantics is detailed in [20]. 

3. VALUE-BASED REASONING 
This section describes the properties of the value-based reason-
ing system that Tako facilitates and presents an example of 
specification and verification using Tako. 

3.1 Clean Semantics 
The value-based semantics for Tako should have the following 
two properties. First, the state space should be based on the 
object values of variables. Specifically, at any point in the pro-
gram, the state consists of the abstract object values of the cur-
rently defined programming or conceptual variables. Conceptual 
variables are similar to model variables or data groups [8][22], 
and they are used to help model the program state. An example 
of their use is given in the mathematical model of the reference-
based stack component below. The second property of our 
semantics is a frame property [6]. It states that the portion of the 
state space that can be modified by a method call is restricted to 
certain syntactically discernible variables—the arguments to the 
call and any global (static) variables listed in the affects clause 
of the method’s declaration. 
Together, the variable-based property and the effects-restricted 
property define the behavior of a clean semantics as given in 
[19]. This notion was proposed as a syntactic yet formalizable 
way to capture the notion of localized reasoning about operation 

public class LinkedList {  
    class Node is Object^(NEXT); 
    private Node head, pre, last; 
    private int left_length, right_length; 

    public LinkedList() { 
        allocate head; 
        pre -> head; 
        last -> head; 
    } 

    public void insert(Object x) { 
        Node post, new_pos; 
        post -> pre^NEXT; 
        allocate new_pos; 
        new_pos *:=: x; 
        pre^NEXT -> new_pos; 
 
        ... 

 public class LinkedList { 
    class Node { 
        Node next = null; 
        Object contents = new Object(); 
    } 
    private Node head, pre, last; 
    private int left_length, right_length; 

    public LinkedList() { 
        head = new Node(); 
        pre = head; 
        last = head; 
    } 

    public void insert(Object x) { 
        Node post, new_pos; 
        post = pre.next; 
        new_pos = new Node(); 
        new_pos.contents = x; 
        pre.next = new_pos; 
 
        ... 

Figure 3. A portion of a linked list implementation using Tako (left) compared to one using Java (right) 
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invocations. The potential for aliasing in a programming lan-
guage complicates reasoning and makes clean semantics harder 
to achieve. However, a system may permit aliasing and still 
conform to clean semantics, as with Tako’s pointer component. 

3.2 Simple Stack Specification 
This section describes the specification and reasoning for a Tako 
stack component. The stack component is a typical Tako com-
ponent because it specifies a single mathematical model for its 
type and does not require any conceptual state variables to 
describe its behavior. We have used this example and others like 
it to introduce graduate students to formal reasoning in courses 
not normally associated with formal methods, such as software 
engineering, and theory of algorithms. The software engineering 
course covers general topics, but approximately the last 25% of 
the course focuses on component-based software engineering 
and formal methods. Tako code is used to illustrate key princi-
ples. The algorithms course uses the Cormen et al. text [10], 
whose latest edition puts greater emphasis on demonstrating the 
correctness of algorithms and includes discussions on loop 
invariants. Their “proofs” of correctness are typical mathemati-
cal proofs given in natural language. We occasionally augment 
these proofs using formally specified Tako components and 
demonstrate formal correctness through a symbolic reasoning 
table, like the one described below.  
  import spec.MathString; 

  public interface Stack { 

     model MathString; 

     initialization ensures  
          this = EMPTY_STRING; 

     public void push(Object x); 
       ensures this = <#x> o #this; 

     public void pop(Object x); 
       requires |this| > 0; 
       ensures #this = <x> o this; 

     public int depth(); 
       ensures this = #this and result = |this|; 

