
75

SAVCBS 2006 Challenge: Specification of Iterators
Bruce W . W eide

Department of Computer Science and Engineering
The Ohio State University

+1-614-292-1517
weide.1@osu.edu

ABSTRACT
A method for formal specification of iterators, which can be
used to verify both clients and implementations, is illustrated
with a Set abstraction as the underlying collection.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/program verification.

General Terms
Design, Verification.

Keywords
Formal specification, iterators, Resolve, verification.

1. INTRODUCTION
This short paper is a response to the SAVCBS 2006

Challenge Problem: “We invite participants to illustrate their
specification and verification techniques on the problem of
specifying the behavior of iterators and clients that use them”.
Our solution illustrates, and slightly improves on (i.e.,
simplifies) the iterator design and specification techniques we
previously published in [8], using a Set abstraction with an
active iterator that does not permit interleaved client
modification of the elements of a Set. The conclusion of [8] is:

Previously published iterator designs are unsatisfactory
along several dimensions. The iterator design developed
incrementally [in this paper] addresses the deficiencies of
prior approaches in the following specific ways:

• It is designed to support efficient implementations:
neither the implementer nor the client needs to copy the
data structure representing the Collection, or any of the
individual Items in it.

• Its abstract behavior (including the non-interference
property) is formally specified.

• Its implementations and clients can be verified
independently, i.e., modularly in the sense of [3].

• It can be specified as a schema for an independent
generic concept that defines an iterator abstraction for
arbitrary Collections, so all iterator abstractions in a
system share a common interface model.

“Non-interference” means [8] that it “should not be
permissible for a (correct) client program to iterate over a
collection while interleaved operations on that collection
might be changing it.” Extensions and variants discussed in
[8] also address issues involved when iteration over a
collection modifies the collection or the items in it, when
iteration might encounter items in different orders, and when
iteration terminates early. None of these latter issues i s
explicitly discussed here.

The answers to the specific questions posed in the
Challenge Problem are as follows:

• The solution is intended for use with a sequential
programming language, though concurrency-hardening
does not seem to pose any special problems.

• The level of annotation required (both in the contract
specification and in a client program) is full behavioral
specification—but no more than what is necessary and
sufficient to modularly verify client correctness. In
principle, it might be possible to specify or prove weaker
properties with less annotation, but we see no reason to
do so; this solution seems fully manageable in terms of
specification and verification complexity.

• The solution is based on using a language, such as
Resolve [2] or the disciplined use of C++ that we call
Resolve/C++ [6], that has value semantics, with no visible
references and hence no visible aliasing. We emphasize
that this does not imply inefficiency compared to
languages that make references manifest to the
programmer. This is one of the main points of [8]—but
one that we do not elaborate here except to claim the
result that our design permits optimally efficient iterator
implementations in the big-O sense, so introducing the
reasoning complications of reference semantics would not
result in efficiency improvements.

• Fully automated verification of client programs using our
iterator design and specification approach is certainly
possible in principle. We know how to generate
mechanically the verification conditions for Resolve
programs. However, there is no evidence yet to suggest
that a system like Hoare’s “verifying compiler”, that
would produce fully automatic proofs of these
verification conditions, is just over the horizon. The
verification conditions that arise from using our iterators
are not particular difficult for humans to discharge. They
do seem generally near or beyond what existing theorem
provers can handle without human advice.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Fifth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2006). November 10-11, 2006,
Portland, Oregon, USA.

Copyright 2006 ACM ISBN 1-59593-586-X/06/11 … $5.00

76

We regrettably have no fundamentally new observations
about specifying iterators since the 1994 paper [8]. We hope
the attendees at the workshop provide some additional food
for thought.

