
VC Generation for Functional Behavior and
Non-Interference of Iterators

Bart Jacobs
∗

Dept. CS, K.U.Leuven
Celestijnenlaan 200A
3001 Leuven, Belgium

bartj@cs.kuleuven.be

Frank Piessens
Dept. CS, K.U.Leuven
Celestijnenlaan 200A
3001 Leuven, Belgium

frank@cs.kuleuven.be

Wolfram Schulte
Microsoft Research
One Microsoft Way

Redmond, WA, USA
schulte@microsoft.com

ABSTRACT
We propose a formalism for the full functional specification of enu-
merator methods, which are C# methods that return objects of type
IEnumerable<T> or IEnumerator<T>. We further propose
a sound modular automatic verification approach for enumerator
methods implemented using C# 2.0’s iterator blocks (i.e., using
yield return and yield break statements), and for client code
that uses for-each loops. We require for-each loops to be annotated
with special for-each loop invariants.

The approach prevents interference between iterator implemen-
tations and client code. Specifically, an enumerator method may
read a field o.f only if o is reflexively-transitively owned by an ob-
ject listed in the enumerator method’s reads clause, and the body
of a for-each loop may not modify these objects. For example, we
verify that a for-each loop iterating over an ArrayList does not
modify the ArrayList . Note that one may break out of a for-each
loop at any time to perform modifications before the iteration is
complete. This in effect invalidates the iteration since the for-each
loop cannot be resumed.

We support specification of non-deterministic enumerations, in-
finite enumerations, and enumerations that terminate with a checked
exception, but not enumerations with side-effects. We support ver-
ification of an enumerator method only if it is implemented using
yield statements, and verification of client code only if it per-
forms a for-each loop on an enumerator method call. That is, the
present approach does not support explicit creation or manipulation
of IEnumerator<T> objects.

Our approach integrates easily with our concurrency approach
(presented at ICFEM06), since both are based on read/write sets.

This approach was initially presented at FTfJP05. Please refer to
this paper for related work, references, and a soundness proof.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/program verification

∗Bart Jacobs is a Research Assistant of the Fund for Scientific Re-
search - Flanders (Belgium) (F.W.O.-Vlaanderen).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Fifth International Workshop on Specification and Verification of
Component-Based Systems (SAVCBS 2006), November 10–11, 2006, Port-
land, Oregon, USA.
Copyright 2006 ACM ISBN 1-59593-586-X/06/11 ...$5.00.

General Terms
Design, verification

Keywords
Formal specification, iterators, Boogie, verification

1. PROOF RULES

1.1 Spec#
We present our specification and verification method for the It-

erator pattern in the context of the Spec# programming system, an
extension of C# with preconditions, postconditions, non-null types,
checked exceptions, loop invariants, object invariants, and other re-
liability features, and accompanied by a compiler that emits run-
time checks and a static program verifier backed by an automatic
theorem prover.

We hope to add support for our approach to the Spec# program
verifier in the future.

The program verifier works by translating the Spec# source code
into a guarded command program, which is then further translated
into verification conditions that are passed to the theorem prover.
The following guarded commands are relevant to this presentation:

• An assert C; statement causes an error to be reported if the
condition C cannot be shown to always hold.

• An assume C; statement causes the verifier to consider
only those program executions which either do not reach this
statement or satisfy the condition C.

• A havoc x; statement assigns an arbitrary value to the vari-
able x.

1.2 Specification of enumerator methods
In our formalism, methods are categorized as regular methods or

enumerator methods. Enumerator methods must have a return type
of IEnumerable<T> or IEnumerator<T>, for some T , and
methods that have such return types are categorized as enumerator
methods by default.

The syntax of an enumerator method’s contract differs from that
of a regular method. In addition to requires and ensures clauses,
an enumerator method may provide one or more invariant clauses,
which declare the method’s enumeration invariants. Both the enu-
meration invariants and the ensures clauses may mention the key-
word values, which denotes the sequence of elements yielded so
far at a given point during the enumeration. The values keyword
is of type Seq<T>, whose interface is given in Fig. 2. An enu-
meration invariant must hold at each point during an enumeration.