  } 

Figure 4. A specification for a Tako stack 
Figure 4 gives a specification for an unbounded Tako stack. The 
model clause indicates that an object of type Stack is modeled as 
(has a conceptual value of) a mathematical string of objects. The 
clause does not specify a variable name as the current stack this 
is implied. A string is similar to a sequence except that it is not 
indexed. The initialization ensures clause gives the behavior of 
the default (no-argument) constructor, which in this case guaran-
tees that an initial stack will be empty. 
A Java stack specified in JML (the Java Modeling Language 
[21]) would likely be modeled using a JMLObjectSequence. 
JML provides three different sequences depending on weather 
the sequence holds object types (references to objects), equals 
types (non-clonable objects), or value types (object values). 
Variables in Tako always denote object values, so all mathe-
matical structures hold value types, eliminating the need for 
such a distinction. 
A hash mark (#) is used only in an ensures clause—it denotes 
the incoming value of a variable. The expression 〈e〉 is a unary 
string containing the element e, and the symbol o denotes string 
concatenation. So the ensures clause for push states that the 

current stack is equal to the string containing the original value 
of x concatenated with the original stack value. Notice that the 
outgoing value of x is left unspecified. The method is specified 
this way partly because of the new paradigm for component 
construction in Tako. If we specified that the outgoing value of x 
was the same as the incoming value of x (x = #x) we would 
effectively force the implementer to make a deep copy of x. 
When we don’t specify how x changes, the reasoning system 
guarantees only that x contains a valid value of its type. 
Only actual parameters and global variables listed in an affects 
clause may be modified by a method, so Tako does not provide 
a modifies or assignable clause as JML does.  None of the stack 
methods modifies any global state variables, so none of them 
have an affects clause. 
In the depth method, the keyword result denotes the return 
value. Also, since the current stack (this) is considered the first 
parameter to the call, our frame property states that its value may 
be modified. But we do not want the function to have side-
effects, so we must explicitly state in the ensures clause that it is 
not modified. 
Once students are introduced to formal specification, they prac-
tice reading the specifications by tracing through code. The 
following tracing table (Table 1) gives an example. Students are 
given variable values for state 0 and asked to fill in the other 
states. The assertion x = ?? indicates that x is a valid but unspeci-
fied value of its type. 

Table 1. Tracing table for simple stack code 

3.3 More Complex Stack Specification 
The fact that the potential for aliasing does not exist greatly 
simplifies our ability to represent and understand the state space. 
Consider the tracing table in Table 2 for similar code with the 
swap statement replaced by an assignment. If this were Java 
code, we would know that the object value of s in state 2 is 
〈 3, 4, 5 〉 since s and t point to the same object. But if we as-
sume that variables denote strict object values we will conclude 
that s = 〈 4, 5 〉 is unchanged, making the simple value-based 
specification unsound in the presence of aliasing.  

Table 2. Problematic tracing table for code with aliasing 

We can remedy this by giving the stack a specification that 
accounts for aliasing, such as the one in Figure 5. Here, stack 
variables are modeled as locations, and the conceptual variable 

St Facts 
0 s = 〈 4, 5 〉 and t = 〈 7, 8, 9 〉 and x = 3 
t :=: s; 
1 s = 〈 7, 8, 9 〉 and t = 〈 4, 5 〉 and x = 3 
t.push(x); 
2 s = 〈 7, 8, 9 〉 and t = 〈 3, 4, 5 〉 and x = ?? 

St Facts 
0 s = 〈 4, 5 〉 and t = 〈 7, 8, 9 〉 and x = 3 
t = s; 
1 s = 〈 4, 5 〉 and t = 〈 4, 5 〉 and x = 3 
t.push(x); 
2 s = /* what goes here? */ and t = 〈 3, 4, 5 〉 and x = ?? 
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obj maps locations to mathematical strings (conceptual stack 
objects). Like to model variables in JML, conceptual variables 
do not correspond to programming objects, but they are neces-
sary for reasoning about the component. The conceptual variable 
obj is a global variable, so it must be listed in the affects clause 
of any method (such as push) that potentially modifies its value. 

With this specification, we can reason soundly about the stack 
component in the presence of aliasing, as shown in Table 3. 
However, even this specification is an oversimplification of 
object-oriented logics as it does not account for the effects of 
(future) inheritance. 

    import spec.MathString; 
    import spec.Location; 

    public interface Stack { 

       var obj: Location → MathString; 
       model Location; 

       public void push(Object x); 
          affects obj; 
          ensures this = #this and 
             obj(this) = <#x> o #obj(this) and 
             ∀r: Stack, if r ≠ this then 
                obj(r) = #obj(r); 

Figure 5. Portion of a reference-based stack specification 

We can simplify the appearance of the specification in Figure 5 
to something resembling Figure 4 by indicating—as JML 
does—that all variables have reference semantics. This ap-
proach, however, will not simplify the states in our tracing table. 
There is no rule that can tell us how to transition from the state 
“s = 〈 4, 5 〉 and t = 〈 4, 5 〉 and x = 3” through s.push(x), to the 
next state, without telling us whether s and t are aliased. 