2. EXAMPLE: A SET COMPONENT
Understanding our iterator design and specification requires
understanding the specification of the collection over which
iteration is to be done. The iterator design technique we
proposed in [8] is a schema that can be used with arbitrary
collections and is illustrated there with a Queue abstraction.
Here we use for variety a Set abstraction: a parameterized
component in which the type Item (of a Set’s elements) is a
template parameter. This is its specification:

contract Set_Template (type Item)
type family Set is modeled by

finite set of Item
exemplar s
initialization ensures
s = { }

operation Add (s: Set, x: Item)
requires
x is not in s

ensures
s = #s union {#x}

operation Remove (s: Set, x: Item,
x_copy: Item)

requires
x is in s

ensures
x = x_copy = #x and
s = #s - {x_copy}

operation Remove_Any (s: Set, x: Item)
requires
s /= { }

ensures
s = #s - {x}

operation Is_Member (s: Set, x: Item):
Boolean

ensures
Is_Member = (x is in s)

operation Size (s: Set): Integer
ensures
Size = |s|

end Set_Template

The type specification says that a Set variable should be
considered to have a value that is a finite mathematical set of
the parameter type Item, and that such a variable’s initial value
(i.e., upon declaration) is an empty set. The operation Add can
be used to add an element to a Set; the operation Remove to
remove a particular element whose value is x , the removed
element being returned in x_copy; the operation Remove_Any
to remove and return an arbitrary implementation-determined
element, which is needed for functional completeness of this
component [7] in the absence of an accompanying iterator; the
function operation Is_Member to test set membership; and the
function operation Size to determine the number of elements.
In operation specifications, the prefix “#” on a variable name

in a postcondition denotes the parameter’s incoming value.
Function operations may not change the values of their
arguments, so this fact is not specified explicitly.

Two important points must be kept in mind. First, there
are no hidden references here. The simplicity of the
specification is the result neither of hoping/assuming that
there are no aliases (i.e., aliases really aren’t possible), nor of
syntactic sugar that makes s, x, #s, etc., simply appear to act
like mathematical variables rather than the names of objects
(i.e., they really do act like mathematical variables). This
might surprise readers who are used to similar-looking
specifications that deal with references. Second, the only other
operations that are available for a Set type are those available
for any type in Resolve: Clear, which resets a variable to an
initial value for its type, and a swap operator “:=:” that
exchanges the values of two variables of the same type [8].
Assignment “:=” is available only when the right-hand side i s
a call to a function operation. Readers who are unfamiliar with
this style of programming under design-by-contract—value
types only, built-in swapping but not variable-to-variable
assignment, fully parameterized components, etc.—also might
be surprised to learn that it is possible and practical to
develop “real” software this way with disciplined use of C++.
In fact, experience with a commercial Windows application of
over 100,000 SLOC developed in this style shows that real
software is not only feasible but also of notably higher quality
than software built using traditional methods [4]. In other
words, this proposal for how to specify iterators is not based
on an unrealistic closed-world assumption; it also is not based
on business-as-usual in C++ or Java.

3. CLIENT AND COMPONENT DESIGN
In our design, an iterator’s abstract model value includes a
string of Items called past, which is essentially the Items
iterated over so far (in the order they have been processed, with
the value of the Item currently “out” of the collection at the
end of this string), a string of Items called future, i.e., those to
be iterated over in the future (in the order to be processed,
unless the iteration terminates early), and a set called original,
which is the original value of the Set over which iteration i s
being done. For the complete rationale behind this style of
design, see [8]. The formal specification is on the next page
(Section 5). Here is a fragment of a typical client program that
iterates completely over the Set s:

Start_Iterator (i, s, x)
loop
maintaining
i.past * i.future =
#i.past * #i.future and

<x> is suffix of i.past and
i.original = #i.original

decreasing
|i.future|

while Length_Of_Future (i) > 0 do
Get_Next_Item (i, x)
/* process x, with no net change to it */

end loop
Finish_Iterator (i, s, x)

Bracketing calls to Start_Iterator and Finish_Iterator
move the elements of the original Set s into the Set_Iterator i

77

and back again. This prevents interference between iteration
over i and interleaved modifications to s: client code that does
this might be useless because the changes to s are lost when
Finish_Iterator executes, but that client is not necessarily
incorrect. Users of C++ or Java or other similar iterators might
find this behavior unsettling. However, possible interference
between interleaved modifications to a collection and iteration
over it leads to informal and difficult-to-specify warnings in
component libraries, such as this one for the remove method in
the java.util package, interface Iterator<E> [5]:

The behavior of an iterator is unspecified if the
underlying collection is modified while the iteration is in
progress in any way other than by calling this method.