67

IEnumerable<int> FromTo(int b, int e)
requires b ≤ e + 1;
invariant values.Count ≤ e + 1− b;
invariant forall{int i in (0 : values.Count);

values[i] == b + i};
ensures values.Count == e + 1− b;

{
for (int x = b; x ≤ e; x++)

invariant values.Count == x− b;
{ yield return x; }

}

Figure 1: Method FromTo

public struct Seq<T> {
public int Count { get; }
public invariant 0 ≤ this.Count ;
public T this[int index]

requires 0 ≤ index ∧ index < this.Count ;
{ get; }
public Seq();

ensures this.Count == 0;
public void Add(T value);

ensures this.Count == old(this).Count + 1;
ensures forall{int i in (0 : old(this).Count);

this[i] == old(this)[i]};
ensures this[old(this).Count] = value;

}

Figure 2: The Seq<T> type

Fig. 1 shows an example of a method specified in our formalism.1

1.3 Verification of iterator methods
We verify an enumerator method that is implemented as an iter-

ator method (i.e., a method whose body is a C# 2.0 iterator block)
by translating it into a guarded command program. Consider the
following method:

IEnumerable<T> M(~p)
requires P ; invariant I; ensures Q;
{ B }

It gets translated into the following:

assume P ;
Seq<T> values = new Seq<T>();
assert I; JBK assert Q;

where

Jyield return v; K ≡ values.Add(v); assert I;
Jyield break; K ≡ assert Q; assume false;

That is, we verify that the enumeration invariants hold for the empty
sequence, as well as after each yield return operation. Also, we
check the postcondition at each yield break operation.

As a convenience, we insert I as a loop invariant into each loop
in B.2

Applied to our FromTo example from Fig. 1, this yields the pro-
gram of Fig. 3.
1We propose a more concise syntax for simple cases like this one
below.
2These are “free of charge”, i.e. they provide assumptions but
do not incur proof obligations, since they are guaranteed by the
assert statements inserted at the yield return statements.

assume b ≤ e + 1;
Seq<int> values = new Seq<int>();
assert values.Count ≤ e + 1− b;
assert forall{int i in (0 : values.Count);

values[i] == b + i};
for (int x = b; x ≤ e; x++)

invariant values.Count ≤ e + 1− b;
invariant forall{int i in (0 : values.Count);

values[i] == b + i};
invariant values.Count == x− b;

{
values.Add(x);
assert values.Count ≤ e + 1− b;
assert forall{int i in (0 : values.Count);

values[i] == b + i};
}
assert values.Count == e + 1− b;

Figure 3: Guarded command program generated as part of the
verification of method FromTo of Fig. 1.

1.4 Verification of for-each loops
Our formalism supports proving rich properties of for-each loops

by allowing their loop invariants to mention the keyword values,
analogously with our approach to method contracts for enumerator
methods. Here, too, the keyword is of type Seq<T>, where T is
the element type of the enumeration, and represents the sequence
of elements enumerated so far.

Here is an example of a client of our FromTo enumerator method:

int sum = 0;
foreach (int x in FromTo(1, 2))

invariant sum == SeqTools.Sum(values);
{ sum += x; }
assert sum == 3;

Now, consider a general for-each loop that uses a call of the gen-
eral enumerator method M declared above as its enumerable ex-
pression:

foreach (T x in M(~a)) invariant J ; { S }

To verify this for-each loop, we translate it into the following
for loop:

assert P [~a/~p]; Seq<T> values = new Seq<T>();
for (; ;)

invariant I[~a/~p]; invariant J ;
{

bool b; havoc b; if (¬b) break; T x; havoc x;
values.Add(x);
assume I[~a/~p];
S

}
assume Q[~a/~p];

This means that for our example client, the program of Fig. 4 needs
to be verified.

1.5 Exceptions
Our formalism supports the specification of enumerator meth-

ods that may throw checked exceptions, and the verification of the
iterator methods that implement these. Enumerator methods may
provide exceptional ensures clauses, and these may mention key-
word values. An example is in Fig. 5.

68

int sum = 0;
assert 1 ≤ 2 + 1; Seq<int> values = new Seq<int>();
for (; ;)

invariant values.Count ≤ 2 + 1− 1;
invariant forall{int i in (0 : values.Count);

values[i] == 1 + i};
invariant sum == SeqTools.Sum(values);

{
bool b; havoc b; if (¬b) break;
T x; havoc x; values.Add(x);
assume values.Count ≤ 2 + 1− 1;
assume forall{int i in (0 : values.Count);

values[i] == 1 + i};
sum += x;

}
assume values.Count == 2 + 1− 1; assert sum == 3;

Figure 4: Guarded command program generated as part of the
verification of the example client

class OneElementException : CheckedException {}
class ThreeElementsException : CheckedException {}

