
Reasoning About Iterators With Separation Logic

Neelakantan R. Krishnaswami
Carnegie Mellon University

neelk@cs.cmu.edu

ABSTRACT
Separation logic is an extension of Hoare logic which per-
mits reasoning about imperative programs that use shared
mutable heap structure. In this note, we show how to use
higher-order separation logic to reason abstractly about an
iterator protocol.

Categories and Subject Descriptors
D.2 [Software/Program Veri�cation]: Correctness Proofs

General Terms
Languages, Veri�cation

Keywords
separation logic, iterators, aliasing, challenge problem

1. JAVA STYLE ITERATORS
The iterator interface[3] in Java works roughly as follows.

First, we have a mutable collection type. This type supports
a number of operations, some of which like add-ing an ele-
ment to a collection will mutate the collection, and others,
like checking to see if it is empty, which do not modify the
collection.
To get the elements of a collection, we create another mu-

table object called an iterator. This object has a method
next, which returns a new element of the collection each
time it is called, �nally failing when there are no more ele-
ments within it.
However, both the collection and the iterator are imper-

ative objects, and correct usage of an iterator also requires
observing some additional restrictions to ensure that the
state of an iterator and its underlying collection remain in
sync. Speci�cally, a client program:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Fifth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2006), November 10–11, 2006, Port-
land, Oregon, USA.
Copyright 2006 ACM ISBN 1-59593-586-X/06/11 ...$5.00.

• may create as many iterators on a single collection as
they like,

• may freely call any methods on the collection that do
not change the collection's observable state (such as
empty),

• may freely call next on the iterators in any order, and

• may NOT call next on an iterator after calling add

on the underlying collection.

The general idea is that an iterator maintains a pointer
into some part of the collection during its traversal, and that
updating the collection may cause the iterator's reference to
point to an incorrect part of the collection. So while an
iterator is live, dangerous method calls to its underlying
collection should be forbidden, and only safe method calls
permitted.

2. SEPARATION LOGIC
Separation logic [5, 6] is an extension of Hoare logic [4]

intended to simplify reasoning about aliasing with mutable
data structures. We have developed a version of separation
logic that permits reasoning about imperative programs in
high level languages (such as Java or ML), and which uses
features of higher-order logic [2] to reason abstractly about
high-level aliasing behavior.
Separation logic extends the logical language of precondi-

tions and postconditions with two new logical connectives,
the separating conjunction �A ∗ B�, and the magic wand
�A −∗ B�. Intuitively, A ∗ B means that A holds in one
part of the heap, and B holds in a disjoint part of the heap.
This contrasts with the regular conjunction A ∧ B, which
means that both A and B hold in the current heap. The
magic wand A −∗ B means that if you added a piece of
storage which validated A to the current heap, the whole
thing would validate B. (Likewise, the informal meaning
of A ⊃ B is that if A holds in the current heap, then B
will too.) Finally, the separating and ordinary connectives
can be freely mixed, which lets us describe quite complex
aliasing behaviors.
We use the propositions of separation logic to describe

the pre- and post-conditions of commands, and describe
the behavior of commands with Hoare triples of the form
{P} c {a : τ . Q}. The P is the state the heap must be in be-
fore the command can be run, and Q describes the changed
heap after the command �nishes. Since side-e�ecting oper-
ations can also return values, we use the a : τ notation to
name the return value in the postcondition.

83

∃new_coll, size, add, new_iter, next.
∃coll : ((ref list× ref N)× seq nat× prop) ⇒ prop.
∃iter : (ref list× (ref list× ref N)× seq nat× prop) ⇒ prop.

{>} new_coll() {a : (ref list× ref N). ∃P. coll(a, [], P)} and

∀P, c, x, xs. {coll(c, xs, P)}
add(c, x)
{a : 1. ∃P ′. coll(c, x :: xs, P ′)} and

∀P, c, xs. {coll(c, xs, P)}
empty(c)
{a : bool. coll(c, xs, P)} and

∀c, xs, P. {coll(c, xs, P)}
new_iter(c)
{a : ref list. iter(a, c, xs, P)} and

∀i, c, xs, P. {iter(i, c, xs, P)}
next(i)
{a : 1 + nat. iter(i, c, xs, P)} and

∀i, c, xs, P. {iter(i, c, xs, P) ⊃ coll(c, xs, P)∗
coll(c, xs, P)−∗ iter(i, c, xs, P)}

Figure 1: Iterator Speci�cation

Since a triple only speci�es the behavior of a single rou-
tine, we combine triples into speci�cations, which are logical
formulas that use triples as their atomic propositions. So we
can specify an interface to a module by taking the conjunc-
tion of the triples for each operation, and then existentially
quantifying over the implementations.

