
 3

Performance Analysis Based upon Complete Profiles

Joan Krone
Denison University

Granville, Ohio 43023
+1 740 587 6484

krone@denison.edu

William F. Ogden
The Ohio State University

Columbus, Ohio 43210
+1 614 292 6004

ogden@cse.ohio-state.edu

Murali Sitaraman
Clemson University
Clemson, SC 29634

+1 864 656 3444
murali@cs.clemson.edu

ABSTRACT
A system for engineering and verifying component-based
software must include mechanisms for specifying abstractly not
only the complete functionality of components but their exact
performance as well. This paper introduces profiles as a first-
class construct for complete, independent specification of
performance in higher-level languages. Using profiles, a
developer can select from an assortment of implementations for a
particular functionality the one that best suits his needs with
respect to speed and memory usage. Equally importantly, he can
define the expected performance of larger scale components using
compositions of the profiles of their constituent (possibly as yet
unimplemented) components. To support scalability, the profile
construct facilitates abstraction in performance specifications as
well as performance composition and analysis.
.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics – performance measures
General Terms
Software Engineering, specification, verification.

Keywords
Components, performance, reuse, specification.

1. INTRODUCTION
 In order to have an effective system for engineering
component-based software, it is essential to have a specificational
framework that supports description of those aspects of a
component that are relevant to its deployment and that implicitly
supports suppression of other irrelevant aspects. The functional
aspect is typically the most important, and so developing a
framework for its specification has been the focus of much
research. However, a framework is not adequate until it includes
a mechanism for completely describing component performance.

 Factoring out performance specifications seems to be a
common practice in the engineering of components. An auto
manufacturer, for example, sets functional limits on the
dimensions of tires that can be used but leaves to tire suppliers
such performance specifications as traction, tread life, etc. As in
the case of auto tires, a good conceptualization of functional
behavior will admit a broad assortment of realizations with
varying performance characteristics.
 Currently performance specifications for software
components are usually treated in a rather off-hand manner.
Often they’re given as gross Big-O estimates, typically in terms of
imprecisely-specified parameters ill suited to object oriented
programming (a problem we addressed in [11]). Alternatively,
they’re presented as exact durations for particular “representative”
examples run on particular hardware, which data isn’t ordinarily
of much use for predicting behavior in future applications of
components. In [11], we introduced language mechanisms for
including exact performance specifications within each realization
for a given component. We used an enhancement for a stack
component to emphasize the important role of abstraction by
showing that our approach permitted performance specification to
be established without knowledge of how the stack component
was implemented.
 Subsequently we have found that there are important
advantages to separating performance specifications not only from
the component concepts but also from the realizations for the
concept. Since the functionality of a component can be employed
independent of the performance characteristics of its various
implementations, those various performance specifications
obviously don’t belong in a component’s conceptualization, where
all its functional characteristics are formally specified. The
principal advantage of separating performance specifications from
particular realizations is that it supports additional reuse of
specifications. As we’ve discovered, the performance of
alternative implementations for a component often differs only in
ways that can easily be parameterized in an appropriately abstract
specification. Such a separation of specifications also makes it
easier to document the performance of hardware components that
are often constituents of larger (embedded) systems.

We introduce the profile then as a first class specificational
construct for recording performance characteristics. Profiles have
the virtue of allowing the designer of a component
implementation to summarize its expected performance in a
concise form that masks implementation details. At the same
time, a prospective client for the functionality of the component

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAVCBS 2006. November 10-11, Portland, Oregon, USA.
Copyright ACM 2006 ISBN 1-59593-586-X/06/11…$5.00

 4

can use the profiles of its various implementations to select the
one that best suits his performance objectives.

Since a profile is to act as a performance contract between
client code and implementation code, it should become an artifact
of the software development process with an importance similar to
that of a functionality specification contract for a component.
This makes it an entity that is independent of top-down or bottom-
up development methodologies. Typically, development of a a
good profile demands simultaneous attention to the desires of the
clients and to the possibilities open to the implementers,
regardless of whether implementation or client code exists at the
time. In the same way that abstract specifications of functional
behavior provide essential guideposts in development of modular
component-based systems, profiles provide analytic yardsticks for
checking the adequacy of system performance.

Since a performance profile is of necessity expressed in the
context of a functional specification, it is not surprising that
performance specification and verification potentially involves
every complexity that can arise in functionality specification and
verification. Moreover, since overall performance depends upon
every detail of an implementation, its specification poses several
new challenges. One of them is to aggregate these details into
simplified, abstract specifications so that that clients can keep
their focus on the larger picture as they the higher level code.
Another is to formulate expressions for the performance of
generic components, since performance specifications for their
parameters are not fixed when their profiles are written. Our
examples illustrate how to cope with all this complexity.