Table 3. Sound tracing table for stack code with aliasing 

St Facts 
0 s = @47 and t = @53 and x = 3 and 

contents = { @47 |→ 〈 4, 5 〉, @53 |→ 〈 7, 8, 9 〉 } 
t = s; 
1 s = @47 and t = @47 and x = 3 and 

contents = { @47 |→ 〈 4, 5 〉, @53 |→ 〈 7, 8, 9 〉 } 
s.push(x); 
2 s = @47 and t = @53 and x = 3 and 

contents = { @47 |→ 〈 3, 4, 5 〉, @53 |→ 〈 7, 8, 9 〉 } 

3.4 Reasoning about Stack Reverse 
Consider the specification and implementation for the stack 
reverse method in Figure 6. The method has no precondition, 
and the postcondition states that the mathematical string that 
models the stack will be reversed. The implementation pops 
elements one at a time from the current stack and pushes them 
onto a temporary stack. Before the method returns, the current 
stack is swapped with the temporary stack. We want to reason 
about the correctness of this implementation with respect to its 
specification, so we include an invariant for the loop. The de-
creasing clause allows us to prove that the loop terminates.  
A tracing table for the reverse method is given below. It demon-
strates that when the current stack has a value of 〈 3, 4 〉, the 
reverse method will change its value to 〈 4, 3 〉, satisfying the 
postcondition of the reverse method. 

Once students are comfortable with tracing tables, we introduce 
them to symbolic reasoning [13][30]. A symbolic reasoning 
table for the reverse procedure is given in Table 5. For each 
state, the table shows a path condition, facts, and obligations. 
The path condition must hold for the program to enter the speci-
fied state, the facts tell us what we know about the values of the 
variables in that state, and the obligations tell us what needs to 
be true before we can move to the next state. 
public void reverse() 
        ensures this = REV(#this); 
    { 
        Stack temp; 
        Object x; 
        while (this.depth() != 0) 
           decreasing |this|; 
           maintaining REV(temp) o this = #this; 
        { 
           this.pop(x); 
           temp.push(x);  
        }  
        this :=: temp; 
    } 

Figure 6. Specification and implementation of stack reverse 
In general, obligations come from preconditions of called opera-
tions and facts come from their postconditions. For example, the 
requires clause of the pop method indicates that the stack must 
be non-empty. All variables are indexed with the current state, 
so in state 1 we have an obligation to show that |this1| > 0. The 
pop method ensures that the old value of the stack is equivalent 
to the new value of the x parameter concatenated with the new 
value of the stack. So in state 2 we have the fact that this1 = 〈x2〉 
o this2. We also know that temp2 = temp1 in accordance with the 
frame property.  

Table 4. Tracing table for stack reverse method 

St Facts 

0 this = 〈 3, 4 〉 and temp = 〈 〉 and x = 0 

while (this.length() != 0) { 
1 this = 〈 3, 4 〉 and temp = 〈 〉 and x = 0 

this.pop(x); 
2 this = 〈 4 〉 and temp = 〈 〉 and x = 3 

temp.push(x); 

3 this = 〈 4 〉 and temp = 〈 3 〉 and x = ?? 

