
Experiments in the use of τ -simulations for the
components-verification of real-time systems

Françoise Bellegarde, Jacques Julliand, Hassan Mountassir, Emilie Oudot

LIFC - Laboratoire d’Informatique de l’Université de Franche-Comté
FRE CNRS 2661
16, route de Gray,

25030 Besançon Cedex, France
Ph:(33) 3 81 66 66 51, Fax:(33) 3 81 66 64 50

{bellegar,julliand,mountass,oudot}@lifc.univ-fcomte.fr

ABSTRACT
We present a verification framework exploiting τ -simulations
as a way to preserve local linear properties checked on the
components of real-time systems. Therefore, we consider
a component-based modeling of real-time systems. Their
properties are expressed in a timed logic, Mitl (Metric In-
terval Temporal Logic).
For component-based models, traditional verification tech-
niques are generally applied to the complete composed model,
even if some properties only concern some components of
the system, if not only one. We show that it is possible to
check such local linear properties (safety as well as liveness)
on the components they concern, and then to ensure their
preservation using τ -simulation relations. We show the in-
terest of the method by applying it on two real-time systems
examples and by comparing the results with traditional ver-
ification techniques.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal Methods,Model-checking ; I.6.5 [Simulation
and modeling]: Model Development—Modeling method-
ologies

General Terms
Verification, Experimentation

Keywords
τ -simulation, integration of components, timed systems, preser-
vation of linear-time properties

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Fifth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2006), November 10–11, 2006, Port-
land, Oregon, USA.
Copyright 2006 ACM ISBN 1-59593-586-X/06/11 ...$5.00.

1. MOTIVATIONS
Component-based modeling is a modeling method that

receives more and more attention. In particular, timed sys-
tems are often modeled this way. First, it consists in decom-
posing the system into a set of sub-systems, called compo-
nents. The complete model is obtained by putting all the
components together, thanks to some parallel composition
operator. To ensure their correctness, such models have
global requirements to meet, i.e., requirements about the
behaviour of the complete model, as well as so-called local
requirements. Local requirements are properties concerning
the components (or subsets of components) of the system.
Model-checking is a verification method that can be used in
order to verify these properties on the model. For both kinds
of properties, the verification is performed on the global
model. However, this method is generally not applicable
on large-sized systems, due to the exponential blow-up of
the state space.
We propose a verification method for local linear properties
of real-time systems modeled in a compositional framework,
by taking advantage of the modeling process. We propose to
model systems incrementally, by integration of components:
instead of building once the complete model, components
(or assembling of components) are integrated step by step
to the others, and local properties are checked on these com-
ponents (or assembling of components) before integration.
Model-checking is still applicable since the size of each com-
ponent / assembling of components is small enough.
To ensure that locally established properties continue to
hold after integration, we propose to use timed τ -simulations,
i.e., simulation relations extended to handle timing aspects
and internal activity of the models. Indeed, it is known
that in the untimed case, classic τ -simulations preserve lin-
ear safety properties. Divergence-sensitive and stability-
respecting τ -simulations [12] also handle the preservation
of linear liveness properties. For that matter, this last kind
of τ -simulation is already used in other incremental model-
ing processes, such as the refinement of B event systems [1],
which preserves Ltl properties [9].
In [5], we defined a timed τ -simulation adapted for timed
systems and showed that it preserves safety (un)timed prop-
erties. Moreover, we showed that it is well-adapted with in-
tegration of components made with the classic parallel com-

33

position operator ||. That is, given two components A and
B, A τ -simulates A||B and B τ -simulates A||B. In terms
of preservation of properties, this means that linear safety
properties of A and B are preserved for free when A and B
are merged together. The timed τ -simulation is also com-
patible with the operator ||: given a third component C,
if B τ -simulates A, then B||C τ -simulates A||C. Compat-
ibility allows to benefit of the compositionnality property:
given components A, B, C and D, if B τ -simulates A and
D τ -simulates C, then B||D τ -simulates A||C. Thus, this
first timed τ -simulation has nice properties w.r.t. parallel
composition. However, as it only preserves safety proper-
ties, we extended it into a divergence-sensitive and stability-
respecting (DS) timed τ -simulation to preserve a larger spec-
trum of properties, such as liveness or bounded liveness
properties. We proved in [5] this new relation preserves all
properties which can be expressed by the linear-time logic
Mitl [4].

In this paper, we aim at showing the interest of the verifi-
cation method we propose by applying it to the verification
of the local properties of two timed systems. In both ex-
amples, we compare the application of our method with the
classic verification method, consisting in verifying directly
all the properties on the complete model. The first exam-
ple is a production cell, made up of at least seven compo-
nents. We focus in particular on the local properties of one
of these components, and perform the verification locally on
this component before verifying the preservation thanks to
the timed τ -simulations. This example shows that the cost
of this kind of verification (local verification and preserva-
tion checking) is lower than the cost of the classic verifica-
tion method, in terms of computation times. The second
example is a well-known protocol, the CSMA/CD protocol,
composed of a medium and at least two senders. With this
example, we show that one of the main properties of the
protocol can be checked by only considering the smallest
possible number of senders, i.e. two, instead of verifying it
with a greater number of senders. Moreover, in both exam-
ples, we identify cases where the classic verification method
is not applicable while the method we propose is.

