
57

Simplifying Reasoning about Objects with Tako
Gregory Kulczycki and Jyotindra Vasudeo

Virginia Tech, Falls Church, VA 22043

{gregwk, vasudeo}@vt.edu

ABSTRACT
A fundamental complexity in understanding and reasoning about
object-oriented languages is the need for programmers to view
variables as references to objects rather than directly as objects.
The need arises because a simplified view of variables as (muta-
ble) objects is not sound in the presence of aliasing. Tako is an
object-oriented language that is syntactically similar to Java but
incorporates alias-avoidance techniques. This paper describes
the features of the Tako language and shows how it allows
programmers to view all variables directly as objects without
compromising sound reasoning. It discusses the benefits of such
a language, including its use as an instructional tool to help
teach students how to reason formally about their code.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Contructs and
Features – abstract data types, polymorphism, control struc-
tures.

General Terms
Design, Education, Languages, Verification.

Keywords
Alaising, Semantics, Java, Tako

1. INTRODUCTION
References are pervasive in popular object-oriented languages.
They permit efficient data assignment and parameter passing of
non-trivial objects and are used to implement object identity.
However, the need to reason about references and the aliasing
that results from their use in such languages has frustrated stu-
dents, programmers and formalists alike. As a result, significant
research has focused on alias control techniques and alias-
avoidance techniques for object-oriented languages [15].
Alias control techniques typically involve extending common
object-oriented languages with annotations to ensure that certain
types of aliasing do not occur [3][9][14][26]. They strive to
conform as much as possible with a traditional style of object-
oriented programming. Therefore, potentially aliased objects are
still the norm, while alias-controlled objects are the exception.
In contrast, alias avoidance techniques typically involve a fun-

damental change to traditional object-oriented languages by
replacing reference assignment—the primary cause of aliasing—
with alternatives that do not introduce aliasing, such as value
copying [3], destructive read [25], or swapping [12]. These
approaches are also referred to as ones that use unique refer-
ences, because in the implementation of languages that use
them, each object must have exactly one reference to it. Despite
the names alias control and alias avoidance, nearly all ap-
proaches to object aliasing—including ours—permits aliasing to
some degree. In alias avoidance techniques, however, potential
aliasing is the exception rather than the rule.
A common theme in languages that use alias control and even
most alias avoidance techniques is that sound reasoning forces
their semantics to be referenced-based. Variables that denote
objects are viewed as mere references into a global heap, and
method calls modify the heap abstraction rather than the abstract
values of the variables (because the abstract values of the vari-
ables, according to the semantics, are references).
The language described in this paper, Tako, is different in this
respect. It is intended to facilitate a simple value-based seman-
tics called clean semantics [19] that has the following properties:
(1) the state space is comprised of variables whose abstract
values are objects rather than references, and (2) the effect of a
method call is restricted to the abstract values of the variables
involved: the arguments to the call and any relevant globals.
The key benefit of this approach is that it greatly simplifies
reasoning about objects. Representing the state space abstractly
is straightforward whether programmers are tracing through
their code or reasoning about it symbolically. The fact that Tako
supports a simple and sound view of the program state makes it
particularly useful as an educational tool for introducing stu-
dents to formal reasoning. From the perspective of object-
oriented programming, a drawback of Tako is that it does not
conform to some of the paradigms of traditional object-oriented
programming. Despite this, Tako, like Java, contains all of the
features traditionally found in object-oriented languages, such as
classes, inheritance, and polymorphism.
Tako is essentially a redesign of Java that incorporates the alias-
avoidance techniques found in Resolve. The Resolve language
[30][31] is an integrated programming and specification lan-
guage intended to support full, heavyweight program verifica-
tion. For years, various universities including Ohio State, Clem-
son, and Virginia Tech have offered courses in which variants of
Resolve have been used to introduce both undergraduate and
graduate students to formal reasoning. Resolve has many fea-
tures that facilitate formal verification, but as designers of Tako,
we are primarily interested in the alias-avoidance features of
Resolve and whether they can be successfully and independently
applied to a traditional object-oriented language such as Java.
Section 2 of this paper introduces the features of Tako, with
emphasis on how it differs from Java. Section 3 describes how

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAVCBS 2006, November 10-11, 2006, Portland, Oregon, USA.
Copyright 2006 ACM ISBN 1-59593-586-X/06/11…$5.00.

 58

Tako supports clean semantics and facilitates reasoning, using
examples similar to those we have used in courses at Virginia
Tech. Section 4 discusses related work and future directions.

2. OVERVIEW AND FEATURES
As illustrated in Figure 1, a Tako stack implementation is syn-
tactically similar to a Java stack implementation. They declare
the same variables, they have similar methods, and, with one
exception, they use the same keywords.