// this.length() != 0 

1′ this = 〈 4 〉 and temp = 〈 3 〉 and x = ?? 

this.pop(x); 

2′ this = 〈 〉 and temp = 〈 3 〉 and x = 4 

temp.push(x); 

3′ this = 〈 〉 and temp = 〈 4, 3 〉 and x = ?? 
} // this.length() = 0 

4 this = 〈 〉 and temp = 〈 4, 3 〉 and x = ?? 

this :=: temp; 
5 this = 〈 4, 3 〉 and temp = 〈 〉 and x = ?? 
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The facts in state 0 come from the precondition (if any) of the 
method you are trying to prove correct, and the obligations in 
the last state come from the method’s postcondition. 
A reasoning table for code that involves a loop is slightly more 
complex than one that does not. It effectively breaks up the table 
into three separate sub-tables dedicated to proving the following 
three properties: initialization – the invariant is true when the 
loop first begins; maintenance – if the invariant holds at the 
beginning of the n-th iteration, it also holds at the end of the 
(n+1)-th iteration; and termination – the invariant and the nega-
tion of the while condition allow you to prove what you want to 
prove (in our case, the postcondition of the reverse method). 
Table 5. Symbolic reasoning table for stack reverse method 

St P Cond Facts Obligations 

0  Object.is_init(x0) and 
Stack.is_init(temp0) and 
this0 = #this 

|this0| ≠ 0 ⇒ 
REV(temp0) o this0  
  = #this 

while (this.length() != 0) { 

1 |this1| ≠ 0 REV(temp1) o this1  
  = #this and x1 = ?? 

|this1| > 0 

this.pop(x); 
2 |this1| ≠ 0 this1 = 〈x2〉 o this2 and 

temp2 = temp1 
 

temp.push(x); 
3 |this1| ≠ 0 this3 = 〈x2〉 o this2 and 

x3 = ?? and 
temp3 = temp2 

REV(temp3) o this3 
  = #this and 
|this3| < |this1| 

} 

4 |this4| = 0 REV(temp4) o this4 
  = #this and x4 = ?? 

 

this :=: temp; 
5 |this4| = 0 this4 = temp4 and 

temp5 = this4 and 
x5 = x4 

this5 = REV(#this) 

The obligation in state 0 must be discharged to prove the ini-
tialization property. Discharging the first part of the obligation 
in state 3 proves maintenance. And discharging the obligation in 
state 5 proves the termination property. Note that the second part 
of the obligation in state 3 comes from the decreasing clause. It 
must be discharged to prove that the while loop terminates. 
The obligations may be discharged with a theorem prover, but 
they may also be simple enough for students and programmers 
to reason about themselves. Take, for example, the obligation in 
state 5. We want to prove that this5 = REV(#this). We know 
from the facts in state 5 that this5 = temp4, so it suffices to show 
that temp4 = REV(#this). We know from the facts in state 4 that 
REV(temp4) o this4 = #this, and we know from the path condi-
tion that |this4| = 0 which can only happen if this4 is empty. So 
we know REV(temp4) = #this. Hence, temp4 = REV(#this). 

4. DISCUSSION 
The difficulty of reasoning in the presence of aliasing is well 
known [15], and numerous techniques to control aliasing in 
object-based languages have been proposed [2][3][9][23]. We 