The paper is organized as follows. In section 2, we present
the model we use for modeling timed systems – timed au-
tomata [3], the logical formalism Mitl used to formulate
their properties and the parallel composition || used for
the integration of components. In section 3, we recall the
definitions and results of [5], where we defined timed τ -
simulations and gave its properties w.r.t. the preservation
of Mitl properties and the compatibility with parallel com-
position. Section 4 shows the interest in practice of the
verification method we propose, by applying it to two ex-
amples of timed systems and comparing the results with the
classic verification method. Finally, section 5 sums up the
results presented in the paper and plans the future works.

Related works. Numerous works have been devoted to
the study of timed simulation relations and their preserva-
tion ability. A time-abstracting simulation has been studied
in [13], where an algorithm to check the relation is pro-
posed. However, timed properties are not preserved by this
relation. A timed simulation was defined in [17]. The au-
thors showed that the problem of verifying the existence of

this timed simulation is EXPTIME. But, internal activity
is not handled by this relation. The closest notion of sim-
ulation, in comparison with our timed τ -simulation, is the
timed ready simulation of [14]. Internal activity is also con-
sidered. As our (DS) timed τ -simulation, this relation also
handles the preservation of safety properties, but does not
preserve other kind of properties, such that liveness prop-
erties. To our knowledge, there is no previous definition or
use of simulation relations handling internal activity as well
as timing constraints, and preserving safety and, especially,
liveness properties.

2. MODELING TIMED SYSTEMS
Timed automata [3] are amongst the most studied formal

models for timed systems. They are classical finite automata
with real-valued variables called clocks modeling the time
elapsing.

2.1 Clock valuations and clocks constraints
Let X be a set of clocks. A clock valuation over X is

a function v : X → R+ assigning to each clock in X a
real value. For δ ∈ R

+, the valuation v + δ is obtained by
adding δ to the value of each clock. Given Y ⊆ X, and
a valuation v over X, the dimension-restricting projection
of v on Y [18], written v�Y , is a new valuation containing
only the values in v concerning the clocks in Y . The reset
operation on v of the clocks in Y , written [Y := 0]v, creates
a valuation obtained from v by setting to zero all clocks in Y ,
and leaving the values of other clocks (∈ X\Y) unchanged.
A clock constraint over X is a predicate of the form

g ::= x ∼ c | g ∧ g | true where x ∈ X, c ∈ N and
∼∈ {<,≤,=,≥, >}

The set of all clock constraints over X is called C(X). We
say that a valuation v satisfies a constraint x ∼ c, written
v ∈ x ∼ c, if v(x) ∼ c. Note that a clock constraint over
X defines a X-polyhedron. The reset operation defined on
valuations can be extended straightforwardly to polyhedra.
The backward diagonal projection of a polyhedron g defines
a new polyhedron ↙g s.t. v′ ∈↙g if ∃δ ∈ R

+ · v′ + δ ∈ g.

2.2 Timed automata (TA)
Syntax. Let Props be a set of atomic propositions. A
timed automaton A over Props is a tuple 〈Q, q0, Labels,X,
T, Invar,L〉 where Q is a finite set of locations, q0 is the
initial location, Labels is a finite set of names of actions and
X is a finite set of clocks. Invar : Q → C(X) is a function
associating to each location a clock constraint called its in-
variant. The invariant of a location defines the time progress
condition for this location. L : Q → 2Props is the labelling
function for the locations. T ⊆ Q×C(X)×Labels×2X ×Q
is a finite set of transitions. Each transition can reset clocks
and is equiped with a clock constraint called its guard, defin-
ing when the transition can be taken. We write a transition
e as a tuple (q, g, a, λ, q′) where q and q′ are respectively the
source and target location of the transition, g is its guard, a
its label and λ the set of clocks to be reset by the transition.
In the rest of the paper, we use the notations source(e) and
target(e) for q and q′, guard(e) for g, label(e) for a and

34

reset(e) for λ.

Semantics. The semantics of A is an infinite graph where
states1 are pairs (q, v) composed of a location q of A (the
discrete part of the state) and a clock valuation v s.t. v ∈
Invar(q). The initial state is the pair (q0, v0) where v0 is
the clock valuation assigning 0 to each clock in X. The
transitions of the graph are either discrete transitions or
time transitions:

• discrete transitions: given a transition e = (q, g, a, λ, q′)
of A, (q, v)

e→ (q′, v′) is a discrete transition of the
graph if v ∈ g and v′ ∈ Invar(q′). The valuation v′ is
obtained from v by resetting the clocks in λ. We call
(q′, v′) a discrete successor of (q, v),

• time transitions: (q, v)
δ→ (q, v+δ) is a time transition

of the graph, for δ ∈ R
+, if v + δ ∈ Invar(q). We call

(q, v + δ) a time successor of (q, v).