2.1 Data Assignment
The most important difference between the classes in Figure 1 is
that wherever Java uses reference assignment—the main source
of aliasing—Tako uses alternative data assignment mechanisms.
As in the Resolve language, Tako uses swapping as its primary
means of data assignment. In the body of the push method, the
Java code assigns the object in contents[top] to x by copying its
reference. But the Tako code uses a swapping operator (:=:) to
swap the values of contents[top] with x. A call to Java’s push
method creates an alias between the incoming object x and the
top element of the current stack; a call to Tako’s push method
transfers x’s object to the top of the stack, and replaces it with
some unspecified but valid object of its type.
Swapping is described as simultaneous assignment in [17] and is
proposed as an alternative to both reference and value copying
in [12]. Swapping is a constant-time operation because a com-
piler can implement it by swapping object references; swapping
preserves unique references, so programmers can reason about it
as if object values are swapped. Swapping never creates aliases.
For efficiency, a compiler can implement small objects such as
integers and booleans directly as objects while implementing
non-trivial objects using references.
Swapping is symmetric—it requires both objects to be of the
same type. For assigning a type to a supertype, Tako provides an
initializing transfer operator (←). The initializing transfer opera-
tion s ← c assigns circle c to shape s and initializes c to a new

circle object. The approach does not introduce aliasing, but it
does require the creation of a new object, and—because Tako’s
underlying implementation guarantees unique references—it
ultimately requires memory from an old object to be reclaimed.
Therefore, initializing transfer is less efficient than swapping.

2.2 Function Assignment
Both the swap statement and the transfer statement require a
variable on either side of the operator. For assigning the result of
an expression evaluation to a variable, Tako provides a function
assignment operator (:=), as in the new expression that initializes
the contents array in the stack’s constructor in Figure 1. The
same operator is used to copy values from one variable to an-
other, as in the statement MAX := n.
Java methods return references rather than values, potentially
introducing aliasing. For example, the Java pop method is a
side-effecting function that returns a reference to contents[top],
so that the assignment x = s.pop() causes two references to point
to the same object. Tako avoids this problem with the introduc-
tion of a distinguished result variable that always holds the
return value of a non-void method. The result variable is auto-
matically initialized at the beginning of the method, and what-
ever object value it holds at the end of the method is returned.
Since the result variable goes out of scope at the end of the
method, we know that any returned reference (to the result
variable’s object) will continue to be unique. The syntax return
〈expression〉 is not permitted in Tako, though the return key-
word may be used alone to denote that the program should
return from the method with the current result value.
Consider the following Tako pop method written as a side-
effecting function.
 public Object pop() {
 top--;
 result :=: contents[top];
 }

The result variable gets a new initial Object as soon as the

public class BddStack {
 private final int MAX;
 private Object[] contents;
 private int top;

 public Stack(int n) {
 MAX := n;
 contents := new Object[MAX];
 }

 public void push(Object x) {
 assert depth() < MAX;
 contents[top] :=: x;
 top++;
 }

 public void pop(Object x) {
 assert depth() > 0;
 top--;
 x :=: contents[top];
 }

 public int depth() {
 result := top;
 }

}

 public class BddStack {
 private final int MAX;
 private Object[] contents;
 private int top;

 public Stack(int n) {
 MAX = n;
 contents = new Object[MAX];
 }

 public void push(Object x) {
 assert depth() < MAX;
 contents[top] = x;
 top++;
 }

 public Object pop() {
 assert depth() > 0;
 top--;
 return contents[top];
 }

 public int depth() {
 return top;
 }

}

Figure 1. A Tako bounded stack implementation (left) compared to a Java bounded stack implementation (right)

 59

method is invoked, as if the first statement were Object result :=
new Object(). After the swap operation, result holds the object
originally held by contents[top] and contents[top] holds the
newly created object originally held by result. Thus, the method
returns the object originally at the top of the current stack. Inter-
nally, it places a new initialized object in the cell of the contents
array that previously held the stack’s top element.
The function assignment operator can also be used to copy
objects. The compiler expects the function assignment operator
to have a variable on the left-hand side and an expression on the
right-hand side. If it does not find a variable on the left-hand
side, it will report an error. However, if it finds a variable rather
than an expression on the right-hand side, it will check to see if a
replica method has been implemented for the variable’s type. If
so, it will call the replica method for the variable’s object; if not,
it will report that no replica method could be found. Thus, the
compiler considers the statement s := t to be special syntax for
s := t.replica(). The replica method is intended to be used for
small objects where copying is the preferred form of data as-
signment, such as integers and booleans. In principle, though,
any Tako class can be extended with a replica method.