IEnumerable<int> Baz ()
ensures values.Count == 2;
throws OneElementException ensures values.Count == 1;
throws ThreeElementException ensures values.Count == 3;

int n = 0;
try {

foreach (int x in Baz ()) invariant n == values.Count ;
{ n++; }
assert n == 2;

} catch (OneElementException) { assert n == 1;
} catch (ThreeElementException) { assert n == 3; }

Figure 5: Enumerator methods that throw checked exceptions

Jx = new C; K ≡
x = new C;
tid.W [x] = true;
tid.R[x] = 0;
x.inv = false;

Jx = o.f ; K ≡
assert tid.R′[o];
x = o.f ;

Jo.f = v; K ≡
assert tid.W ′[o];
assert ¬o.inv ;
o.f = v;

Jread (o) SK ≡
assert tid.R′[o];
assert o.inv ;
tid.R[o]++;
foreach (p ∈ rep(o))

tid.R[p]++;
JSK
foreach (p ∈ rep(o))

tid.R[p]−−;
tid.R[o]−−;

Jpack o; K ≡
assert tid.W ′[o];
assert ¬o.inv ;
foreach (p ∈ rep(o)) {

assert tid.W ′[o];
assert o.inv ;

}
foreach (p ∈ rep(o))

tid.W [p] = false;
o.inv = true;

Junpack o; K ≡
assert tid.W ′[o];
assert o.inv ;
foreach (p ∈ rep(o))

tid.W [p] = true;
o.inv = false;

Jpar (S1, S2); K ≡
let R = tidpar.R;
par (JS1K, {

tidS2 .R = R;
JS2K

});

Figure 6: The programming methodology

1.6 Simplified alternative enumerator method
contract syntax

The general syntax presented above offers the flexibility of non-
deterministic specifications; that is, it allows underspecification.
Also, it allows a non-constructive description, as well as excep-
tional termination. However, often this flexibility is not needed,
and for these cases we provide a simpler syntax, as follows:

IEnumerable<T> M(~p)
requires P ;
returns {int i in (0:C); E};

For verification purposes, we expand this into the general syntax
as follows:

IEnumerable<T> M(~p)
requires P ;
invariant values.Count ≤ C;
invariant forall{int i in (0:values.Count);

values[i] == E};
ensures values.Count == C;

2. AVOIDING INTERFERENCE
As is apparent from the explanations above, the implementation

and the client of an enumerator method are verified as if they ex-
ecuted separately. However, they in fact execute in an interleaved
fashion. To ensure soundness, our method prevents each party from
observing side-effects of the execution of the other party.

Specifically, an enumerator method may not write fields of any
pre-existing objects. Also, an enumerator method may declare in
its contract a read set, using a reads clause, and it may only read
fields of those pre-existing objects that are in its read set (or that
are owned by such objects). Conversely, during the enumeration,
the client (i.e. the body of the for-each loop) may not write fields
of these objects.

Here’s an example of an Iterator pattern involving objects:

IEnumerable<int> EnumArray(int[]! a)
reads a; returns {int i in (0:a.Length); a[i]};

{
for (int i = 0; i < a.Length; i++)

invariant values.Count == i;
{ yield return a[i]; }

}

int[] xs = {1, 2}; int sum = 0;
foreach (int x in EnumArray(xs))

invariant sum == SeqTools.Sum(values);
{ sum += x; }
assert sum == 3;

The EnumArray method may read only the array, and the body
of the foreach loop may not modify it. The exclamation mark
indicates that the argument for parameter a must not be null.

To statically and modularly verify the restrictions outlined above,
our method for avoiding interference between the client and the im-
plementation of an enumerator method requires that the program be
written according to a programming methodology that is an exten-
sion of the Spec# object invariants methodology with support for
read-only access. First, we briefly review the relevant aspects of
the Spec# methodology. Then we present our extended version.

2.1 Spec# Methodology
In order to allow the object invariant for an object o to depend

on objects other than o, Spec# introduces an ownership system; the

69

object invariant for o may depend on o and on any object transi-
tively owned by o. A program assigns ownership of an object p
to o by writing p into a field of o declared rep while o is in the
unpacked state, and then packing o, which brings it into the packed
state. The packed or unpacked state of an object is conceptually
indicated by the value of a boolean field o.inv , which is true if
and only if o is in the packed state.

Packing object o succeeds only if object p and the other objects
pointed to by o’s rep fields are themselves already packed. Once
o is packed, its owned objects may not be unpacked. Unpacking
o again releases ownership of p and allows p to become owned by
another object, or to become unpacked itself.