We did not feel obligated to keep such problematic
behavior regardless of its familiarity (in 2006 even more so
than in 1994), opting instead for simpler, easily explicable
behavior that can be specified without introducing either new
specification constructs or extra-specificational warnings.

Start_Iterator records the value of x in the string i.past at
the start of the loop—important to meet the precondition of
the first call of Get_Next_Item. Parsimony, as well as a Resolve
design rule urging “conservation of data”, suggest that
eventually x should have this value again after completion of
Finish_Iterator. The loop invariant is that the concatenation
of i.past and i.future does not change, that i.original does not
change, and that the last entry in i.past equals x. Of course,
there is more to the loop invariant to prove the correctness of
what the client program is doing while iterating over the
elements of s, but this is the part required to show that the
iterator i is being used properly.

Given the stylized nature of the client code, it is easy to
imagine special iteration syntax for collections, such as that
now available in Java, but with a semantics that matches this
common interface model [1] for iterators rather than Java’s
Iterable<T> and Iterator<E> interfaces.

4. REFERENCES
[1] Edwards, S.H., “Common Interface Models for Reusable

Software”, Intl. J. of Softw. Eng. and Knowledge Eng. 3, 2
(June 1993), 193-206.

[2] Edwards, S.H., Heym, W.D., Long, T.J., Sitaraman, M., and
Weide, B.W., “Specifying Components in RESOLVE,”
Software Eng. Notes 19, 4 (October 1994), 29-39.

[3] Ernst, G.W., Hookway, R.J., and Ogden, W.F., “Modular
Verification of Data Abstractions with Shared
Realizations”, IEEE TSE 20, 4 (Apr 1994), 288-207.

[4] Hollingsworth, J.E., Blankenship, L., and Weide, B.W.,
“Experience Report: Using RESOLVE/C++ for Commercial
Software”, Proc. ACM SIGSOFT 8th Intl. Symp. on the
Foundations of Softw. Eng., ACM Press, 2000, 11-19.

[5] java.util Package, Interface Iterator <E>, remove Method
Detail, http://java.sun.com/j2se/1.5.0/docs/api/java/util/-
Iterator.html, viewed 6 Oct. 2006.

[6] Resolve/C++, http://www.cse.ohio-state.edu/sce/now,
viewed 6 Oct. 2006.

[7] Weide, B.W., Ogden, W.F., and Zweben, S.H., “Reusable
Software Components”, in Advances in Computers, vol.
33, M.C.Yovits, ed., Academic Press, 1991, 1-65.

[8] Weide, B.W., Edwards, S.H., Harms, D.E., and Lamb, D.A.,
“Design and Specification of Iterators Using the
Swapping Paradigm,” IEEE TSE 20, 8 (August 1994), 631-
643.

5. APPENDIX: THE SPECIFICATION
contract Set_With_Iterator_Template

enhances Set_Template
type family Set_Iterator is modeled by (

past: string of Item,
future: string of Item,
original: finite set of Item

)
exemplar i
initialization ensures
i = (< >, < >, { })

operation Start_Iterator (i: Set_Iterator,
s: Set, x: Item)

ensures
there exists f: string of Item
(elements (f) = #s and
 |f| = |#s| and

 i = (<x>, f, #s)) and
s = { } and
x = #x

operation Finish_Iterator (
i: Set_Iterator, s: Set, x: Item)

requires
<x> is suffix of i.past

 ensures
is_initial (i) and
s = #i.original and
<x> is prefix of #i.past

operation Get_Next_Item (i: Set_Iterator,
x: Item)

requires
i.future /= < > and
<x> is suffix of i.past

 ensures
there exists f: string of Item
(#i.future = <x> * f and
 i = (#i.past * <x>, f, #i.original))

operation Length_Of_Future (
i: Set_Iterator): Integer

ensures
Length_Of_Future = |i.future|

end Set_With_Iterator_Template

78