2 A PROFILE EXAMPLE
 In order to ensure the generality of our profile mechanism
proposed in this paper, we have tested it by creating performance
specifications for a variety of software components, including a
layered component-based system which addresses the issue of
scalability. Since our objective here is to introduce the basic
ideas in developing complete profiles that only make sense in the
context of a thoroughly understood component, we will forego
complexity of more sophisticated components and instead use the
familiar generic stack component, as we did in [11]. For it, the
functional specifications are given in Figure 1 in Resolve.

 Concept Stack_Template(type Entry;
 evaluates Max_Depth: Integer);
 uses String_Theory;
 requires Max_Depth > 0;
 Type_Family Stack ⊆ Str(Entry);
 exemplar S;
 constraints |S| ≤ Max_Depth;
 initialization ensures S = Λ;
 Operation Push(alters E: Entry; updates S: Stack);
 requires |S| < Max_Depth;
 ensures S = 〈#E〉◦#S;
 Operation Pop(replaces R: Entry; updates S: Stack);
 requires |S| > 0 ;
 ensures #S = 〈R〉◦S;
 Operation Depth_of(restores S: Stack): Integer;
 ensures Depth_of = (|S|);
 M
 end Stack_Template;

Figure 1: Specification for a Stack_Template

Figure 1 shows a formal, conceptual client view of a generic
bounded Stack component, parameterized by the type of entries to
be contained in stacks and the maximum depth to which a stack
can grow. (The evaluates mode is used to indicate that an
expression may be passed as the maximum Stack depth.)

The Stack Template concept uses mathematical String
Theory, a development of which is given in [20], to formalize
stacks. The notation Type_Family is used where the stack
formalization is introduced in order to highlight the generic nature
of the concept by reminding that it involves a whole family of
Stack types, which differ depending upon the particular Entry
type and Max_Depth parameters supplied at the time of
instantiation.

The concept provides specifications of typical Stack
operations, each specified by a requires clause (precondition),
which is an obligation for all callers, and an ensures clause
(postcondition), which is a result guarantee from any correct
implementation.

For example, the Pop operation updates the value of the stack
parameter S by removing its top entry and using it to replace the
value of the parameter R. This result is guaranteed by the ensures
clause #S = 〈R〉◦S once we know that #S refers to the previous
value of S, that 〈R〉 is the single entry string containing R, and that
◦ is the concatenate operation for strings. The Clear operation
gives stack S the initial stack value Λ (empty), and it gets this
specification not based upon an ensures clause but instead based
upon the clears parameter mode.

The important point here is that, by conceiving of stacks as
strings, it is possible to give a complete and coherent explanation
of all of the operations on stacks. Absolutely no reference to
details of any particular implementation such as arrays, pointers,
or linked lists is needed. This hiding of client irrelevant
information by reconceptualization of objects is an equally critical
feature for any satisfactory performance specification mechanism.

2.1 A Performance Profile for the Stack
 In [11], we addressed the basic problems of adding
performance specifications to realization code and of developing
a reasoning system to verify that such specifications are accurate.
That work was sound as far as it went and served as the basis for
subsequent work on specification of performance properties in
JML, and analysis of dynamic heap space usage in [1]. However,
the earlier work doesn’t fully address the larger software
engineering scalability concerns of separating out concise and
comprehensible summaries of the performance of component
implementations and of structuring them in such a fashion that
they support the derivation of analogous specifications for large
components produced as compositions of smaller ones. Here we
write performance specifications called profiles that represent a
class of implementations, thereby removing these specifications
from individual realizations, and remaining at a level of
abstraction allowing for multiple realizations.

Since some alternative implementations of generic concepts
such as stacks provide substantively different performance trade-
offs, they will of necessity have different profiles. The
performance profile in Figure 2, named SSC, is suitable for a class
of Stack implementations that are Space-Conscious, i.e., ones that
consider space to be more important than time. The profile is
written without making any assumptions about the generic type
Entry or Max_Depth, and therefore, the expressions have to be
compositional and presented in terms of these parameters.

 5

One of the key elements in the specification of a profile that’s
free of unnecessary implementation details, is the notion of a
defines specification clause. Whereas a typical (mathematical)
definition provides an immediate definiens for its definiendum,
the defines clause allows a profile to name a definiendum for use
within the profile, but to defer to each implementation the
provision of a particular definiens. An implementation can then
provide a specific definiens for each defines deferred
definiendum based upon its exact code. So the defines construct
provides a second mechanism whereby profiles can achieve
appropriate independence. Whereas Entry and Max_Depth are
traditional parameters whose values come down from clients, the
deferred constants SSCI, SSCD, etc. seen here can be viewed as
parameters whose values come up from implementations.

A performance profile is intended to document the behavior of
a class of implementations in terms understandable to clients of
the concept and generally simpler than an exhaustive description
of each implementation. A profile provides the following
information. For each operation, there is a duration clause – a
non-negative real number valued expression – that places a bound
on the time taken by the operation in terms of the parameters
supplied to the operation.

