
Specifying Java Iterators with JML and Esc/Java2

David R. Cok
Eastman Kodak Company

1999 Lake Avenue Rochester, NY 14650, USA
david.cok@kodak.com

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Program Verification

General Terms
Design, verification

Keywords
JML, ESC/Java2, static analysis, specification, verification

1. INTRODUCTION
The 2006 SAVCBS Workshop1 has posed a Challenge Prob-

lem on the topic of specifying iterators. This note provides
a specification in the Java Modeling Language (JML) [1,
2] for the Java interfaces Iterator and Iterable that cap-
tures the interactions between these two interfaces. An
example program that uses these interfaces is checked us-
ing Esc/Java2 [3, 4, 5], demonstrating by example that the
Esc/Java2 tool checks that the interfaces are used only as
required by the specifications. The concluding section con-
tains some observations on the limitations of JML for this
specification task.

2. THE PROBLEM
The Challenge Problem2 asks for a specification of the

Iterator interface as provided in the Java programming lan-
guage or its equivalent in another language. An Iterator
provides an abstract mechanism for sequentially retrieving
the elements of an object for which such an operation is
appropriate, that is, of an Iterable object. There are two
aspects of the behavior of an iterator.

The first is the mechanism for keeping track of which ob-
jects of the iterable collection have already been returned by

1http://www.cs.iastate.edu/∼leavens/SAVCBS/2006/
index.shtml.
2http://www.cs.iastate.edu/∼leavens/SAVCBS/2006/
challenge.shtml.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Fifth International Workshop on Specification and Verifica-
tion of Component-Based Systems (SAVCBS 2006), November
10-11, 2006, Portland, Oregon, USA.
Copyright 2006 ACM ISBN 1-59593-586-X/06/11 ...$5.00.

the iterator and which are yet to be returned. This mecha-
nism is dependent on the particular kind of iterable object
(e.g., set, array, list, infinite sequence) and its implementa-
tion. In fact there is actually quite little one can specify
about this aspect of an iterator’s behavior within the Iter-
ator interface itself. Space limitations preclude discussing
the specification of that mechanism here.

The more interesting aspect of an iterator’s behavior is
the interaction among multiple iterators and with the iter-
able object, particularly with respect to modifications of the
iterable object. In particular, the solution presented here
provides specifications for three conditions: (a) an iterator
may remove the object of the iterable at the current position
of the iterator, but it may not remove it more than once; (b)
if an iterable object is modified by its own methods, then all
subsequent behavior of iterators referring to that iterable is
undefined; (c) if an iterable object is modified by an iterator,
then all subsequent behavior of any other iterator referring
to that iterable is undefined.

Here we consider only sequential programs and provide
a solution for Java 1.5 using JML. The reader is presumed
to be familiar with Java and its iterator classes as well as
with JML. In actuality, JML is implemented only for Java
1.4. However, the only use of Java 1.5 features here is the
parameterization of the interfaces by the element type E,
and that does not affect the discussion below. On the other
hand, Java 1.4 does not have the equivalent of the Iterable
interface, a point that is discussed further below.

3. THE JML SPECIFICATION
The proposed specifications of these two interfaces are

shown in Figs. 1 and 2. A partial specification of the Col-
lection interface is also shown.

The solution has the following elements:

• Because the conditions above require certain behavior
subsequent to other behavior, a concept of time (or,
more precisely, of an ordered sequence of events) is
maintained in the specification by nondecreasing inte-
ger values.

• An Iterator maintains a reference to the Iterable whose
contents it returns, contained in the model field iterable.
This field is initialized at construction time (in the
method Iterable.iterator()) and does not change
thereafter, as indicated by the constraint clause.

• An Iterator uses the model field iteratorTime to keep
track of when it was created or last used to modi-
fiy the iterable. An initial value is specified by the

71

http://www.cs.iastate.edu/~leavens/SAVCBS/2006/index.shtml
http://www.cs.iastate.edu/~leavens/SAVCBS/2006/index.shtml
http://www.cs.iastate.edu/~leavens/SAVCBS/2006/challenge.shtml
http://www.cs.iastate.edu/~leavens/SAVCBS/2006/challenge.shtml

package java.util;

public interface Iterator<E> {

//@ public instance model Iterable iterable;

//@ public instance model int iteratorTime;

//@ public instance model boolean removeOK;

//@ initially !removeOK;

//@ public invariant iterable != null;

//@ public constraint iterable == \old(iterable);

// This returns false if the parent Iterable has

// been modified by means other than this Iterator.