2.3 Parameter Passing
Parameter passing in Java is accomplished by copying the refer-
ences of the arguments to the formal parameters without copy-
ing them out again. This approach is problematic for a language
that intends to facilitate value semantics, because the semantics
that describe this form of parameter passing are difficult to
formulate without introducing the notion of reference. Java
parameter passing cannot be viewed as in-out because assign-
ments to formals inside the body are not reflected in the actuals.
It cannot be viewed as copying object values in only, because in
Java you can update an argument’s conceptual object value as
long as you do not change its reference value.
Tako avoids this difficulty by fully supporting in-out (also called
value-result) parameter passing. Conceptually, programmers can
reason about in-out parameter passing as if object values are
copied into the method, the method is executed, and object
values are copied out again. However, a compiler can implement
in-out parameter passing efficiently by copying references to the
formal parameters, executing the method, and copying refer-
ences back out, which is what C# does with ref parameters.
The effects of in-out parameter passing with references and in-
out parameter passing with objects are semantically equivalent
whenever the arguments are not aliased [11]. Since Tako avoids
aliasing, in-out parameter passing is an appropriate choice. Note
that Tako uses in-out parameter passing by default for all pa-
rameters, even the current this parameter, which cannot be a ref
parameter in C#.
Using in-out parameter passing gives programmers the option of
writing certain methods as procedures (i.e., void methods) rather
than side-effecting functions. For example, the Tako pop method
is a procedure whereas the Java pop method must be written as a
side-effecting function. A function is free of side-effects if its
execution does not change the program state. Keeping functions
free from side-effects simplifies reasoning about programs that
include conditions, as in if and while statements.
One aliasing problem that in-out parameter passing does not
solve is the repeated argument problem [19]. As long as parame-
ter passing is implemented by copying references—whether in-

out or in-only—aliasing can be introduced when arguments are
repeated in a call. For example, the call q.append(q) introduces
aliasing between the implicit formal parameter this and the
explicit formal parameter in the body of the append method.
The call a[i].append(a[j]) does the same when i and j are equal.
We are currently exploring alternative designs for handling
repeated arguments. One option is to throw a runtime error when
repeats occur, another is to initialize the second and subsequent
repeats, as described in [19]. In either case, the compiler will
warn programmers when arguments are potentially repeated.
Tako includes an eval parameter mode that indicates that a
function is expected for evaluation. The eval mode is often used
for small types such as integers and booleans. As with function
assignment, if a variable a is given where a function is expected,
the compiler will translate it as a.replica(). If no replica function
is found, the compiler will report an error. Since the result of an
expression evaluation is always a new object, repeated argu-
ments do not pose a problem for eval parameters.
A potential problem with in-out parameter passing and Java-like
inheritance concerns the passing of subtypes. If c has type Cat
and d has type Dog, what should the effect be of “s.push(c);
s.pop(d);”? If we blindly permit this, it results in the dog vari-
able d holding a cat object, causing a type violation. Some ob-
ject-oriented languages that support the conceptual equivalent of
in-out parameters (such as C#) do not allow programmers to
pass subtype objects to them. In Tako, this is not an option—
particularly since Tako does not yet support generics. The stack
class in Figure 1 would be of little value if we were restricted to
populating the stack with objects of type Object.
One option is that when a parameter is transferred back, an
implicit cast is done. If the cast cannot be made, a runtime error
occurs. Due to the poor performance of runtime casts in Java,
this solution, though adequate, is not the most efficient, and we
are currently exploring alternatives.

2.4 Initialization
As in the case of the initializing transfer operator, Tako some-
times requires the compiler to automatically create new, initial-
ized objects. This is done for newly declared variables as well.
In Java, the declaration “Circle c;” does not initialize c, and if c
is not assigned to before it is used, a compile-time error occurs.
In Tako, the declaration Circle c is interpreted by the compiler
as Circle c := new Circle().
Types that do not have a default constructor get initialized to
null. Tako tries to facilitate a view of all variables as objects, so
including null values in the language may seem odd. Techni-
cally, a value semantics can accommodate null values by intro-
ducing them as distinguished “object” values. Specifications are
complicated when null values are permitted [7]. However, types
derived from interfaces cannot have constructors, and some
classes, such as the bounded stack class in Figure 1, effectively
require parameters in their constructors. Therefore, in the current
version of Tako, types may be nullable or non-nullable, based on
whether a default constructor is provided for the class. Non-
nullable classes are encouraged because they simplify reasoning.
Null pointer exceptions do not occur with non-nullable classes.

2.5 Pointer Component
One of the primary motivations for Tako is the simplification of
object-based reasoning through alias avoidance. By providing

 60

efficient alternatives to data assignment and parameter passing
that avoid aliasing, Tako supports the construction of typical
classes as pure value types, allowing programmers to reason
about variables directly as objects. There are circumstances,
however, in which aliasing cannot be avoided without sacrific-
ing efficiency. For example, references and aliasing are needed
to implement all the methods in the list component in constant
time. For the efficient implementation of lists and other typically
linked data structures, Tako provides a pointer component that
models a system of linked locations. Each location holds data
(objects) and has a fixed number of links to other locations.
Position variables reside at the various locations. In the follow-
ing Position interface, k is the number of outgoing links at each
location.

 interface Position {
 static final int k;
 public void takeNew();
 public void moveTo(Position p);
 public void redirectLink(int k, Position p);
 public void followLink(int k);
 public void swapContents(Object x);
 public boolean isWith(Position p);
 public boolean isAtVoid();
 }