3. THE ITERATOR PROBLEM

3.1 Iterator Interface Specification
We give a concrete example of this idea in Figure 1, which

is the speci�cation for iterators. In this example, our overall
collection type is the pair ref list× ref N. The �rst �eld has
type ref list, which is the type mutable linked lists of inte-
gers, and the second �eld is a pointer to a natural number.
This �eld tracks the number of times a harmless method
like empty, which helps illustrate the fact that the concrete
state of an object can change even while its abstract state
remains the same.
To describe the heap behavior, we introduce a pair of ex-

istentially quanti�ed predicates, coll and iter. These predi-
cates permit us to talk about the mutable state associated
with collections and iterators, without revealing their con-
crete implementation. The predicate coll(c, xs, P) asserts
that the collection object c represents the abstract sequence
xs, and that it is in an abstract state P . We represent
abstract states using propositions, which is why we need
higher-order logic. The assertion iter(i, c, xs, P) asserts that
i is an iterator over the collection c with elements xs and
abstract state P .
For example, the speci�cation

{>} new_coll() {a : τc. ∃P. coll(a, [], P)}

states that starting from any heap, calling new_coll will
return a new mutable list and heap structure corresponding
to that list. The speci�cation

{coll(c, xs, P)} empty(c) {a : bool. coll(c, xs, P)}

1 {coll(c, xs, P)}
2 letv b = empty(c) in
3 {coll(c, xs)}
4 letv i1 = new_iter(c) in
5 {iter(i1, c, xs, P)}
6 {(coll(c, xs, P) ∗ (coll(c, xs, P)−∗ iter(i1, c, xs, P))}
7 letv i2 = new_iter(c) in
8 {iter(i2, c, xs, P) ∗ (coll(c, xs, P)−∗ iter(i1, c, xs, P))}
9 {coll(c, xs, P)∗

(coll(c, xs, P)−∗ iter(i1, c, xs, P))∗
(coll(c, xs, P)−∗ iter(i2, c, xs, P))}

10 letv b′ = empty(c) in
11 {coll(c, xs, P)∗

(coll(c, xs, P)−∗ iter(i1, c, xs, P))∗
(coll(c, xs, P)−∗ iter(i2, c, xs, P))}

12 {iter(i1, c, xs, P))∗
(coll(c, xs, P)−∗ iter(i2, c, xs, P))}

13 letv v = next(i1) in
14 {iter(i1, c, xs, P))∗

(coll(c, xs, P)−∗ iter(i2, c, xs, P))}
15 {coll(c, xs, P)∗

(coll(c, xs, P)−∗ iter(i1, c, xs, P))∗
(coll(c, xs, P)−∗ iter(i2, c, xs, P))}

16 {iter(i2, c, xs, P))∗
(coll(c, xs, P)−∗ iter(i1, c, xs, P))}

17 letv v = next(i2) in
18 {iter(i2, c, xs, P))∗

(coll(c, xs, P)−∗ iter(i1, c, xs, P))}
19 {coll(c, xs, P)∗

(coll(c, xs, P)−∗ iter(i1, c, xs, P))∗
(coll(c, xs, P)−∗ iter(i2, c, xs, P))}

20 letv _ = add(c, x) in
21 {∃Q. coll(c, xs, Q)∗

(coll(c, xs, P)−∗ iter(i1, c, xs, P))∗
(coll(c, xs, P)−∗ iter(i2, c, xs, P))}

Figure 2: Iterator Client

asserts that the empty function will return a boolean, and
that it will leave the abstract state unchanged. Note that
we could give a more precise speci�cation (e.g., that the
empty function returns true if the collection is empty and
false otherwise). We choose not to in order to focus this
example on aliasing.
By way of contrast, the speci�cation for add

{coll(c, xs, P)} add(c, x)
˘
a : 1. ∃P ′. coll(c, x :: xs, P ′)

¯
says that adding an element to the collection will alter the
abstract state of the object. We existentially quantify over
the abstract state in the postcondition, to show we can no
longer assume that P ′ is the same as P .
The speci�cation for new_iter

{coll(c, xs, P)} new_iter(c) {a. iter(a, c, xs, P)}

says that if we start with a collection c, then we can consume
it to construct an iterator.
The next function has the speci�cation

{iter(i, c, xs, P)} next(i) {a : 1 + nat. iter(i, c, xs, P)} ,

which says that if we have an iterator i, then next(i) will
give us an integer or signal a failure. As with empty, we
do not model the behavior of the iterator in any further
detail � the spec could easily be re�ned further, but that
detail would not be relevant to the issue of reasoning about
aliasing. The detail that is relevant is the fact that the
iterator preserves the abstract collection state P , which is