For each operation, there is a manipulation displacement
clause (abbreviated as manip_disp), a natural number valued
expression that bounds the minimum additional space that is
necessary to execute the operation above and beyond what is
occupied by all objects currently in scope. Since memory usage
may increase and decrease during the execution of a complex
procedure, this clause expresses the “high water mark” in terms of
the parameters to the operations. In order to use this information
to determine whether there is enough space to execute the next
call with a certain collection of arguments, a caller needs to be
able to determine the space occupied by all current objects. Thus,
profiles for implementations that provide types (and therefore
permit creation of objects) include a displacement clause – also a
natural number – that describes how much space is used by a
variable (e.g., a Stack variable), given its abstract value (a string
of entries). We begin the discussion with this clause, following
Figure 2.
Profile SSC short_for Space_Conscious for Stack_Template;

 Defines SSCI, SSCI1, SSCF, SSCPo, SSCPu, SSCC,

SSCC1, SSCDp, SSCRC: ℝ≥0;

 Defines SSCD, SSCMI, SSCMF, SSCMPo, SSCMPu,
SSC MC, SSCMDp, SSCMRC: ℕ;

 Type_Family Stack;

 Definition Cnts_Disp(α: Str(Entry)): ℕ =

(∑ ⋅α
Entry:E

(E)Entry.)E,Occurs_Ct(Disp);

 Displacement SSCD + Cnts_Disp(S) +

 (Max_Depth − |S|)⋅Entry.I_Disp;

 Initialization;

 duration SSCI +
 (SSCI1 + Entry.I_Dur)⋅Max_Depth;
 manip_disp SSCMI + Entry.IM_Disp +
 (Max_Depth – 1)⋅Entry.I_Disp;

 Oper Pop(replaces R: Entry; updates S: Stack);

 duration SSCPo + Entry.I_Dur + Entry.F_Dur(#R);

 manip_disp SSCMPo +
 Max(Entry.IM_Disp, Entry.FM_Disp(#R));

 Oper Push(alters E: Entry; updates S: Stack);

 ensures Entry.Is_Init(E);

 duration SSCPu;

 M
end SSC;

Figure 2: A Performance Profile
 The Displacement Clause
We note that the same ideas discussed here suffice whether or not
stacks are bounded a priori, as also noted by Atkey[1]. For
example, if the stack elements are allocated only when needed
instead of initially in an array, then the displacement will be less
and it would not include the last term seen here. However, to
make our discussions concrete, we consider implementations that
allocate and initialize an array of entries of size Max_Depth
whenever a new Stack is created. An implementation might use a
simple representation such as the one shown below:

 Type Stack = Record
 Contents: Array 1..Max_Depth of Entry;
 Top: Integer
 end;

Within this context, one class of implementations can be
characterized as placing high priority on minimizing space usage
for a Stack variable, by following a space-conscious convention
(or representation invariant): All entries in array locations beyond
those that correspond to the conceptual stack value are kept
initialized. For a stack containing complex objects such as trees,
for example, this convention leads to minimal space usage
because unused array locations contain only empty trees instead
of arbitrary trees.

Though we have divulged the representation details above in
order to provide a concrete example for readers of this paper, a
performance profile must be understandable to users based only
upon the mathematical conceptualization of stacks as strings as
given in Figure 1. Accordingly, the displacement clause in this
performance profile expresses the space occupied by a stack S
using only its abstract string value:
 Displacement SSCD + Cnts_Disp(S) +

(Max_Depth − |S|)⋅Entry.I_Disp;
There are three terms in this expression. The first term is the

constant SSCD, and it represents the fixed space overhead in any
Stack object (e.g., an Integer index into the array that is used to
keep track of the current top). The actual definition for this
constant is implementation-specific and will be specified within
the implementation; the profile merely provides a placeholder for
this constant and others by listing them in the defines clause. The
second term captures the space occupied by the entries that have
been pushed onto a stack. To express this term, we have
introduced a locally defined contents displacement function
Cnts_Disp(S), which totals for each entry E in a stack S its
displacement Entry.Disp(E) times Occurs_Ct(E, S), the number of
times E occurs in S.

 6

The last term in the displacement expression is the product
(Max_Depth − |S|)⋅Entry.I_Disp), and it accounts for the space
taken by unused array entries (all of which are assumed by this
profile to have initial values). Here, Entry.I_Disp denotes the
space used by an entry with an initial value. Using the given
expression, it is easy to see that for an empty stack with abstract
string value Λ, the displacement Stack.Disp(Λ) becomes
SSCD + Max_Depth⋅Entry.I_Disp.