Runs. A run ρ = (q0, v0)
δ0→ (q0, v1)

e0→ (q1, v2)
δ1→ (q1, v3)

δ2→
(q1, v4)

e1→ (q2, v5) · · · of a TA A is a path in its semantic
graph. Note that consecutive time transitions are not con-
catenated. We note Γ(A) the set of runs of A. A run ρ is
non-zeno if time can progress along ρ without upper bound.
We write time(ρ) for the total time elapsed during ρ. If
time(ρ) = ∞ then ρ is called non-zeno.

2.3 Properties of timed systems
Mitl (Metric Interval Temporal Logic) [4] is a logical for-

malism allowing to express linear timed properties. It can be
viewed as an extension of the (untimed) linear logic Ltl [16],
where each temporal operator used in the formulas is con-
strained by a non singular interval with integer bounds (a
singular interval is of the form [a, a], i.e., it is closed and the
left and right bounds are equal). Mitl formulas are defined
inductively by the following grammar:

ϕ ::= ap | ¬ϕ | φ ∨ ψ | φ UI ψ

where ap is an atomic proposition and I is a non singular
interval with integer bounds. Other classical temporal op-
erators can be defined: �Iϕ = true UIϕ (eventually ϕ) and
�Iϕ = ¬�I¬ϕ (always ϕ).

Mitl properties are interpreted over runs of a timed au-
tomaton. Intuitively, a property φ UI ψ holds on a run if,
when φ is met, φ holds until ψ is true. Moreover, ψ must
hold at a time t within the time interval I following the
moment when φ was true. An Mitl property is satisfied by
a timed automaton if it holds on each run of the automaton.

2.4 Integration of components
Consider a timed system composed of a set of components

A1, A2, · · · , An, each one modeled by a TA. Integration of
components is a type of incremental modeling, which con-
sists in first considering one component, for instance A1.
Then, the other components are successively added to A1,
until obtaining the complete system. We consider that this

1In the rest of the paper, we directly call these states, the
states of A, instead of the states of the semantic graph of A.

integration is achieved by using the classic parallel compo-
sition operator ||. This composition is defined as a syn-
chronized product where the synchronizations are done on
actions with the same label, while other actions interleave.
Formally, consider two TA Ai =〈Qi, q0i

, Labelsi,Xi,Ti, Invari,
Li〉, for i = 1, 2, s.t. X1 ∩ X2 �= ∅. The parallel com-
position of A1 and A2, written A1||A2, creates a new TA
which set of clocks is X1 ∪X2 and which labels are the set
Labels1 ∪ Labels2. The set Q of locations consists of pairs
(q1, q2) composed of a location of each Ai. Invar((q1, q2))
is defined as Invar(q1)∧ Invar(q2) and L((q1, q2)) is the set
L(q1)∪L(q2). The initial location is the pair (q01 , q02). The
set of transitions T is given by the three following rules:

Synchronization:
(q1,g1,a,λ1,q′1) ∈ T1 , (q2,g2,a,λ2,q′2) ∈ T2

((q1,q2),g1∧g2,a,λ1∪λ2,(q′1,q′2)) ∈ T

Interleaving:
(q1,q2)∈Q , (q1,g1,a,λ1,q′1) ∈ T1 , a �∈Labels2

((q1,q2),g1,a,λ1,(q′1,q2)) ∈ T

(q1,q2)∈Q , (q2,g2,a,λ2,q′2) ∈ T2 , a �∈Labels1
((q1,q2),g2,a,λ2,(q1,q′2)) ∈ T

Incremental modeling, and in particular integration of
components, is a way to cope with the complexity of the
verification when large-sized model are treated. Indeed, it
could allow to verify local properties of the components at
each step of the modeling, i.e., at each integration of com-
ponents, instead of performing the verification directly on
the complete system. However, this reasoning is valid only
if the integration preserves the properties already checked.

3. EXPLOITING SIMULATIONS TO PRE-
SERVE LOCAL PROPERTIES

We showed in [5] that timed τ -simulations are sufficient
conditions for the preservation of Mitl properties during in-
cremental modeling, and in particular, integration of compo-
nents. That is, if a component τ -simulates the whole system
w.r.t. some τ -simulation relation, then already established
properties of the component are preserved after integration
in its environment. We defined in [5] two τ -simulation re-
lations: one dealing with safety Mitl properties (called a
timed τ -simulation)2, and the other to handle all Mitl prop-
erties (divergence-sensitive and stability-respecting timed τ -
simulation).

3.1 Timed τ -simulations
Consider a TA A1 that has to be integrated in an en-

vironment E. We note A2 = A1||E the result of the in-
tegration. Consider also that A1 and E have a common
subset of labels of actions – the synchronized actions –, i.e.,
labelsA1 ∩ labelsE �= ∅. Let us rename by τ all the labels
of the own actions of the environment (the non-common la-
bels of E) and call them τ -actions.
The timed τ -simulation S between the semantic graphs of
A2 and A1 is characterized by the following points: if A2 can
make an action of A1 after some amount of time (that is,
either a synchronized action or an own action of A1), then

2Note that, although deadlock-freedom properties can be
classified as safety properties, we do not consider them like
this, but as a separate class of properties. Thus, this kind
of properties are not preserved by the timed τ -simulation.