84

how we describe the fact that the iterator does not modify
the underlying collection.
That said, a natural question is how we can create two

iterators on the same collection, because the new_iter func-
tion transforms a coll(c, xs) state to an iter(i, c, xs, P) state,
which means that the precondition to call new_iter no longer
holds. This is where the sharing axiom comes into play �
the �nal invariant in the speci�cation:

iter(i, c, xs, P) ⊃[coll(c, xs, P)∗
coll(c, xs, P)−∗ iter(i, c, xs, P)]

is a separation logic formula that describes how to recover a
collection from an iterator state. It says that if we have an
iterator state iter(i, c, xs, P), then that state can be viewed
as two disjoint pieces, one of which is the original collection
(with the invariant P maintained), and one piece that can
be combined with the collection to restore the iterator.
The sharing axiom makes use of the fact we have both

standard implication and separating implication available
in the same logic. We use implication to reason that the
same piece of state can be viewed in multiple ways, and the
separating implication to reason about one isolated part of
the state.

3.2 Iterator Client Usage
We can see an example of how a client would make use

of this speci�cation in Figure 2. On line 1, we see that the
precondition for our program is that the variable c holds a
collection. On line 4, we create an iterator i1, consuming the
collection to produce an iterator, as seen in the state on line
5. We now apply the sharing axiom on line 6 to break the
iterator state into two pieces, which lets us create a second
iterator bound to i2.
The program state on line 8 contains an iterator for i2,

and some state that will let us reconstruct i1's iterator. On
line 9 we apply the sharing axiom once more, to break out
the collection state again, and this lets us call empty on line
10.
On line 12, we use the collection and an i1's iterator frag-

ment to recover the precondition for calling next(i1) on line
13, and then on lines 14-16, we apply the sharing axiom and
combine the iterator state fragment for i2, so that we can
call next(i2) on line 17.
The informal idea should be coming into focus now � we

are transferring ownership of the collection between the dif-
ferent collections, using the sharing axiom to get a collection
out of an iterator, and the deduction rule for magic wand
(A ∗ (A−∗ B) entails B) to put it back in.
On line 18 and 19, we once again use the sharing axiom

to disassemble the iterator and get back the collection, and
then call add(c, x) on line 21. This gives us a state in which
∃Q. coll(c, x :: xs, Q) holds. We can no longer apply the sep-
arating implication law to get a full iterator state, because
we need a hypothesis of the form coll(c, xs, P) to recover an
iter state, and we don't know whether Q is the same as P .
As a result, we can no longer call next on either i1 or i2 any
longer, just as we desire.
So the Hoare triples and sharing axioms put us in a situ-

ation where we can create multiple iterators, and can freely
call methods on the collection which don't change its ab-
stract state, but which also enforce the property that there

can be no calls to next after modifying the collection � and
the client was able to do this without knowing anything
about the details of the internal heap structure of the col-
lection.
Interestingly, the abstract states in our spec are reminis-

cent of a consistency check the Java collection libraries per-
form. The Java libraries keep a sequence number for each
collection, and update it when the collection is modi�ed.
Iterators save the sequence number when they are created,
and will raise a runtime error if the underlying collection's
sequence number ever di�ers from their saved value. With
our speci�cation, the abstract state changes whenever we
call a dangerous method, and our (static) veri�cation is kept
from proceeding.

3.3 Iterator Implementation
Finally, in Figure 3, we give an example implementations

for this speci�cation. The speci�cation is a big existential
quanti�er, and so our implementations are the witnesses to
this existential type. For the abstract program variables
(such as next or empty) we give function de�nitions. A
collection is a linked list and a counter, and an iterator is a
pointer to the interior of a list.
Most of these de�nitions manipulate imperative linked

lists in the obvious way, but it's worth examining empty.
A call to this function modi�es the state of the collection,
but in a safe way. It updates the counter, but does not mod-
ify the linked list, so iterators over the collection will not be
invalidated. More elaborate examples might be something
like a collection that does memoization or a splay tree that
rebalances after each query. In each of these cases, the ab-
stract state of the object does not change, even though its
in- memory representation might.
We demonstrate this idea in the de�nitions of the exis-

tentially quanti�ed predicates. These predicate de�nitions
are given as functions of their input, which take in data and
return propositions. The de�nition of the coll(c, xs, P) pred-
icate is an assertion that a collection value's �rst �eld points
to an integer counter, and that its second �eld is a linked
list representing xs, and is also in state P . The linked_list
predicate is a recursive function on xs, which permits us to
de�ne an inductive predicate characterizing linked lists.
The iter predicate, for example, is an assertion stating

that the iterator points to an interior pointer of the linked
list, and that the predicate variable P is preserved for the
whole list.
In this example, we have focused on being able to ab-

stractly specify and reason about the imperative aspects of
modules. Of course, one would also like the iterator speci�-
cation to be abstract in the implementation types used for
collections and iterators (here ref list × ref N), i.e., to have
existential quanti�cation over types to model abstract data
types. We plan on addressing this in future work.