 Specification of Initialization

In the class of implementations under discussion here, when a
Stack variable is initialized, Max_Depth number of entries are
created and initialized. Therefore, initialization duration includes
the factor Entry.I_Dur⋅Max_Depth, which is the product of the
duration for initializing a variable of type Entry, i.e., Entry.I_Dur
and Max_Depth, the number of entries to be initialized. The
expression includes additional constant overhead per entry,
denoted by SSCI1, as well an overall constant overhead denoted
by SSCI. The actual definitions for these implementation-specific
constants will be given in the implementations. (If the Stack
elements are allocated only when needed instead of using an
array, then initialization will take a constant time, and the cost of
object creation will be moved to the Push operation.)

The initialization manip_disp clause expresses the minimum
storage space necessary to create a new stack variable. Recall
that Entry.I_Disp denotes the space taken by an entry with an
initial value. To create a Stack representation with Max_Depth
initial entries, the necessary displacement is roughly
Entry.I_Disp⋅Max_Depth. The expression given in the profile
differs slightly because the procedure to create an initial entry
might need more space than what is strictly necessary for storing
an initial entry. This would be the case if Entry is a non-trivial
type, and creating an initial value for it requires creation and use
of other local variables. Therefore, suppose that Entry.IM_Disp
denotes the manipulation space necessary for initial entry
creation. Then the highest watermark in space usage during Stack
initialization occurs when Max_Depth − 1 new entries have been
created and the Entry initialization operation is being invoked to
initialize the last entry. Therefore, this is the minimum space
necessary to initialize a new Stack. The expression includes an
implementation-specific constant as well.

 Specification of Pop
To explain the expressions for Pop, we consider the following
code that might have been written for a space-conscious
implementation.
 Procedure Pop(replaces R: Entry; updates S: Stack);
 Var Fresh_Val: Entry;
 R :=: S.Contents(S.Top);
 S.Contents(S.Top) :=: Fresh_Val;
 S.Top := S.Top − 1;
 end Pop;

In this implementation, we have used the swap operator “:=:”,
instead of assignment, to move Entry values and to access array
contents. The reasoning and efficiency advantages of swapping
over reference assignment and representation assignment of
arbitrary entries, respectively, are discussed in detail elsewhere
[8]: Swapping enables reasoning without introducing aliasing; its
implementation is efficient because compliers can represent large

objects internally using references and merely exchanging the
references in constant time. (If entries are copied, then the same
principles of specifying performance expressions would still be
adequate, except that the performance expressions need to
account for copying.)

The second swap statement in the code is necessary to satisfy
the space-conscious convention. By declaring a local Entry
variable (which is automatically initialized) in the Pop procedure
and swapping it into the array, we make sure that the arbitrary
entry R that might have been supplied as the incoming parameter
to Pop does not go into the array and violate the convention. At
the end of the code, the local variable that then contains the
incoming value of parameter R is released or finalized. The
performance specification of Pop is expressed in user-oriented
terms in the profile:
 Operation Pop(replaces R: Entry; updates S: Stack);

 duration SSCPo + Entry.I_Dur + Entry.F_Dur(#R);

 manip_disp SSCMPo +
 Max(Entry.IM_Disp, Entry.FM_Disp(#R));

The duration expression includes the time to initialize a new
Entry variable. Finalization depends on the Entry that is
finalized, and thus, the time to finalize is given in terms of the
incoming value of parameter R. The definition for the deferred
constant SSCPo in the duration expression for Pop code is given
internally in each implementation. For the present example, it
might be defined as:
Definition SSCPo: ℝ≥0 = DurCall(2) + 2⋅Array.Dur:=: +

 6⋅Record.Dur. + Int.Dur:= + Int.Dur− ;
This constant includes the time to call a procedure with 2

parameters, denoted by DurCall(2), array and record accesses, and
Integer operations. This definition is relegated to the
implementation because it provides too much information to
include in a profile for clients and it is expressed in terms of
implementation details that should not be visible to them. Placing
the definition in the profile, in addition to hard wiring it, would
seriously compromise information hiding and hinder modularity
in reasoning.

How much space is necessary to call Pop beyond what is
already taken up by its parameters? It is the maximum of the
displacement necessary to initialize a new variable, i.e.,
Entry.IM_Disp (Entry initialization manipulated displacement) or
finalize the incoming parametric entry, i.e., Entry.FM_Disp(#R).

One other aspect of interest in the performance profile is the
additional ensures clause for the Push operation. In particular,
using the predicate Entry.Is_Init(E) that is true only if E has an
initial Entry value1, the ensures clause tells a user that E will be
initialized after a call to Push(E, S). While this information,
which appears only in the performance profile, cannot be used by
a client program in establishing functional correctness, it can be
used for reaching displacement/duration conclusions, as
illustrated in Section 3. Unlike Pop, the Push and Depth_of
procedures have constant performance expressions.