35

A1 could also do the same action after the same amount of
time (clauses 1 and 2 of Definition 1), and own actions of E
(τ -actions) stutter (clause 3).

Definition 1 (Timed τ -simulation S). Let A1 =〈Q1,
q01

, Labels1,X1,T1, Invar1,L1〉 and A2 =〈Q2, q02
, Labels1∪

{τ},X2,T2, Invar2,L2〉 be two TA such that X1 ⊆ X2. S1

and S2 are the respective set of states of A1 and A2. The re-
lation S is included in S2×S1. We say that (q2, v2)S(q1, v1)
if v2�X1 = v1 and

1. Strict simulation:
(q2, v2)

e2→ (q′
2, v′

2) ∧ label(e2) ∈ Σ1 ⇒ ∃(q′
1, v′

1)·
((q1, v1)

e1→ (q′
1, v′

1) ∧ label(e1) = label(e2) ∧ (q′
2, v′

2) S (q′
1, v′

1)).

2. Time transitions:
(q2, v2)

δ→ (q2, v′
2) ⇒

∃(q1, v′
1) · ((q1, v1)

δ→ (q1, v′
1) ∧ (q2, v′

2) S (q1, v′
1)).

3. Stuttering:
(q2, v2)

e2→ (q′
2, v′

2) ∧ label(e2) = τ ⇒ (q′
2, v′

2) S (q1, v1).

We say that A1 τ -simulates A2 w.r.t. S , written A2 � A1, if
s02 S s01 , where s01 and s02 are the respective initial states
of A1 and A2.

This τ -simulation only preserves safety properties. To
preserve also liveness properties, it has to be (1) stability
- respecting : the integration of A1 in E must not create
deadlocks in comparison with A1 (all the deadlocks appear-
ing in A1||E must already exist in A1), and (2) divergence-
sensitive: the own actions of the environment E must not
have the possibility to take the control forever, i.e., A1||E
must not contain non-zeno runs composed of an infinite se-
quence of successive τ -actions. Such a run is called a non-
zeno τ -cycle, and a TA containing such a run is called τ -
divergent.

The predicate free. To deal with the non-introduction
of deadlocks during the integration, we use the predicate
free introduced in [18]. Informally, free(q) computes the
set of valuations of the states with discrete part q that can
let some time pass and then take a discrete transition (i.e.,
non-blocking states):

free(q) =
[

e∈out(q)

↙ (guard(e)∩([reset(e) := 0]Invar(target(e))))

where out(q) is the set of discrete transitions leaving from q.

Non-zeno τ -cycles. Let A be a TA where some labels of
actions are renamed by τ . We say that A does not contain
any non-zeno τ -cycles (and thus that A is not τ -divergent)
if:
∀ρ, k · (ρ ∈ Γ(A) ∧ time(ρ) = ∞∧ k ≥ 0 ⇒

∃k′, e · (k′ ≥ k ∧ (ρ, k′) e→ (ρ, k′ + 1) ∧ label(e) �= τ)).

We restrict the timed τ -simulation of Def. 1 by adding
conditions imposing divergence-sensitivity and stability-respect.
This Divergence-sensitive and Stability-respecting (DS) timed
τ -simulation is defined as follows.

Definition 2 (DS timed τ -simulation Sds). Consider
two TA A1 = 〈Q1, q01

, Labels1,X1,T1, Invar1,L1〉 and A2

= 〈Q2, q02
, Labels1∪{τ},X2,T2, Invar2,L2〉, such that X1 ⊆

X2 and A2 is not τ -divergent. S1 and S2 are the respective
set of states of A1 and A2. The relation Sds is included in
S2 × S1. We say that (q2, v2)Sds(q1, v1) if

(q2, v2)S(q1, v1) and v2 �∈ free(q2) ⇒ v1 �∈ free(q1)

We say that A1 τ -simulates A2 w.r.t. Sds, written A2 �ds

A1, if s02 Sds s01 .

3.2 Properties of timed τ -simulations
We give in this section the main propositions and theo-

rem showing the interest of the timed τ -simulations for the
incremental modeling of timed systems. Indeed, the timed
τ -simulation is well-adapted to the parallel composition op-
erator || (Proposition 1). Moreover, this operator does not
add τ -divergence if the environment in which a component
is integrated is not τ -divergent (Proposition 2). Theorem 1
is the main result, showing that the DS timed τ -simulation
preserves Mitl properties. Proofs can be found in [5].

Proposition 1. Let A, B, C and D be TA. Then, we
have the following:

1. A||B � A,

2. if A � B then A||C � B||C,

3. if A � B and C � D then A||C � B||D.

Proposition 2. Consider two TA A and B s.t. some
actions of B are renamed by τ . If B is not τ -divergent, then
neither is A||B.

Theorem 1. Let ϕ be a M itl property, A and B be TA.
If A |= ϕ and B �ds A, then B |= ϕ.

Therefore, in the context of integration of components,
the preservation of local safety properties can be obtained
for free, since parallel composition is compatible with the
timed τ -simulation. The preservation of local linear liveness
properties of a component can be ensured only by check-
ing that its integration in an environment does not create
deadlocks and that this environment is not τ -divergent.