Presenting pointers in the form of a class has the advantage that
programmers can reason about pointers the same way they
reason about any other object. No special proof rules are needed
for pointers, and no universal heap structure needs to be in-
cluded in the semantics. Programmers can maintain a sound
view of position variables as abstract object values just as they
can with any other variable in Tako.

allocate p; p.takeNew();

 p -> q; p.moveTo(q);

 p -> q^PREV; p.moveTo(q); p.follow(PREV);

 p^NEXT -> q; p.redirectLink(NEXT, q);

 p <-> q; p :=: q;

 p *:=: s; p.swapContents(s);

Figure 2. Special syntax for position objects

The Position interface provides a way for programmers to view
pointers in a value-based reasoning environment. However, the
compiler cannot implement a Position class as it can other
classes because position variables must not only provide the
functional benefits of pointers but the performance benefits as
well. For example, the call p.moveTo(q) moves p to q’s location,
effectively resulting in p and q being aliases. Although the
programmer can reason about the statement as a method call, the
Tako compiler will implement it by copying a single reference.
With the help of the special syntax shown in Figure 2, the im-
plementation of linked data structures using Tako pointers has a
relatively straightforward translation into Java, as illustrated in
Figure 3. The Tako pointer component shares many similarities
with Resolve’s Location_Linking_Template, whose specification
and reasoning in terms of clean semantics is detailed in [20].

3. VALUE-BASED REASONING
This section describes the properties of the value-based reason-
ing system that Tako facilitates and presents an example of
specification and verification using Tako.

3.1 Clean Semantics
The value-based semantics for Tako should have the following
two properties. First, the state space should be based on the
object values of variables. Specifically, at any point in the pro-
gram, the state consists of the abstract object values of the cur-
rently defined programming or conceptual variables. Conceptual
variables are similar to model variables or data groups [8][22],
and they are used to help model the program state. An example
of their use is given in the mathematical model of the reference-
based stack component below. The second property of our
semantics is a frame property [6]. It states that the portion of the
state space that can be modified by a method call is restricted to
certain syntactically discernible variables—the arguments to the
call and any global (static) variables listed in the affects clause
of the method’s declaration.
Together, the variable-based property and the effects-restricted
property define the behavior of a clean semantics as given in
[19]. This notion was proposed as a syntactic yet formalizable
way to capture the notion of localized reasoning about operation

public class LinkedList {
 class Node is Object^(NEXT);
 private Node head, pre, last;
 private int left_length, right_length;

 public LinkedList() {
 allocate head;
 pre -> head;
 last -> head;
 }

 public void insert(Object x) {
 Node post, new_pos;
 post -> pre^NEXT;
 allocate new_pos;
 new_pos *:=: x;
 pre^NEXT -> new_pos;

 ...

 public class LinkedList {
 class Node {
 Node next = null;
 Object contents = new Object();
 }
 private Node head, pre, last;
 private int left_length, right_length;

 public LinkedList() {
 head = new Node();
 pre = head;
 last = head;
 }

 public void insert(Object x) {
 Node post, new_pos;
 post = pre.next;
 new_pos = new Node();
 new_pos.contents = x;
 pre.next = new_pos;

 ...

Figure 3. A portion of a linked list implementation using Tako (left) compared to one using Java (right)

 61

invocations. The potential for aliasing in a programming lan-
guage complicates reasoning and makes clean semantics harder
to achieve. However, a system may permit aliasing and still
conform to clean semantics, as with Tako’s pointer component.

3.2 Simple Stack Specification
This section describes the specification and reasoning for a Tako
stack component. The stack component is a typical Tako com-
ponent because it specifies a single mathematical model for its
type and does not require any conceptual state variables to
describe its behavior. We have used this example and others like
it to introduce graduate students to formal reasoning in courses
not normally associated with formal methods, such as software
engineering, and theory of algorithms. The software engineering
course covers general topics, but approximately the last 25% of
the course focuses on component-based software engineering
and formal methods. Tako code is used to illustrate key princi-
ples. The algorithms course uses the Cormen et al. text [10],
whose latest edition puts greater emphasis on demonstrating the
correctness of algorithms and includes discussions on loop
invariants. Their “proofs” of correctness are typical mathemati-
cal proofs given in natural language. We occasionally augment
these proofs using formally specified Tako components and
demonstrate formal correctness through a symbolic reasoning
table, like the one described below.
 import spec.MathString;

 public interface Stack {

 model MathString;

 initialization ensures
 this = EMPTY_STRING;

 public void push(Object x);
 ensures this = <#x> o #this;

 public void pop(Object x);
 requires |this| > 0;
 ensures #this = <x> o this;

 public int depth();
 ensures this = #this and result = |this|;