Performance profiles are useful for component clients,
enabling them to select prudently from among a variety of

1 We use a predicate here instead of asserting E = Entry.Init or

equivalent, because initializations may be specified to give an
object one of many initial values.

 7

implementations for a particular concept that provide interesting
performance trade-offs. They are also important for independent
development and modular analysis of component-based systems
in the same way that abstract specifications of functional behavior
are useful. For example, performance of other components that
reuse the Stack concept can be derived from the performance
profile of the chosen Stack implementation. To illustrate how
profiles for a component built on other components can be
presented parametrically, we analyze code for a component built
on Stack objects and operations. The example specification for a
Flip operation to invert a stack is given below. It is an
enhancement or conceptual extension to the Stack_Template
described previously. In the ensures clause, Rev denotes the
mathematical string reversal operator.
Enhancement Flipping_Capability for Stack_Template;

 Operation Flip(updates S: Stack);

 ensures S = #SRev;

end Flipping_Capability;

 2.2 Profile Specification of Flip
A given implementation of Flip may exhibit different
performance behaviors, depending on the profile of the Stack
implementation that is used in conjunction with Flip. It becomes
possible to express this performance dependence of one
component upon another quite elegantly, if profiles are available
as first class constructs in a language. To illustrate how this is
done, we show profile SSCF for Flip based on the SSC profile of
Stack_Template.

Profile SSCF short_for Space_Conscious_Stack_Flip for

 Flipping_Capability for Stack_Template with_profile SSC;

 Defines SSCFF1, SSCFF2: ℝ≥0;

 Defines SSCFFMC1, SSCFFMC2: ℕ;

 Operation Flip(updates S: Stack);

 duration SSCFF1 + Entry.I_Dur + Stack.I_Dur +
 Entry.F_IV_Dur + Stack.F_IV_Dur +

 (SSCFF2 + Entry.I_Dur + Entry.F_IV_Dur)⋅|#S|;

 manip_disp (SSCFFMC1 + Entry.I_Disp + Stack.I_Disp) +

 Max(SSCFFMC2, Entry.IM_Disp, Entry.F_IVM_Disp
);

end SSCF;
 The abstract performance specifications in the profile above
are given in terms meaningful to clients of the
Flipping_Capability. In particular, the profile of Flip can be
understood, without knowing any implementation details of either
the Stack_Template or the Flipping_Capability enhancement.
 To motivate the specifics of the particular performance
expressions in the profile, we consider a concrete implementation
of Flip in this subsection. The implementation contains concrete
definitions for constants used in the SSCF profile, such as SSCFF1
and SSCFF2. The loop is annotated with the maintaining (loop
invariant) and decreasing (progress metric) clauses necessary for
an automated system to prove that the code satisfies its functional
specification for flipping the Stack. In addition, the loop
specification includes elapsed time and manipulated

displacement expressions [11] needed to prove the correctness of
the code with respect to its performance profile.
 Due to space constraints, we present and analyze just the
timing-related assertions. Since the code for Flip relies only on
the specification of operations in the Stack_Template and not on
any particular implementation, modular reasoning about the
functional correctness of the code can be done regardless of the
Stack implementation chosen.

Realization Obvious_F_C_Realiz for Flipping_Capability

with_profile SSCF of Stack_Template with_profile SSC;

 Definition SSCFF1: ℝ≥0 = (DurCall(1) + (SSCDp + Int.Dur≠)
 + Dur:=:);

 Definition SSCFF2: ℝ≥0 = (SSCDp + Int.Dur≠ + SSCPo +
 SSCPu);

 Definition SSCFFMC1: ℕ = L

 Definition SSCFFMC2: ℕ = L
 Procedure Flip(updates S: Stack);

 Var Next_Entry: Entry;

 Var S_Flipped: Stack;

 While (Depth_of(S) ≠ 0)

 affecting S, S_Flipped, Next_Entry;

 maintaining #S = S_FlippedRev ◦ S and

Entry.Is_Init(Next_Entry);

 decreasing |S|;

 elapsed_time (SSCFF2 + Entry.I_Dur +
 Entry.F_IV_Dur)⋅|S_Flipped|;

 manip_disp L
 do
 Pop(Next_Entry, S);
 Push(Next_Entry, S_Flipped);

 end;
 S :=: S_Flipped;

 end Flip;

end Obvious_F_C_Realiz;

2.3 Durational Analysis of Flip
 The duration expression for Flip, in addition to a constant
term SSCFF1, has three parts: duration for local variable
initialization, for local variable finalization, and for loop
execution. First we assume that a Stack component with profile
SSC is used. The duration expression to initialize the two local
variables – an entry and a stack – is straightforward, and it is the
sum of Entry.I_Dur and Stack.I_Dur. Unlike initialization, the
time for finalization of the two local variables depends on the
values of the local variables at the time of finalization. Therefore,
we need to understand what their values would be at the end of
the code. Here, the Stack S_Flipped that is finalized is empty,
because S is empty just before the swap statement. Therefore, the
duration expression also includes the term Stack.F_IV_Dur – the
time to finalize a stack with initial value. The local variable
Next_Entry also has an initial value just before finalization. To