/*@ public normal_behavior

@ ensures \result ==

@ (iteratorTime > iterable.lastModifiedTime);

@ public pure model boolean isValid() {

@ return iteratorTime > iterable.lastModifiedTime;

@ }

@*/

//@ public normal_behavior

//@ requires isValid();

/@ pure @*/ public boolean hasNext();

//@ public normal_behavior

//@ requires isValid() && hasNext();

//@ assignable removeOK;

//@ ensures removeOK;

//@ also public exceptional_behavior

//@ requires isValid() && !hasNext();

//@ signals_only NoSuchElementException;

public E next();

/*@ public behavior

@ requires isValid() && removeOK;

@ assignable removeOK, iteratorTime;

@ assignable iterable.maxIteratorTime;

@ assignable iterable.lastModifiedTime;

@ ensures !removeOK;

@ ensures iterable.lastModifiedTime >

@ \old(iterable.maxIteratorTime);

@ ensures isValid();

@ ensures iteratorTime <= iterable.maxIteratorTime;

@ also public exceptional_behavior

@ requires isValid() && !removeOK;

@ signals_only IllegalStateException;

@*/

public void remove();

}

Figure 1: The specification of the Iterator interface.

method Iterable.iterator() and it is modified only
by Iterator.remove().

• The model field Iterator.removeOK indicates whether
it is permissible to call the method Iterator.remove().
The field is initially false and is also set false upon any
call of remove; it is set true on a call of next. Thus
informal requirement (a) above is satisfied.

package java.lang;

public interface Iterable<E> {

//@ public instance model int lastModifiedTime;

//@ public instance model int maxIteratorTime;

//@ initially maxIteratorTime == -1;

//@ initially lastModifiedTime == 0;

/*@ constraint lastModifiedTime >=

\old(lastModifiedTime); @*/

//@ public normal_behavior

//@ assignable maxIteratorTime;

//@ ensures \result != null;

//@ ensures \fresh(\result);

//@ ensures \result.iterable == this;

//@ ensures \result.isValid();

//@ ensures maxIteratorTime >= \result.iteratorTime;

public Iterator<E> iterator();

}

package java.util;

public interface Collection<E> extends Iterable<E> {

// Something like the following specification

// case must be present for any method that

// modifies the Iterable object.

//@ public normal_behavior

//@ assignable lastModifiedTime;

//@ ensures lastModifiedTime > maxIteratorTime;

public void clear();

}

Figure 2: The specification of the Iterable interface
and a partial specification of Collection.

• Requirements (b) and (c) above need the distinction
between an Iterator’s behavior being defined and not
defined. This distinction is provided by the pure model
method Iterator.isValid(). If the method returns
true, the behavior is defined. The method is imple-
mented to return true if the iterator’s iteratorTime is
larger than the corresponding iterable’s lastModifiedTime.

• An Iterable maintains the “time” of its last modifica-
tion in the field lastModifiedTime. If the Iterable is
modified, as shown by the method Collection.clear,
the value of lastModifiedTime is increased to be larger
than the iteratorTime of any of its associated Iter-
ators. For convenience, Iterable.maxIteratorTime

holds a value at least as large as any associated It-
erator ’s iteratorTime. This satisfies requirement (b)
above. Note that any method in any subtype of Iterable
that modifies the collection of elements within the It-
erable (e.g., add, remove, clear) must require a speci-
fication case like that shown for Collection.clear.

• Requirement (c) is satisfied as follows. The specifica-
tion of Iterator.remove requires that when called on
an object iter (and for normal termination), the corre-
sponding iterable’s lastModifiedTime is increased to
make all other iterators invalid, and the iteratorTime
of iter itself also is increased so that iter is still valid.