 }

Figure 4. A specification for a Tako stack
Figure 4 gives a specification for an unbounded Tako stack. The
model clause indicates that an object of type Stack is modeled as
(has a conceptual value of) a mathematical string of objects. The
clause does not specify a variable name as the current stack this
is implied. A string is similar to a sequence except that it is not
indexed. The initialization ensures clause gives the behavior of
the default (no-argument) constructor, which in this case guaran-
tees that an initial stack will be empty.
A Java stack specified in JML (the Java Modeling Language
[21]) would likely be modeled using a JMLObjectSequence.
JML provides three different sequences depending on weather
the sequence holds object types (references to objects), equals
types (non-clonable objects), or value types (object values).
Variables in Tako always denote object values, so all mathe-
matical structures hold value types, eliminating the need for
such a distinction.
A hash mark (#) is used only in an ensures clause—it denotes
the incoming value of a variable. The expression 〈e〉 is a unary
string containing the element e, and the symbol o denotes string
concatenation. So the ensures clause for push states that the

current stack is equal to the string containing the original value
of x concatenated with the original stack value. Notice that the
outgoing value of x is left unspecified. The method is specified
this way partly because of the new paradigm for component
construction in Tako. If we specified that the outgoing value of x
was the same as the incoming value of x (x = #x) we would
effectively force the implementer to make a deep copy of x.
When we don’t specify how x changes, the reasoning system
guarantees only that x contains a valid value of its type.
Only actual parameters and global variables listed in an affects
clause may be modified by a method, so Tako does not provide
a modifies or assignable clause as JML does. None of the stack
methods modifies any global state variables, so none of them
have an affects clause.
In the depth method, the keyword result denotes the return
value. Also, since the current stack (this) is considered the first
parameter to the call, our frame property states that its value may
be modified. But we do not want the function to have side-
effects, so we must explicitly state in the ensures clause that it is
not modified.
Once students are introduced to formal specification, they prac-
tice reading the specifications by tracing through code. The
following tracing table (Table 1) gives an example. Students are
given variable values for state 0 and asked to fill in the other
states. The assertion x = ?? indicates that x is a valid but unspeci-
fied value of its type.

Table 1. Tracing table for simple stack code

3.3 More Complex Stack Specification
The fact that the potential for aliasing does not exist greatly
simplifies our ability to represent and understand the state space.
Consider the tracing table in Table 2 for similar code with the
swap statement replaced by an assignment. If this were Java
code, we would know that the object value of s in state 2 is
〈 3, 4, 5 〉 since s and t point to the same object. But if we as-
sume that variables denote strict object values we will conclude
that s = 〈 4, 5 〉 is unchanged, making the simple value-based
specification unsound in the presence of aliasing.

Table 2. Problematic tracing table for code with aliasing

We can remedy this by giving the stack a specification that
accounts for aliasing, such as the one in Figure 5. Here, stack
variables are modeled as locations, and the conceptual variable

St Facts
0 s = 〈 4, 5 〉 and t = 〈 7, 8, 9 〉 and x = 3
t :=: s;
1 s = 〈 7, 8, 9 〉 and t = 〈 4, 5 〉 and x = 3
t.push(x);
2 s = 〈 7, 8, 9 〉 and t = 〈 3, 4, 5 〉 and x = ??

St Facts
0 s = 〈 4, 5 〉 and t = 〈 7, 8, 9 〉 and x = 3
t = s;
1 s = 〈 4, 5 〉 and t = 〈 4, 5 〉 and x = 3
t.push(x);
2 s = /* what goes here? */ and t = 〈 3, 4, 5 〉 and x = ??

 62

obj maps locations to mathematical strings (conceptual stack
objects). Like to model variables in JML, conceptual variables
do not correspond to programming objects, but they are neces-
sary for reasoning about the component. The conceptual variable
obj is a global variable, so it must be listed in the affects clause
of any method (such as push) that potentially modifies its value.

With this specification, we can reason soundly about the stack
component in the presence of aliasing, as shown in Table 3.
However, even this specification is an oversimplification of
object-oriented logics as it does not account for the effects of
(future) inheritance.

 import spec.MathString;
 import spec.Location;

 public interface Stack {

 var obj: Location → MathString;
 model Location;

 public void push(Object x);
 affects obj;
 ensures this = #this and
 obj(this) = <#x> o #obj(this) and
 ∀r: Stack, if r ≠ this then
 obj(r) = #obj(r);

Figure 5. Portion of a reference-based stack specification

We can simplify the appearance of the specification in Figure 5
to something resembling Figure 4 by indicating—as JML
does—that all variables have reference semantics. This ap-
proach, however, will not simplify the states in our tracing table.
There is no rule that can tell us how to transition from the state
“s = 〈 4, 5 〉 and t = 〈 4, 5 〉 and x = 3” through s.push(x), to the
next state, without telling us whether s and t are aliased.