 8

see why, notice that the loop maintains the invariant
Entry.Is_Init(Next_Entry), based on the extended ensures clause
for the Push operation in the profile SSC, which in our version of
Stack, guarantees that after Push the parametric Entry is
initialized. Therefore, the duration of finalizing the Entry at the
end of the code is Entry.F_IV_Dur – the time to finalize an entry
with an initial value.
 The loop executes |#S| times. The time for each iteration
includes a constant term arising from calls to Depth_of, Push, and
the loop branching activity. In addition, we note from the SSC
profile that every call to Pop(R, S) takes time SSCPo +
Entry.I_Dur + Entry.F_Dur(#R). In the code given above, the
Next_Entry that is supplied to Pop is the entry resulting from the
previous to call to Push. Since the ensures clause for Push in SSC
profile guarantees that Push initializes its Entry parameter, we are
guaranteed that Pop is only supplied initial entries in every call.
Therefore, Pop needs to finalize only initial entries and the time
for each call to Pop simplifies to SSCPo + Entry.I_Dur +
Entry.F_IV_Dur. Given these considerations and the matching
definitions of constants SSCFF1 and SSCFF2, the elapsed time
estimate for the loop is documented in the implementation as:

 (SSCFF2 + Entry.I_Dur + Entry.F_IV_Dur)⋅|S_Flipped|

2.3 Validity of the Elapsed Time Estimate
This elapsed time estimate is used in proving the performance
correctness of Flip. A part of the proof that verifies that the given
elapsed time estimate is valid is given in the table below.

State

Path
Condition

Assume Confirm

While (Depth_of(S) ≠ 0)
 affecting S, S_Flipped, Next_Entry;
 maintaining #S = S_FlippedRev◦S and
 Entry.Is_Init(Next_Entry);
 decreasing |S|;
 elapsed_time (SSCFF2 + Entry.I_Dur +

 Entry.F_IV_Dur)·|S_Flipped|;
 do

2 |S2| ≠ 0 Entry.Is_Init(Next_Entry2) ∧
ET2 = (SSCFF2 + Entry.I_Dur +
Entry.F_IV_Dur)·|S_Flipped2| L

L

 Pop (Next_Entry, S);

3 |S2| ≠ 0 S2 = S3◦<Next_Entry3> ∧
S_Flipped3 = S_Flipped2 ∧
ET3 = ET2 + (SSCPo +
 Entry.I_Dur +
 Entry.F_Dur(Next_Entry2)) L

L

 Push (Next_Entry, S_Flipped);

4 |S2| ≠ 0 Entry.Is_Init(Next_Entry4) ∧
S4 = S3 ∧ S_Flipped4 =
 S_Flipped3◦<Next_Entry3> ∧
ET4 = ET3 + SSCPu L

L

Confirm ET4 =
 (SSCFF2+ Entry.I_Dur + Entry.F_IV_Dur)·|S_Flipped4| ∧ L

end;

The table shows only a part of an inductive proof: verification
conditions corresponding to the inductive potion of the proof to
confirm the invariance of the elapsed time estimate. In the table,
which is based on [26]], we assume at the beginning of the loop
(numbered state 2 in the figure) the elapsed time estimate holds.
We then confirm at the end of the loop (state 4) that the estimate
when evaluated there is correct. The assumptions in states 3 and 4
come from the functional and performance specifications of
operations Push and Pop. Variable names are subscripted with
the state number to distinguish their values in different states. The
verification variable ET stands for the elapsed time. Given the
assumptions, a verifier can conclude that ET4 satisfies its equation
if ET2 satisfies its equation. We have omitted the base case for
the inductive proof, assertions outside the loop, and functionality-
related assertions, not necessary for the above proof.

3. SCALING UP
Two important scalability questions arise in generalizing the
utility of the profile construct:

1. Can profiles for layered components be expressed
abstractly?

2. How complicated will profiles get when components
are used to put together a layered system?

To address these questions we designed and specified a spanning
forest component that we built using a prioritizer and a
coalescable equivalence relation component, among others, and
specified all components fully for both functionality and
performance.

We answer the first question affirmatively noting that it was
possible to write a fully descriptive profile for the top layer of the
system without filling in the details for the components upon
which it was layered.

The second question is one of concern, since the stack example
may give the impression that the number of lines of specifications
in a profile may approach the number of lines of executable code.
However, we note that the stack component has an unusually
small number of lines of code, and that the complexity of the
profile is dominated by its parameterization. Moreover, although
it may seem counter-intuitive, it turns out that when layering up,
the profile for a higher-level component is usually no longer than
that for a lower level one, while the aggregate number of lines of
executable code grows considerably. For example, in the case of
the spanning forest, the ratio of lines of performance specification
to executable code is closer to one to three, rather than one to one,
indicating that the depth of layering in a system is not an indicator
of the need for longer profiles.