have used the term alias avoidance to refer to techniques that 
promote alias-free alternatives to reference assignment, such as 
the approach based on destructive read in [25] and the approach 
based on swapping in [12]. The term uniqueness has generally 
come to refer to techniques such as [25] and variations that 
employ the destructive read operator. They preserve unique 
references to objects, but they also support a borrowing mecha-
nism that allows programmers to violate the uniqueness condi-
tion when they deem it useful. Borrowing raises the potential for 
aliasing and is therefore not conducive to value semantics. 
However, there is nothing fundamental about the destructive 
read operator that prevents it from being used in a language that 
does support value-based reasoning.  
Most proposals for controlling object aliasing attempt to mini-
mize the impact of their approach on programmers who have 
become accustomed to an object-oriented style of programming. 
While some practitioners have reported positive experiences 
when using a swap operator in object-based applications [16], 
we understand that allowing programmers to view all classes as 
value types is a radical departure from the traditional object-
oriented paradigm. Among other things, it removes the distinc-
tion between primitive types and user-defined types; it forces 
programmers who want to modify an object inside a container to 
remove, modify, and re-insert it; and it requires programmers to 
rethink common design patterns whose implementations tradi-
tionally use aliasing, such as the singleton and the observer 
patterns. The question of whether programmers accustomed to 
traditional object-oriented paradigms can make the transition to 
object-oriented languages that support direct reasoning can only 
be answered empirically. The desire to answer this question is 
one of our primary motivations for creating the Tako compiler.  
The current focus for the Tako language is its use as an educa-
tional tool to introduce students to formal reasoning. But we 
would like to develop it into a practical programming language 
that could be used alone or with Java components to develop 
non-trivial applications. Practical concerns include compiler 
optimizations, especially in the areas of automatic initialization 
and automatic casting. The current implementation of the Tako 
compiler is available at SourceForge under the name takocom-
piler. We have developed a medium-sized application (about 40 
classes) in Tako that interfaces with Java Swing components. 
We have no immediate plans to see how other object-oriented 
languages might benefit from alias-avoidance, but we would 
consider it a worthy long-term pursuit. In-out parameter passing 
is easier to implement on the .NET platform than the JVM, 
making C# appealing for our research, and Eiffel’s value-based 
expanded types may serve as a basis for alias avoidance. 
From a research perspective, we are still exploring the impact 
that alias avoidance and clean semantics will have on advanced 
language features such as inheritance and concurrency. To this 
end, we hope to leverage both Resolve research and the ongoing 
research on specification and verification of Java-like languages. 
We are exploring using Tako in the context of both lightweight 
and full verification. The general trade-offs on verification rigor 
are described in [33]. The ultimate goal might be a verifying 
compiler that—due to the relative simplicity of Tako’s seman-
tics—could be much more automated than a comparable tool for 
Java, and would generate verified Java byte code. 



 64 

5. ACKNOWLEDGMENTS 
Our thanks to Murali Sitaraman, Bill Ogden, Bruce Weide and 
other members of the Reusable Software Research Group for 
their valuable insights into the specification and verification of 
object-based languages. 

6. REFERENCES 
[1] Abadi, M. and Leino, K.R.M. A logic of object-oriented 

programs. Dauchet, M. ed. In Proceedings TAPSOFT ’97, 
pages 682-696. Springer-Verlag, New York, 1997. 

[2] Aldrich, J., Kostadinov, V. and Chambers, C., Alias anno-
tations for program understanding. In Proceedings OOP-
SLA ’02, pages 311-330. ACM Press, 2002.  

[3] Almeida, P.S., Balloon types: Controlling sharing of state 
in data types. In Proceedings ECOOP ’97, pages 32-59. 
Springer-Verlag, New York, 1997. 

[4] Baker, H.G. ‘Use-once’ variables and linear objects—
storage management, reflection and multi-threading. ACM 
SIGPLAN Notices, 30 (1). pages 45-52. 1995. 

[5] Bokowski, B. and Vitek, J., Confined types. In Proceedings 
OOPSLA ’99, pages 82-96. ACM Press, 1999. 

[6] Borgida, A., Mylopoulos, J. and Reiter, R., ... And nothing 
else changes?: The frame problem in procedure specifica-
tions. In Proceedings of the 15th International Conference 
on Software Engineering, pages 303-314. IEEE Computer 
Society Press, 1993. 

[7] Chalin, P. and Rioux, F., Non-null references by default in 
the Java Modeling Language. In Proceedings SAVCBS ’05, 
pages 70-76. 2005. 

[8] Cheon, Y., Leavens, G.T., Sitaraman, M. and Edwards, S. 
Model variables: Cleanly supporting abstraction in design 
by contract. Software: Practice and Experience, 35 (6), 
pages 583-589. 2005. 

[9] Clarke, D.G., Potter, J.M. and Noble, J., Ownership types 
for flexible alias protection. In Proceedings OOPSLA ’98, 
pages 48-64, ACM Press, 1998. 

[10] Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C., 
Introduction to Algorithms, 2nd ed., McGraw-Hill, 2001. 

[11] Gries, D. and Levin, G. Assignment and procedure call 
proof rules. ACM Transactions on Programming Lan-
guages and Systems, 2 (4), pages 564-579. 1980. 

[12] Harms, D.E. and Weide, B.W. Copying and swapping: 
Influences on the design of reusable software components. 
IEEE Transactions on Software Engineering, 17 (5). pages 
424-435. 1991. 