2.2 Programming Methodology
To understand the approach, it is useful to think of both parties

in an enumeration as executing in separate threads. That is, the ex-
ecution of a for-each statement starts the enumerator method in a
new thread, executes the body of the for-each loop some number
of times in the original thread, and then waits for the enumerator
thread to finish. (We ignore for now the communication between
both threads implied by the yielding of values, and the exact num-
ber of times the for-each loop is executed.) Note that we use the
notion of threads as a reasoning tool only; we are not proposing
implementing iterators using threads.

In our proposed system, each such thread t has a write set t.W
and a read bag t.R, both containing object references. The write
set of a thread t contains those object that were created by t and that
are not currently committed to (i.e. owned by) some other object.
The read bag of t contains an object o if t currently has read-only
access to o. The read bag is not a set, for technical reasons which
will become clear later.

From t.W and t.R, we derive the effective write set t.W ′ =
t.W − t.R and the effective read set t.R′ = t.W + t.R. A thread t
may read fields of any object in t.R′, and it may write fields of any
object in t.W ′, provided the object is unpacked.

The for-each statement may conceptually be thought of as being
implemented in terms of a command par (B1, B2); for parallel
execution of two blocks B1 and B2. Execution of the par state-
ment is complete only when execution of both blocks is finished.
Suppose the par statement is being executed by a thread t1. B1 is
executed in t1, whereas B2 is executed in a new thread, say t2. The
initial write set t2.W of t2 is the empty set, and the initial read bag
is equal to that of t1.

The proposed methodology is formally defined in Fig. 6, where
tid denotes the current thread. The last rule translates a parallel
execution statement by inserting an assignment that initializes the
read bag of the newly created thread tidS2 with the read bag of the
creating thread tidpar. The write set of the new thread remains
initially empty. We use the following auxiliary definitions:

t.W ′[o]
def
= t.W [o] ∧ t.R[o] = 0 t.R′[o]

def
= t.W [o] ∨ t.R[o] > 0

rep(o)
def
= {o.f | f is a rep field of o and o.f 6= null}

The new read statement serves two purposes. Firstly, it allows
a thread to take an object to which it has write access and make
it read-only for the duration of the read statement, which enables
it to be shared with newly created threads. Secondly, it allows a
thread that has read access to an object o to gain access to o’s owned
objects. That is, it replaces the unpack and pack operations if
only read access is required. Note: in contrast to the unpack and
pack pair, read blocks are re-entrant; that is, it is allowed to nest
multiple read block executions on the same object. This is useful
e.g. when writing recursive methods. This is also the reason why
we need a read bag instead of a read set.

assert P [~a/~p];
read (R) {

par ({
Seq<T> values = new Seq<T>();
for (; ;) invariant I[~a/~p]; invariant J ;
{

bool b; havoc b; if (¬b) break;
T x; havoc x; values.Add(x); assume I[~a/~p];
S

}
assume Q[~a/~p];

}, {
Seq<T> values = new Seq<T>();
assert I; JBK assert Q;

});
}

Figure 7: Translation of the general for-each loop for the pur-
pose of applying the non-interference methodology

int[] xs = {1, 2}; int sum = 0;
read (xs) {

par ({
Seq<T> values = new Seq<T>();
for (; ;)

invariant values.Count ≤ xs.Length;
invariant forall{int i in (0:values.Count);

values[i] == xs[i]};
invariant sum == SeqTools.Sum(values);

{
bool b; havoc b; if (¬b) break; T x; havoc x;
values.Add(x);
assume values.Count ≤ xs.Length;
assume forall{int i in (0:values.Count);

values[i] == xs[i]};
sum += x;

}
assume values.Count == xs.Length;

}, {
Seq<T> values = new Seq<T>();
assert values.Count ≤ xs.Length;
assert forall{int i in (0:values.Count); values[i] == xs[i]};
for (int i = 0; i < xs.Length; i++)

invariant values.Count ≤ xs.Length;
invariant forall{int i in (0:values.Count);

values[i] == xs[i]};
invariant values.Count == i;

{
values.Add(xs[i]); assert values.Count ≤ xs.Length;
assert forall{int i in (0:values.Count);

values[i] == xs[i]};
}
assert values.Count == xs.Length;

});
}
assert sum == 3;

Figure 8: Translation of the array example for the purpose of
applying the non-interference methodology

Consider the general for-each statement shown in Section 1.4.
For the purpose of applying the proposed methodology, it is equiv-
alent with the program in Fig. 7, assuming that method M has a
reads R; clause. For the array example above, this yields the pro-
gram in Fig. 8.

70