4. CONCLUSIONS
Theorem proving in higher-order logic has a long and

notorious history of being very di�cult to automate, and
the addition of separation logic will not make this task any
easier. However, di�erent kinds of partial automation are
probably feasible, and what follows are hopefully-educated,
possibly-wild, guesses about the di�culty of di�erent levels
of automation.
The simplest level is just verifying that an annotated pro-

85

gram is actually correct with respect to our program logic.
This should be quite straightforward to implement using a
tactical theorem prover such as Coq or Isabelle, though we
have not actually implemented this.
The next easiest task will be to automatically verify that

a client program respects a given speci�cation. The sorts
of manipulations we performed in the sample client code
did not make essential use of higher-order logic, since the
predicate variables representing abstract states were never
instantiated. Assuming this is a general pattern, checking
client code should not require more know-how than checking
programs that use �rst-order separation logic. This is still
a fairly di�cult problem, though substantial progress has
been made with Smallfoot [1].
Automatically checking that implementations satisfy a given

speci�cation is almost certainly a much harder problem. We
must construct functions that show how to realize abstract
predicates (such as coll(c, xs, P)), and �nding them can re-
quire real creativity. However, it may be possible to par-
tially automate checking the function bodies given all the
predicate de�nitions.
Finally, inferring speci�cations and module boundaries

from programs seems completely out of reach, since the rel-
evant abstraction boundaries simply are not evident in the
code, and even skilled human programmers �nd identifying
them a very di�cult task.
However, the main purpose of this line of research is not

to produce ready-to-use tools. Instead, we are trying to
construct a very rich speci�cation language capable of de-
scribing how aliasing is used as concisely and naturally as
possible. Our hope is that having simple mathematical char-
acterizations of the realistic aliasing patterns will make it
easier to construct and validate more limited (and hence
more automatable) methods that verify exactly and only
the forms of aliasing used in well structured programs.

5. REFERENCES
[1] J. Berdine, C. Calcagno, and P. W. O'Hearn. Smallfoot:

Modular automatic assertion checking with separation
logic. In Proceedings of the Fourth International
Symposium on Formal Methods for Components and
Objects, Amsterdam, The Netherlands, 2001.

[2] B. Biering, L. Birkedal, and N. Torp-Smith.
BI-hyperdoctrines and higher order separation logic. In
Proc. of ESOP 2005: The European Symposium on
Programming, pages 233�247, Edinburgh, Scotland,
April 2005.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Elements of reusable object-oriented
software. Addison-Wesley, 1995.

[4] C. A. R. Hoare. An axiomatic approach to computer
programming. Communications of the ACM,
12(583):576�580, 1969.

[5] S. Ishtiaq and P. W. O'Hearn. BI as an assertion
language for mutable data structures. In Proceedings of
the 28th Annual ACM SIGPLAN - SIGACT
Symposium on Principles of Programming Languages
(POPL'01), London, 2001.

[6] J. C. Reynolds. Separation logic: A logic for shared
mutable data structures. In Proc. of the 17th Annual
IEEE Symposium on Logic in Computer Science
(LICS'02), pages 55�74, Copenhagen, Denmark, July
2002. IEEE Press.

new_coll () ≡ letv counter = newN0 in
letv list = newlistnil in

(list, counter)

add(c, x) ≡ letv cell = !(fst c) in
letv t = newlistcell in
c := cons(x, t)

empty(c) ≡ letv cell = !(fst c) in
letv _ = increment(snd c) in
listcase(cell, true, (h, t). false)

new_iter(c) ≡ newref list(fst c)

next(i) ≡ letv c = [!i] in
letv cell = [!c] in
letv ans =listcase(cell,None,

(h, t). letv _ = i := t in
Some h) in

ans

coll(c, xs, P) ≡ ∃n. snd c ↪→ n ∗ (linked_list(fst c, xs) ∧ P)

linked_list(c, x :: xs) ≡ ∃c′. c ↪→ cons(x, c′) ∗ linked_list(c′, xs)
linked_list(c, []) ≡ c ↪→ nil

seg(l, l′, x :: xs) ≡ ∃l′′. l ↪→ cons(x, l′′) ∗ seg(l′′, xs)
seg(l, l′, []) ≡ l = l′

iter(i, c, xs, P) ≡ ∃l, n,xs1, xs2.
(P ∧ (seg(fst c, l, xs1) ∗ coll(l, xs2))) ∗
i ↪→ l ∗ snd c ↪→ n ∧
xs = xs1 · xs2

Figure 3: Iterator Implementation

86