[13] Heym, W. Computer Program Verification: Improvements 
for Human Reasoning, Ph.D. thesis, The Ohio State Uni-
versity (1995) 

[14] Hogg, J., Islands: Aliasing protection in object-oriented 
languages. In Proceedings OOPSLA ’91, pages 271-285. 
ACM, 1991. 

[15] Hogg, J., Lea, D., Wills, A., deChampeaux, D. and Holt, R. 
The Geneva convention on the treatment of object aliasing. 
OOPS Messenger, 3 (2). pages 11-16. 1992. 

[16] Hollingsworth, J.E., Blankenship, L. and Weide, B.W., 
Experience report: Using Resolve/C++ for commercial 

software. In Proceedings FSE ’00, pages 11-19. ACM 
Press, 2000. 

[17] Kieburtz, R.B., Programming without pointer variables. In 
Proceedings of the SIGPLAN ’76 Conference on Data: Ab-
straction, Definition, and Structure, ACM Press, 1976. 

[18] Krone, J. The Role of Verification in Software Reusability, 
Doctoral Thesis, The Ohio State University, 1988. 

[19] Kulczycki, G., Sitaraman, M., Ogden, W.F. and Weide, 
B.W. Clean Semantics for Calls with Repeated Arguments, 
Technical Report RSRG-05-01, Clemson University, 2005. 

[20] Kulczycki, G., Sitaraman, M., Weide, B. and Rountev, N., 
A specification-based approach to reasoning about pointers. 
In Proceedings SAVCBS ’05, pages 55-62. 2005. 

[21] Leavens, G.T., Baker, A.A. and Ruby, C. JML: A notation 
for detailed design. Simmonds, I. ed. Behavioral Specifica-
tions of Businesses and Systems, Kluwer, 1999. 

[22] Leino, K.R.M., Data groups: Specifying the modification of 
extended state. In Proceedings OOPSLA ’98, pages 144-
153, ACM Press, 1998. 

[23] Meyer, B., Object-Oriented Software Construction, 2nd ed. 
Prentice Hall, 1997. 

[24] Müller, P. and Poetzsch-Heffter, A. Modular specification 
and verification techniques for object-oriented software 
components. Sitaraman, M. and Leavens, G. eds. Founda-
tions of Component-Based Systems, Cambridge University 
Press, Cambridge, United Kingdom, 2000. 

[25] Minsky, N.H., Towards alias-free pointers. In Proceedings 
ECOOP '96, pages 189-209. 1996. 

[26] Noble, J., Vitek, J. and Potter, J. Flexible alias protection. 
Lecture Notes in Computer Science, 1445. pages 158-185. 
1998. 

[27] Ogden, W.F. The Proper Conceptualization of Data Struc-
tures. The Ohio State University, Columbus, OH, 2000. 

[28] O’Hearn, P., Reynolds, J. and Yang, H. Local reasoning 
about programs that alter data structures. Lecture Notes in 
Computer Science, 2142, 2001. 

[29] Popek, G.J., Horning, J.J., Lampson, B.W., Mitchell, J.G. 
and London, R.L. Notes on the design of Euclid. ACM SIG-
PLAN Notices, 12 (3), poages 11-18. 1977. 

[30] Sitaraman, M., Atkinson, S., Kulczycki, G., Weide, B.W., 
Long, T.J., Bucci, P., Heym, W., Pike, S. and 
Hollingsworth, J.E., Reasoning about software-component 
behavior. In Proceedings ICSR ’00, pages 266-283. 
Springer-Verlag, 2000. 

[31] Sitaraman, M. and Weide, B.W. Component-based soft-
ware using Resolve. ACM Software Engineering Notes, 19 
(4), pages 21-67. 1994. 

[32] Weide, B.W. and Heym, W.D., Specification and verifica-
tion with references. In Proceedings SAVCBS ’01. 2001. 

[33] Wilson, T., Maharaj, S., and Clark, R.G., Omnibus verifica-
tion policies: a flexible, configurable approach to assertion-
based software verification. In SEFM ’05.  IEEE Press. 
2005. 