Remark 1. Tctl [2] is a branching-time logic which is
often used to express timed properties. However, Tctl prop-
erties are not preserved by the DS timed τ -simulation. In-
deed, even in the untimed case, simulation relations can not
handle the preservation of branching-time properties. This
kind of properties gives the possibility to add existential or
universal quantifiers in the formulas. In particular, proper-
ties including existential quantifications, such as reachability
properties, are not preserved (note that each M itl formula
is implicitly preceded by a universal quantification, meaning
that the property must hold on all runs). One often need to
use bisimulation relations to ensure the preservation of such
properties, but they are not appropriate to formalize incre-
mental modeling, and thus, integration of components.

3.3 Checking the simulations
To check the DS timed τ -simulation, we developped the

tool Vesta3. The structure of the tool was guided by the
structure of the tool Open-Kronos [18], allowing an easy
connection to the Open-Caesar platform [11]. It takes as
input two TA A1 and A2, where A2 represents the integra-
tion of A1 in an environment E, i.e. A1||E.

3available at: http://lifc.univ-fcomte.fr/∼oudot/VeSTA

36

The tool performs a joint on-the-fly depth-first search on
symbolic graphs representing the two TA (the so-called sim-
ulation graphs [18]), and checks if A2 �ds A1. This verifica-
tion is in O((|Z1| + | −→1 |) × (|Z2| + | −→2 |)), where Zi

and −→i, for i = 1, 2, are respectively the set of states and
transitions of the simulations graphs of each Ai. If the ver-
ification fails, the tool returns a diagnostic. This diagnostic
consists in a trace of A2 containing a state which does not
satisfy the relation, and the corresponding trace in A1. To
check if A2 is τ -divergent, we use the tool Profounder [19],
which can in particular detect non-zeno cycles. Thus, we use
it to detect non-zeno τ -cycles first in E, then in A2 if τ -cycles
are detected in E.

4. EXPERIMENTS
We present in this section examples on which we lead

experiments to show the interest of timed τ -simulations.
For each case study, the verification of the properties was
achieved with the tool Kronos [20]. Kronos is a verifi-
cation tool for timed systems which performs Tctl model-
checking [2], in particular for component-based models (in-
deed, Kronos can compute the parallel composition of TA).
Tctl is a logical formalism that allows to express branching-
time properties. It can be seen as the timed extension of
the untimed logic Ctl [8, 10]. To our knowledge, there is no
tool performing Mitl model-checking. Thus, we focused on
linear-time properties that can also be expressed in Tctl to
lead the verification with Kronos. The verification of the
simulations was done with Vesta.

4.1 Production Cell
The production cell case study was developed by FZI (the

Research Center for Information Technologies, in Karlsruhe)
as part of the Korso project. The goal was to study the
impact of the use of formal methods when treating indus-
trial applications. Thus, this case study was treated in
about thirty different formalisms. We treat it with timed
automata, as it was in [7].

��������������

��������������

��

��

press

robot

rotary table
elevating−

deposit belt

feed belt

sensor

arm B

arm A

Figure 1: The Production Cell

Modeling. The cell consists of six devices: a feed-belt and
a deposit-belt, from which pieces to be treated arrive and
are evacuated, a sensor detecting the arrival of the pieces,
an elevating rotary table, a two-arms robot and a press (see
Fig. 1). The sensor, on the feed-belt, detects when a piece
passes in front of it and sends a signal to the robot to in-
form that a piece is going to be available. When the piece

arrives at the end of the feed-belt, it is transfered to the
table which goes up while turning until being in a position
where the piece can be taken by the arm A of the robot. The
robot turns 90◦ so that the arm A can put down the piece
on the press, where it is processed and then transported by
the arm B to the deposit belt.
In the following, we focus on local properties concerning the
robot. Thus, let us give details about its behaviour: when
a piece is available on the table, the robot picks it up and
moves to the press so that its arm B is in front of the press.
If there is a piece on the press, the arm B takes it, otherwise
the robot goes on turning to place the arm A in front of
the press to put its piece down. Next, if the arm B is full,
the robot goes to the deposit belt to unload its piece (and
then goes back to the table), else it goes to an intermediary
position, called wait position. From this wait position, the
robot can either go back to the table to pick a new piece up
or to the press to get a processed piece.
The cell is modeled by at least seven components, one for
each device, and one or several pieces. Each component is
modeled by a TA. These TA can be found in [7]. The com-
plete model is obtained by making the parallel composition
of all these components. The timing constraints of the plant
are shown in Fig. 2. We give in Fig. 3 the size, in terms of
number of states and transitions, of the simulation graphs
of each component.