Table 3. Sound tracing table for stack code with aliasing

St Facts
0 s = @47 and t = @53 and x = 3 and

contents = { @47 |→ 〈 4, 5 〉, @53 |→ 〈 7, 8, 9 〉 }
t = s;
1 s = @47 and t = @47 and x = 3 and

contents = { @47 |→ 〈 4, 5 〉, @53 |→ 〈 7, 8, 9 〉 }
s.push(x);
2 s = @47 and t = @53 and x = 3 and

contents = { @47 |→ 〈 3, 4, 5 〉, @53 |→ 〈 7, 8, 9 〉 }

3.4 Reasoning about Stack Reverse
Consider the specification and implementation for the stack
reverse method in Figure 6. The method has no precondition,
and the postcondition states that the mathematical string that
models the stack will be reversed. The implementation pops
elements one at a time from the current stack and pushes them
onto a temporary stack. Before the method returns, the current
stack is swapped with the temporary stack. We want to reason
about the correctness of this implementation with respect to its
specification, so we include an invariant for the loop. The de-
creasing clause allows us to prove that the loop terminates.
A tracing table for the reverse method is given below. It demon-
strates that when the current stack has a value of 〈 3, 4 〉, the
reverse method will change its value to 〈 4, 3 〉, satisfying the
postcondition of the reverse method.

Once students are comfortable with tracing tables, we introduce
them to symbolic reasoning [13][30]. A symbolic reasoning
table for the reverse procedure is given in Table 5. For each
state, the table shows a path condition, facts, and obligations.
The path condition must hold for the program to enter the speci-
fied state, the facts tell us what we know about the values of the
variables in that state, and the obligations tell us what needs to
be true before we can move to the next state.
public void reverse()
 ensures this = REV(#this);
 {
 Stack temp;
 Object x;
 while (this.depth() != 0)
 decreasing |this|;
 maintaining REV(temp) o this = #this;
 {
 this.pop(x);
 temp.push(x);
 }
 this :=: temp;
 }

Figure 6. Specification and implementation of stack reverse
In general, obligations come from preconditions of called opera-
tions and facts come from their postconditions. For example, the
requires clause of the pop method indicates that the stack must
be non-empty. All variables are indexed with the current state,
so in state 1 we have an obligation to show that |this1| > 0. The
pop method ensures that the old value of the stack is equivalent
to the new value of the x parameter concatenated with the new
value of the stack. So in state 2 we have the fact that this1 = 〈x2〉
o this2. We also know that temp2 = temp1 in accordance with the
frame property.

Table 4. Tracing table for stack reverse method

St Facts

0 this = 〈 3, 4 〉 and temp = 〈 〉 and x = 0

while (this.length() != 0) {
1 this = 〈 3, 4 〉 and temp = 〈 〉 and x = 0

this.pop(x);
2 this = 〈 4 〉 and temp = 〈 〉 and x = 3

temp.push(x);

3 this = 〈 4 〉 and temp = 〈 3 〉 and x = ??

// this.length() != 0

1′ this = 〈 4 〉 and temp = 〈 3 〉 and x = ??

this.pop(x);

2′ this = 〈 〉 and temp = 〈 3 〉 and x = 4

temp.push(x);

3′ this = 〈 〉 and temp = 〈 4, 3 〉 and x = ??
} // this.length() = 0

4 this = 〈 〉 and temp = 〈 4, 3 〉 and x = ??

this :=: temp;
5 this = 〈 4, 3 〉 and temp = 〈 〉 and x = ??

 63

The facts in state 0 come from the precondition (if any) of the
method you are trying to prove correct, and the obligations in
the last state come from the method’s postcondition.
A reasoning table for code that involves a loop is slightly more
complex than one that does not. It effectively breaks up the table
into three separate sub-tables dedicated to proving the following
three properties: initialization – the invariant is true when the
loop first begins; maintenance – if the invariant holds at the
beginning of the n-th iteration, it also holds at the end of the
(n+1)-th iteration; and termination – the invariant and the nega-
tion of the while condition allow you to prove what you want to
prove (in our case, the postcondition of the reverse method).
Table 5. Symbolic reasoning table for stack reverse method

St P Cond Facts Obligations

0 Object.is_init(x0) and
Stack.is_init(temp0) and
this0 = #this

|this0| ≠ 0 ⇒
REV(temp0) o this0
 = #this

while (this.length() != 0) {

1 |this1| ≠ 0 REV(temp1) o this1
 = #this and x1 = ??

|this1| > 0

this.pop(x);
2 |this1| ≠ 0 this1 = 〈x2〉 o this2 and

temp2 = temp1

temp.push(x);
3 |this1| ≠ 0 this3 = 〈x2〉 o this2 and

x3 = ?? and
temp3 = temp2

REV(temp3) o this3
 = #this and
|this3| < |this1|

}

4 |this4| = 0 REV(temp4) o this4
 = #this and x4 = ??

this :=: temp;
5 |this4| = 0 this4 = temp4 and

temp5 = this4 and
x5 = x4

this5 = REV(#this)

The obligation in state 0 must be discharged to prove the ini-
tialization property. Discharging the first part of the obligation
in state 3 proves maintenance. And discharging the obligation in
state 5 proves the termination property. Note that the second part
of the obligation in state 3 comes from the decreasing clause. It
must be discharged to prove that the while loop terminates.
The obligations may be discharged with a theorem prover, but
they may also be simple enough for students and programmers
to reason about themselves. Take, for example, the obligation in
state 5. We want to prove that this5 = REV(#this). We know
from the facts in state 5 that this5 = temp4, so it suffices to show
that temp4 = REV(#this). We know from the facts in state 4 that
REV(temp4) o this4 = #this, and we know from the path condi-
tion that |this4| = 0 which can only happen if this4 is empty. So
we know REV(temp4) = #this. Hence, temp4 = REV(#this).