Our research has also shown that the profile construct is
essential for documenting concisely the various performance
specifications of a layered component, such as the spanning forest
component, that result when alternatives are considered for the
performance of a constituent component such as the prioritizer.

4. RELATED WORK AND DISCUSSION
 The importance of performance considerations for software
engineering (e.g., [4], [14], [17]), in general, and for software
components, in particular, has been widely acknowledged.
Designers of languages and developers of component libraries
have emphasized the need for alternative implementations in order
to provide performance trade-offs [3], [16], [18]. The importance

 9

of generic programming and of alternative implementations is
being increasingly recognized, as is evident from the evolving
designs of C#, C++, and Java.
 In order for component users to choose from multiple
implementations and analyze performance of component-based
systems in a modular fashion, a formal system for performance
specification is necessary. Balsamo, et al., in surveying various
efforts in performance analysis [2], note that “Although several of
these approaches have been successfully applied, we are still far
from seeing performance prediction integrated into ordinary
software development” and conclude that one of the unresolved
problems is the lack of software notations that allow for easily
expressing performance. The profile construct proposed here for
extending specification (and programming) languages to support
specifying performance is a contribution to integrating
performance considerations into software development.

A general performance specification system should be flexible,
allowing specifiers to express performance in terms of
abstractions that are appropriate for the problem at hand. This
emphasis on abstraction and generic components in specifying
both time and space usage of components also makes the ideas
discussed in this paper quite different from the work in the real-
time community (e.g., [7], [23]) where timing deadlines and
concurrency are the focus.

Expression of tight timing constraints is an active area of
research [6], [15]. Elsewhere, we have detailed how the
expressiveness issues that arise in tight specification of
performance at the source code level can be addressed using
intermediate abstraction models [28].

Hehner has built on the work of Shaw [22], to formalize time
and space analysis of a recursive procedure at the source code
level [9]. Our earlier work and the work of Schmidt and
Zimmermann [21] have considered space complexity issues for
components. Working within the context of functional programs
Unnikrishnan, et al. and Hofmann and Jost have addressed issues
in bounding the space usage of functional programs under various
assumptions using program-level source code analysis [10], [27].
Ultimately, compositional performance analysis needs to be
combined with advances in verification of functional behavior in
the presence of data abstractions (e.g, [5], [19], [25], [26])
because assertions from functional correctness are necessary for
establishing performance correctness.

We have introduced profiles as a first class language construct
for modular specification and analysis, providing a vocabulary for
stating time and space constraints. The construct supports both
generics and compositionality. Based on the construct, as Atkey
[1] has shown recently, mechanisms for other behavioral
specification language and implementation language
combinations can be developed, provided the particulars of the
language features are carefully accommodated in specifications.

5. ACKNOWLEDGMENTS
Several members of our research groups have contributed
important ideas to this work. Our special thanks are due to Gary
Leavens and Bruce Weide for their comments. We gratefully
acknowledge financial support from the U.S. National Science
Foundation under grant CCR-0113181 and a grant from the U.S.
National Aeronautics and Space Administration through the SC
Space Grant Consortium.

6. REFERENCES

[1] Atkey, J., “Specifying and Verifying Heap Space Allocation

with JML and ESC/Java2”, Proceedings of the ECOOP
Workshop Formal Techniques for Java-like Programs,
Nantes, France, July 2006; available at:
http://www.disi.unige.it/person/AnconaD/FTfJP06/

[2] Balsamo, S., Di Marco, A., and Inverardi, P., “Model-Based
Performance Prediction in Software Development: A
Survey”, IEEE Transactions on Software Engineering, 30(5),
May 2004, 67-82.

[3] Booch, G. Software Components With Ada.
Benjamin/Cummings, Menlo Park, CA, 1987.

[4] Cheng, A. M. K., Clemens, P., and Woodside, M., eds.
Special section: Workshop on Software and Performance.
IEEE Trans. on Software Engineering 26, 11/12,
November/December, 2000.

[5] Ernst, G. W., Hookway, R. J., and Ogden, W. F., “Modular
Verification of Data Abstractions with Shared Realizations”,
IEEE Transactions on Software Engineering 20, 4, April
1994, 288-307.

[6] Gomez, G. and Liu, Y. A., “Automatic time-bound analysis
for a higher-order language,” Proceedings of the 2002 ACM
SIGPLAN Workshop on Partial Evaluation and Semantics-
Based Program Manipulation (PEPM '02), Portland,
Oregon, USA, January 14-15, 2002, ACM SIGPLAN
Notices 37(3), March 2002.