Device Description Time
Robot moves to press 5
Robot turns 90◦ 15
Robot moves to deposit belt 5
Robot from deposit belt to table 25
Robot from deposit belt to wait pos. 22
Robot from press to wait pos. 17
Robot from wait pos. to table 3
Robot from wait pos. to press 2
Robot at wait pos. 2
Feed Belt piece moves to sensor 3
Feed Belt piece moves to table 1
Table raises and turns 2
Table returns and turns 2
Press presses a piece 22-25
Press ready for a new piece 18-20
Deposit Belt evacuates a piece 4

Figure 2: Timing constraints for the production cell

Component Robot Press Feed belt Dep. Belt
States/Trans. 39/40 7/7 6/6 4/4

Component Table Sensor Piece Complete Model
States/Trans. 6/6 2/2 7/7 1655/2395

Figure 3: Size of the simulation graphs of each com-
ponent of the production cell

Verification. To ensure that the modeling is correct, there
are several properties to check. We focus on the local prop-
erties of the components, and in particular on the local prop-
erties concerning the robot. Here is a non-exhaustive list of
dynamic properties to check on the robot component. Prop-
erties 1 and 2 are safety requirements, properties 3 and 4 are
liveness requirements and properties 5 to 7 are bounded-
response requirements:

37

(1) When the robot is in wait position, its two arms are
empty,

(2) The robot is not waiting in front of the table if the
arm A is full,

(3) If there is a piece on arm B, the robot will eventually
go to the deposit belt,

(4) If there is a piece on arm A, the robot will eventually
go to the press,

(5) When the robot is in front of the deposit belt, then it
goes back to the table within 25 time units (t.u.) if
there are no pieces on the press,

(6) When the robot is in front of the deposit belt, then it
goes to the wait position within 22 t.u. if there is a
piece on the press,

(7) When it is in wait position, either the robot goes to
the press within 2 t.u. to unload it or it goes back to
the table within 3 t.u. to pick a new piece.

The following liveness property concerns the correct inter-
action between the robot and the press :

(8) If arm A is full then the press will eventually be free.

We used two approaches to verify these properties on the
plant. As a first approach, we verified the properties in a
classic way, directly on the global model, with only one piece.
As a result, we obtained that all the properties hold on this
model of the plant. The second approach consisted in veri-
fying the properties locally, i.e., on the robot component for
properties 1 to 7, and on the composition robot||press for
property 8. Here again, the verification succeeded. Next,
to guarantee the preservation of these properties, first when
integrating the robot with the press, then when integrating
the composition robot||press with the rest of the compo-
nents, we used the DS timed τ -simulation. We used our
tool Vesta to check it for both cases, and obtained as a re-
sult that the verification was successful. Thus, properties
are preserved.

Fig. 4 gives the results of the comparison of the two ap-
proaches in terms of verification times (in seconds). We can
see that, even on this small example, the second approach
only needs 0,57 sec. of computation time to ensure that
the properties hold on the cell, whereas the classic approach
consumes 19,58 sec.
Note that, in both approaches, we focused on a global sys-
tem which contains only one piece. The reason is the fol-
lowing. First, in the case of the second approach, adding
other pieces to the global system does not affect the re-
sults of the preservation. As the component piece already
exists in the global system and that there are no synchro-
nizations between the pieces, no new deadlocks can appear
while adding a new piece. Indeed, the system can behave
like it did with only one piece, or synchronize with the new
piece. In this last case, as the environment of the pieces
could synchronize with one piece without introducing dead-
locks, then it will synchronize with the new pieces in the
same way, thus without introducing deadlocks. On the other
hand, in the first approach, adding pieces considerably in-
crease the computation time for the verification of liveness or

bounded-response properties. Indeed, even with few pieces,
the memory needed to perform classic verification of such
properties is too large for the verification to be run to com-
pletion.

4.2 CSMA/CD protocol
The CSMA/CD protocol (Carrier Sense, Multiple Access

with Collision Detection protocol) [15] is used in broadcast
networks with a single channel, to which many stations try
to access. The protocol solves the problem of how to assign
the use of the channel to one of the stations and allows to
detect collisions when two stations try to send data simul-
taneously.

Modeling. The protocol works as follows: a station tries to
send a data. If the channel is busy, it waits some amount of
time and then retries to send. Otherwise, it begins to send
its data. If two or more stations begin to send a data simul-
taneously, and thus a collision arises, these stations detect
the collision and wait some amount of time to begin retrans-
mitting the data.
At least two TA are used to model the protocol: one per
station, called sender, and a medium. These TA are shown
in Fig. 5. Transitions cdi represent a collision detection
by the ith sender, and cdM models this detection by the
medium. The complete model of the protocol can contain
several senders. For n senders, the synchronizations are the
following: for a ∈ {begin, busy, end}, there is a synchro-
nized transition ai||aM

4, for i ∈ [1..n]. Moreover, the cd
transitions of each TA are synchronized, i.e., in the parallel
composition, there is a transition cdM ||cd1|| · · · ||cdn.

Verification. A main property of the protocol is that what-
ever the number of stations, if a collision occurs between two
stations i and j, i �= j, both detect it within 26 t.u. This is
a bounded-response property, written in Mitl by:

�(transmi ∧ transmj ⇒ �≤26(coll detectedi ∧ coll detectedj)).

This property holds in the case of a modeling with only
two senders S1 and S2. The verification with Kronos takes
less than 0.001 seconds of computation time. We want to
ensure that adding other senders does not alter the result of
the verification. That is, we want that, with a number n > 2
of senders, if S1 and S2 transmit their data simultaneously,
they still detect the collision. To preserve this bounded-
liveness property, we have to check that

S1||S2||S3|| · · · ||Sn||Medium �ds S1||S2||Medium.