4. DISCUSSION
The difficulty of reasoning in the presence of aliasing is well
known [15], and numerous techniques to control aliasing in
object-based languages have been proposed [2][3][9][23]. We

have used the term alias avoidance to refer to techniques that
promote alias-free alternatives to reference assignment, such as
the approach based on destructive read in [25] and the approach
based on swapping in [12]. The term uniqueness has generally
come to refer to techniques such as [25] and variations that
employ the destructive read operator. They preserve unique
references to objects, but they also support a borrowing mecha-
nism that allows programmers to violate the uniqueness condi-
tion when they deem it useful. Borrowing raises the potential for
aliasing and is therefore not conducive to value semantics.
However, there is nothing fundamental about the destructive
read operator that prevents it from being used in a language that
does support value-based reasoning.
Most proposals for controlling object aliasing attempt to mini-
mize the impact of their approach on programmers who have
become accustomed to an object-oriented style of programming.
While some practitioners have reported positive experiences
when using a swap operator in object-based applications [16],
we understand that allowing programmers to view all classes as
value types is a radical departure from the traditional object-
oriented paradigm. Among other things, it removes the distinc-
tion between primitive types and user-defined types; it forces
programmers who want to modify an object inside a container to
remove, modify, and re-insert it; and it requires programmers to
rethink common design patterns whose implementations tradi-
tionally use aliasing, such as the singleton and the observer
patterns. The question of whether programmers accustomed to
traditional object-oriented paradigms can make the transition to
object-oriented languages that support direct reasoning can only
be answered empirically. The desire to answer this question is
one of our primary motivations for creating the Tako compiler.
The current focus for the Tako language is its use as an educa-
tional tool to introduce students to formal reasoning. But we
would like to develop it into a practical programming language
that could be used alone or with Java components to develop
non-trivial applications. Practical concerns include compiler
optimizations, especially in the areas of automatic initialization
and automatic casting. The current implementation of the Tako
compiler is available at SourceForge under the name takocom-
piler. We have developed a medium-sized application (about 40
classes) in Tako that interfaces with Java Swing components.
We have no immediate plans to see how other object-oriented
languages might benefit from alias-avoidance, but we would
consider it a worthy long-term pursuit. In-out parameter passing
is easier to implement on the .NET platform than the JVM,
making C# appealing for our research, and Eiffel’s value-based
expanded types may serve as a basis for alias avoidance.
From a research perspective, we are still exploring the impact
that alias avoidance and clean semantics will have on advanced
language features such as inheritance and concurrency. To this
end, we hope to leverage both Resolve research and the ongoing
research on specification and verification of Java-like languages.
We are exploring using Tako in the context of both lightweight
and full verification. The general trade-offs on verification rigor
are described in [33]. The ultimate goal might be a verifying
compiler that—due to the relative simplicity of Tako’s seman-
tics—could be much more automated than a comparable tool for
Java, and would generate verified Java byte code.

 64

5. ACKNOWLEDGMENTS
Our thanks to Murali Sitaraman, Bill Ogden, Bruce Weide and
other members of the Reusable Software Research Group for
their valuable insights into the specification and verification of
object-based languages.

6. REFERENCES
[1] Abadi, M. and Leino, K.R.M. A logic of object-oriented

programs. Dauchet, M. ed. In Proceedings TAPSOFT ’97,
pages 682-696. Springer-Verlag, New York, 1997.

[2] Aldrich, J., Kostadinov, V. and Chambers, C., Alias anno-
tations for program understanding. In Proceedings OOP-
SLA ’02, pages 311-330. ACM Press, 2002.

[3] Almeida, P.S., Balloon types: Controlling sharing of state
in data types. In Proceedings ECOOP ’97, pages 32-59.
Springer-Verlag, New York, 1997.

[4] Baker, H.G. ‘Use-once’ variables and linear objects—
storage management, reflection and multi-threading. ACM
SIGPLAN Notices, 30 (1). pages 45-52. 1995.

[5] Bokowski, B. and Vitek, J., Confined types. In Proceedings
OOPSLA ’99, pages 82-96. ACM Press, 1999.

[6] Borgida, A., Mylopoulos, J. and Reiter, R., ... And nothing
else changes?: The frame problem in procedure specifica-
tions. In Proceedings of the 15th International Conference
on Software Engineering, pages 303-314. IEEE Computer
Society Press, 1993.