[7] Hayes, I.J. and Utting, M., “A Sequential Real-Time
Refinement Calculus,” Acta Informatica 37, 2001, 385-448.

[8] Harms, D.E., and Weide, B.W., “Copying and Swapping:
Influences on the Design of Reusable Software
Components,” IEEE Transactions on Software Engineering,
Vol. 17, No. 5, May 1991, 424-435.

[9] Hehner, E. C. R., “Formalization of Time and Space,”
Formal Aspects of Computing, Springer-Verlag, 1999, 6-18.

[10] Hofmann, M. and Jost, S., “Static Prediction of Heap Space
Usage for First-Order Functional Programs,” Proceedings of
the 30th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL), 2003, 185-197.

[11] Krone, J., Ogden, W. F., and Sitaraman, M., “Modular
Verification of Performance Correctness”, SAVCBS
Workshop Proceedings, 2001, 60-67.

[12] Krone, J., Ogden, W.F., “Abstract OO Big O,” SAVCBS
Workshop Proceedings, 2003, 80-84.

[13] Leavens, G. T., Baker, A. L., and Ruby, C., “JML: A
Notation for Detailed Design,” Behavioral Specifications of
Businesses and Systems, H. Kilov and B. Rumpe and I.
Simmonds, eds., Kluwer Academic Publishers, Boston,
1999.

[14] Leavens, G.T., Abrial, J., Batory, D., Butler, M., Coglio, A.,
Fisler, K., Hehner, E., Jones, C., Miller, D., Peyton-Jones, S.,
Sitaraman, M., Smith, D.R., and Stump, A.: Roadmap for
Enhanced Languages and Methods to Aid Verification.
Department of Computer Science, Iowa State University, TR
#06-21. July 2006.

 10

[15] Lim, S-S, Bae, Y. H., Jang, G. T., Rhee, B-D, Min, S. L.,
Park, C. Y., Shin, H., Park, K., Moon, S-M, and Kim, C. S.,
“An accurate worst case timing analysis for RISC
processors,” IEEE Transactions on Software Engineering,
Vol. 21, No. 7, July 1995, 593 - 604.

[16] Meyer, B., Object-Oriented Software Construction, Prentice
Hall PTR, Upper Saddle River, New Jersey, 1997.

[17] Meyer, B., “The Grand Challenge of Trusted Components,”
Procs. 25th Int. Conference on Software Engineering,
Portland, OR, May 2003, 660-667.

[18] Musser, D.R., Derge, G.J., and Saini, A. STL Tutorial and
Reference Guide, Second Edition. Addison-Wesley, 2001.

[19] Muller, P. and Poetzsch-Heffter, A., “Modular Specification
and Verification Techniques for Object-Oriented Software
Components,” in Foundations of Component-Based Systems,
eds. G. T. Leavens and M. Sitaraman, Cambridge University
Press, 2000.

[20] Ogden, W.F., The Proper Conceptualization of Data
Structures, Dept. Computer and Information Science, Ohio
State University, 2000.

[21] Schmidt, H. and Zimmermann, W., “A Complexity Calculus
for Object-Oriented Programs,” Journal of Object-Oriented
Systems, 1994, 117-147.

[22] Shaw, M., A Formal System for Specifying and Verifying
Program Performance, Carnegie-Mellon University
Technical Report CMU-CS-79-129, June 1979.

[23] Shaw, A. C., Reasoning About Time in Higher-Level
Language Software, IEEE Transactions on Software
Engineering 15, 1989, 875-889.

[24] Smith, C. U., Performance Engineering of Software Systems,
Addison-Wesley, 1990.

[25] Sitaraman, M., Ogden, W.F., and Weide, B.W., “On the
Practical Need for Abstraction Relations to Verify Abstract
Data Type Representations,” IEEE Trans. Software Eng 23,
3, Mar. 1997, 157-170.

[26] Sitaraman, M., Atkinson, S., Kulczycki, G., Weide, B. W.,
Long, T. J., Bucci, P., Heym, W., Pike, S., and
Hollingsworth, J. E., “Reasoning About Software-
Component Behavior,” Procs. Sixth Int. Conf. on Software
Reuse, IEEE Computer Society, 2000.

[27] Unnikrishnan, L., Stoller, S. D., and Liu, Y. A., “Automatic
Accurate Live Memory Analysis for Garbage-Collected
Languages,” Procs. ACM SIGPLAN Workshop on
Languages, Compilers, and Tools for Embedded Systems
(LCTES), 2001.

[28] Weide, B. W., Ogden, W. F., and Sitaraman, M.,
“Expressiveness Issues in Compositional Performance
Reasoning,” Procs. Sixth ICSE Workshop on Component-
Based Software Engineering: Automated Reasoning and
Prediction, Portland, OR, May 2001, 85 - 90