As the senders Si are not τ -divergent, and with Proposi-
tion 1, we only have to check that the addition of S3, · · · , Sn

does not add deadlocks to S1||S2||Medium.
As in the production cell example, there already exist two
senders in the system. Thus, when adding a new sender, the
synchronizations of this sender with the medium (actions be-
gin, end and busy) can take place as they did with only two
senders. Thus, no deadlocks can be introduced by these
synchronizations. The main difference with the production

4Note that, for more simplicity, we extend here the notation
|| initially defined on timed automata, to transitions. Thus,
a||b denotes the transition resulting of the synchronization
of transitions a and b.

38

Property Global Verification Local Verification Preservation checking
Prop. 1 0.01 < 0.001
Prop. 2 0.01 < 0.001
Prop. 3 0.98 < 0.001
Prop. 4 15.79 0.04 0.05
Prop. 5 0.68 < 0.001
Prop. 6 0.48 < 0.001
Prop. 7 0.7 < 0.001
Prop. 8 0.93 0.02 0.46

Total 19.58 0.06 0.51

Figure 4: Production cell : local and global verification times (in seconds)

cdi

cdi, {xi}

{xi}
{xi}begini,

cdi

{xi}
cdi,

sendi, {xi}

xi = 782,
endi, {xi}

busyi,
{xi}

xi ≤ 782 xi ≤ 52

initi

coll detectedi

transmi

ready to sendi

endM , {xM}

xM < 26xM ≤ 26

xM ≥ 26
busyM

initM

transmM

coll detectedM

beginM ,

{xM}

beginM , {xM}cdM , {xM}

xM ≤ 26

xi = 0
retryi,

Figure 5: Timed automata for the ith sender and the medium of the CSMA/CD protocol

cell example is that there exists synchronizations between
all the components of the system, i.e., all the senders and
the medium (action cd). That is, when two senders detect
a collision and try to take action cd between the locations
transmi and coll detectedi, all other senders must allow
them to detect the collision and thus, must allow them to
take this transition. If not, a new deadlock occurs, since
the synchronization can not take place, whereas it could be
taken with two senders. However, we see that, at each lo-
cation of the TA of the senders, the transition cd appears.
This means that whenever a collision must be detected by
two senders (i.e., taking transition cd between the locations
transmi and coll detectedi), the other senders also have the
possibility to take a transition cd, allowing the two first
senders to detect the collision. No deadlocks can appear
while adding new senders, and thus, the property is pre-
served whatever the number of senders may be.
We compared our approach with a classic verification ap-
proach, and tried to verify this property, for instance, for
two senders S1 and S2, using the tool Kronos:

• Up to six senders (S1 to S6), the property can be
checked successfully. The computation times for the
verification changed from less than 0,5 seconds (three
senders) to more than 57 minutes (six senders). These
computations times take into account the time con-
sumed to make the parallel composition of all the com-
ponents and the verification time. Note that, in the
last case, the verification time takes about 30 seconds,
while the construction of the composition takes almost
57 minutes.

• For seven senders or more, the construction of the TA
resulting of the parallel composition of all the compo-
nents takes a considerably long time. For instance, we

aborted the construction for seven senders after ten
hours of computation without results. Thus, as the
composition could not be obtained, it was impossible
to perform the verification of the property.

5. CONCLUSION AND FUTURE WORKS
We aimed at treating the problem of the verification of

linear-time properties, expressed in Mitl, of timed systems.
We considered timed systems modeled in a compositional
framework, and focused on the verification of local proper-
ties of the components.

In [5], we proposed to use timed τ -simulations as a way
to verify these properties at a lower cost. The main thesis
is that a local linear property can be checked only on the
component it concerns, instead of on the complete composed
system, and that the preservation of the property when inte-
grating the component in its environment can be checked by
means of timed τ -simulation relations. More precisely, we
defined two such relations: a timed τ -simulation handling
the preservation of linear safety properties, and a divergence-
sensitive and stability-respecting timed τ -simulation for the
preservation of all Mitl properties, in particular liveness
properties.

In this paper, we studied the impact in practice of this
methodology. We applied it to two timed systems, and com-
pared the results with the ones obtained by a direct verifi-
cation on the complete system. It turns out that, in terms
of computation times, the methodology appears to be more
efficient. Moreover, both examples show the interest of the
methodology when a system S is susceptible to include an
indeterminate number n of components Ci,i=1..n of the same

39

“kind”, i.e., S = E||C1|| · · · ||Cn. In this case, we say that
S has n as a parameter. For instance, the parameter of the
production cell is the number of pieces on the cell, while
in the CSMA/CD protocol, it is the number of senders. In
such a parametrized system, the interesting cases are when
the verification can be performed with a small fixed number
l of such components, that is Sl = E||C1|| · · · ||Cl, implying
the preservation of the properties on Sm = E||C1|| · · · ||Cm,
∀m ≥ l, under some simple conditions. As the parallel
composition is compatible with the timed τ -simulation, it
is enough that the conditions ensure that adding the Cis
does not introduce any deadlocks. For instance, for the pro-
duction cell example, the condition is that there are no syn-
chronizations between the pieces. Thus, an interesting work
is to determine such simple conditions.