[7] Chalin, P. and Rioux, F., Non-null references by default in
the Java Modeling Language. In Proceedings SAVCBS ’05,
pages 70-76. 2005.

[8] Cheon, Y., Leavens, G.T., Sitaraman, M. and Edwards, S.
Model variables: Cleanly supporting abstraction in design
by contract. Software: Practice and Experience, 35 (6),
pages 583-589. 2005.

[9] Clarke, D.G., Potter, J.M. and Noble, J., Ownership types
for flexible alias protection. In Proceedings OOPSLA ’98,
pages 48-64, ACM Press, 1998.

[10] Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C.,
Introduction to Algorithms, 2nd ed., McGraw-Hill, 2001.

[11] Gries, D. and Levin, G. Assignment and procedure call
proof rules. ACM Transactions on Programming Lan-
guages and Systems, 2 (4), pages 564-579. 1980.

[12] Harms, D.E. and Weide, B.W. Copying and swapping:
Influences on the design of reusable software components.
IEEE Transactions on Software Engineering, 17 (5). pages
424-435. 1991.

[13] Heym, W. Computer Program Verification: Improvements
for Human Reasoning, Ph.D. thesis, The Ohio State Uni-
versity (1995)

[14] Hogg, J., Islands: Aliasing protection in object-oriented
languages. In Proceedings OOPSLA ’91, pages 271-285.
ACM, 1991.

[15] Hogg, J., Lea, D., Wills, A., deChampeaux, D. and Holt, R.
The Geneva convention on the treatment of object aliasing.
OOPS Messenger, 3 (2). pages 11-16. 1992.

[16] Hollingsworth, J.E., Blankenship, L. and Weide, B.W.,
Experience report: Using Resolve/C++ for commercial

software. In Proceedings FSE ’00, pages 11-19. ACM
Press, 2000.

[17] Kieburtz, R.B., Programming without pointer variables. In
Proceedings of the SIGPLAN ’76 Conference on Data: Ab-
straction, Definition, and Structure, ACM Press, 1976.

[18] Krone, J. The Role of Verification in Software Reusability,
Doctoral Thesis, The Ohio State University, 1988.

[19] Kulczycki, G., Sitaraman, M., Ogden, W.F. and Weide,
B.W. Clean Semantics for Calls with Repeated Arguments,
Technical Report RSRG-05-01, Clemson University, 2005.

[20] Kulczycki, G., Sitaraman, M., Weide, B. and Rountev, N.,
A specification-based approach to reasoning about pointers.
In Proceedings SAVCBS ’05, pages 55-62. 2005.

[21] Leavens, G.T., Baker, A.A. and Ruby, C. JML: A notation
for detailed design. Simmonds, I. ed. Behavioral Specifica-
tions of Businesses and Systems, Kluwer, 1999.

[22] Leino, K.R.M., Data groups: Specifying the modification of
extended state. In Proceedings OOPSLA ’98, pages 144-
153, ACM Press, 1998.

[23] Meyer, B., Object-Oriented Software Construction, 2nd ed.
Prentice Hall, 1997.

[24] Müller, P. and Poetzsch-Heffter, A. Modular specification
and verification techniques for object-oriented software
components. Sitaraman, M. and Leavens, G. eds. Founda-
tions of Component-Based Systems, Cambridge University
Press, Cambridge, United Kingdom, 2000.

[25] Minsky, N.H., Towards alias-free pointers. In Proceedings
ECOOP '96, pages 189-209. 1996.

[26] Noble, J., Vitek, J. and Potter, J. Flexible alias protection.
Lecture Notes in Computer Science, 1445. pages 158-185.
1998.

[27] Ogden, W.F. The Proper Conceptualization of Data Struc-
tures. The Ohio State University, Columbus, OH, 2000.

[28] O’Hearn, P., Reynolds, J. and Yang, H. Local reasoning
about programs that alter data structures. Lecture Notes in
Computer Science, 2142, 2001.

[29] Popek, G.J., Horning, J.J., Lampson, B.W., Mitchell, J.G.
and London, R.L. Notes on the design of Euclid. ACM SIG-
PLAN Notices, 12 (3), poages 11-18. 1977.

[30] Sitaraman, M., Atkinson, S., Kulczycki, G., Weide, B.W.,
Long, T.J., Bucci, P., Heym, W., Pike, S. and
Hollingsworth, J.E., Reasoning about software-component
behavior. In Proceedings ICSR ’00, pages 266-283.
Springer-Verlag, 2000.

[31] Sitaraman, M. and Weide, B.W. Component-based soft-
ware using Resolve. ACM Software Engineering Notes, 19
(4), pages 21-67. 1994.

[32] Weide, B.W. and Heym, W.D., Specification and verifica-
tion with references. In Proceedings SAVCBS ’01. 2001.

[33] Wilson, T., Maharaj, S., and Clark, R.G., Omnibus verifica-
tion policies: a flexible, configurable approach to assertion-
based software verification. In SEFM ’05. IEEE Press.
2005.