Another work direction would be to study the compatibil-
ity of the timed τ -simulations with other composition oper-
ators, in particular those preserving deadlock-freedom, such
as the one presented in [6]. Indeed, this analysis would al-
low to evaluate the interest of the methodology we propose
in a more general framework, i.e., also for systems using
composition paradigms which differ from the classic parallel
composition one.

6. REFERENCES
[1] J.-R. Abrial. Extending B without changing it (for

developing distributed systems). In 1st Conference on
the B method, pages 169–190, Nantes, France,
November 1996.

[2] R. Alur, C. Courcoubetis, and D. Dill.
Model-Checking in Dense Real-time. Information and
Computation, 104(1):2–34, 1993.

[3] R. Alur and D. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994.

[4] R. Alur, T. Feder, and T. Henzinger. The benefits of
relaxing punctuality. Journal of the ACM, 43:116–146,
1996.

[5] F. Bellegarde, J. Julliand, H. Mountassir, and
E. Oudot. On the contribution of a τ -simulation in the
incremental modeling of timed systems. In Proceedings
of the 2nd International Workshop on Formal Aspects
of Component Software (FACS’05), volume 160 of
Electronic Notes in Theoretical Computer Science,
pages 97–111, Macao, Macao, October 2005. Elsevier.

[6] S. Bornot, J. Sifakis, and S. Tripakis. Modeling
Urgency in Timed Systems. In COMPOS’97, volume
1536 of Lecture Notes in Computer Science.
Springer-Verlag, 1997.

[7] A. Burns. How to verify a safe real-time system: The
application of model-checking and timed automata to
the production cell case study. Real-Time Systems
Journal, 24(2):135–152, 2003.

[8] E. Clarke and E. Emerson. Design and synthesis of
synchronization skeletons using branching-time
temporal logic. In Proceedings of Workshop on Logic
of Programs, volume 131 of Lecture Notes in
Computer Science. Springer-Verlag, 1981.

[9] C. Darlot, J. Julliand, and O. Kouchnarenko.
Refinement Preserves PLTL Properties. In Proceedings
of 3rd International Conference on B and Z Users

(ZB’03), volume 2651 of Lecture Notes in Computer
Science, pages 408–420, Turku, Finlande, June 2003.
Springer-Verlag.

[10] E. Emerson and J. Halpern. Decision procedures and
expressiveness in the temporal logic of branching time.
In Proceedings of the 14th ACM Symp. Theory of
Computing (STOC’82), pages 169–180, San Francisco,
CA, USA, May 1982.

[11] H. Garavel. OPEN/CAESAR: An Open Software
Architecture for Verification, Simulation and Testing.
In B. Steffen, editor, Proceedings of 1st International
Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS’98),
Lisboa, Portugal, March 1998.

[12] R. v. Glabbeck. The Linear Time - Branching Time
Spectrum II ; The semantics of sequential systems
with silent moves. In Proceedings of 4th international
Conference on Concurrency Theory (CONCUR’93),
volume 715 of Lecture Notes in Computer Science,
pages 66–81, Hildesheim, Germany, august 1993.
Springer-Verlag.

[13] M. Henzinger, T. Henzinger, and P. Kopke.
Computing simulations on finite and infinite graphs.
In Proceedings of the 36th IEEE Symposium on
Foundations of Computer Science, pages 453–462,
1995.

[14] H. Jensen, K. Larsen, and A. Skou. Scaling up
Uppaal : Automatic verification of real-time systems
using compositionnality and abstraction. In
Proceedings of the 6th international symposium on
Formal Techniques in Real-Time and Fault-Tolerant
Systems (FTRTFT’00), pages 19–30, London, UK,
2000. Springer-Verlag.

[15] X. Nicollin, J. Sifakis, and S. Yovine. Compiling
real-time specifications into extended automata. IEEE
Transactions on Software Engineering, Special Issue
on Real-Time Systems, 18(9):794–804, September
1992.

[16] A. Pnueli. The temporal logic of programs. In
Proceedings of the 18th IEEE Symposium on
Foundations Of Computer Science, pages 46–77, 1977.

[17] S. Tasiran, R. Alur, R. Kurshan, and R. Brayton.
Verifying Abstractions of Timed Systems. In
Proceedings of the 7th Conference on Concurrency
Theory (CONCUR’96), volume 1119 of Lecture Notes
in Computer Science, pages 546–562, Pisa, Italy, 1996.

[18] S. Tripakis. The analysis of timed systems in practice.
PhD thesis, Universite Joseph Fourier, Grenoble,
France, December 1998.

[19] S. Tripakis, S. Yovine, and A. Bouajjani. Checking
Timed Büchi Automata Emptiness Efficiently. Formal
Methods in System Design, 26(3):267–292, May 2005.

[20] S. Yovine. Kronos: A verification tool for real-time
systems. Journal of Software Tools for Technology
Transfer, 1(1/2):123–133, October 1997.

40