72

4. STATICALLY CHECKING PROGRAMS
USING ESC/JAVA2

The Iterator and Iterable interfaces do not have imple-
mentations that can be checked against specifications. How-
ever, we can check programs that use those interfaces. To
do so with JML and Esc/Java2, however, we must recast the
above solution in Java 1.4. For this exercise we fold the spec-
ifications from Iterable into Java 1.4’s Collection interface.
Then we attempt to check a number of combinations of uses
of these methods, as shown in Figs. 3 and 4. Esc/Java23

successfully finds the incorrect uses of these methods and
has no false reports on legal sequences of method calls. The
problems in generating and checking the specifications were
all in specification errors (not in Esc/Java2). For example,
in method m6, if Line A is omitted, allowing aliasing between
the two arguments (a common error), then Line B cannot
be established: iterator ii will not be valid if c==cc.

5. OBSERVATIONS
The combination of JML and Esc/Java2 successfully spec-

ifies the Iterator example and checks uses of the interfaces
in test programs. However, this exercise prompts a number
of observations about the current state of JML.

5.1 Java 1.4 vs. Java 1.5
This style of solution will not work well in Java 1.4 be-

cause there is no abstract Iterable object. For the static
checking above, we utilized the Collection interface as the
generic iterable. However, not all iterators extend the Col-
lection interface. Thus in Java 1.4 an Iterator can only refer
to its associated object as a generic Object, and there is
no place to put the declarations of the model fields defined
above. An alternative, but messy, design is to declare a new
associated IterableData class containing the model fields
declared above in Iterable and used as Iterable is above;
then we associate an IterableData object with each iter-
able Object by maintaining a Map from objects that would
be Iterables to associated instances of IterableData.

5.2 Ghost field vs. Model field vs. Model
method

In the specification above, various pieces of specification
information are held in model fields. These might also be
declared as ghost fields or model methods. Each of these
choices has its disadvantages.

• Ghost fields. Iterators and Iterables are interfaces, not
classes. Furthermore, they are defined in the Java li-
brary and not in user-written code. Ghost fields must
be modified by JML set statements within the imple-
mentation of a method. In this situation, for these in-
terfaces there is no place to put those set statements.
This is not a problem for static checking, but runtime
checking (such as with the jmlrac[2] tool) would fail to
work correctly if ghost fields were used.

• Model fields. The intended use of a model field is as a
means to hold an abstract representation of the state
of an object; in a concrete class each model field would

3The experiments were performed using the version in CVS
HEAD as of 1 September 2006, but only using the specifi-
cations given here, not the library of system specifications
provided by Esc/Java2.

import java.util.Collection;

import java.util.Iterator;

public class Test {

public void m1(/*@ non_null @*/Collection c) {

Iterator i = c.iterator();

i.remove(); // should FAIL

}

//@ signals (java.util.NoSuchElementException);

//@ signals_only RuntimeException;

public void m2(/*@ non_null @*/Collection c) {

Iterator i = c.iterator();

//@ assume i.hasNext();

i.next();

i.remove(); // OK

}

public void m3(/*@ non_null @*/Collection c) {

Iterator i = c.iterator();

//@ assume i.hasNext();

i.next();

i.remove();

i.remove(); // should FAIL

}

public void m4a(/*@ non_null @*/Collection c) {

Iterator i = c.iterator();

//@ assert i.iteratorTime > c.lastModifiedTime;

//@ assert i.iterable == c;

//@ assert i.isValid();

}

public void m4(/*@ non_null @*/Collection c) {

Iterator i = c.iterator();

//@ assert i.isValid();

c.clear();

//@ assert !i.isValid();

}

}

Figure 3: A set of test methods (in Java 1.4).

be provided a representation. In this case, a field such
as removeOK does abstract part of the state of the Iter-
ator, but that abstraction is not necessarily a represen-
tation of any concrete fields of an implementation. A
typical way to provide such a concrete representation
is by means of some ghost fields that essentially dupli-
cate the model fields. The model fields work well for
static checking without ghost fields and without repre-
sentations. However, runtime checking would require
the model fields to have some concrete representation.

• Model methods. Model methods are an alternate way
of providing the functionality of a model field.4 For
example, instead of the field removeOK, we could have
a pure, argument-less model method removeOK() with-
out any implementation given. The specification of its

4Model fields also have implications for data groups, which
model methods do not have.

73

import java.util.Collection;

import java.util.Iterator;

public class Test2 {

public void m5(/*@ non_null @*/Collection c) {

Iterator i = c.iterator();

Iterator ii = c.iterator();

//@ assert i.isValid();

//@ assert ii.isValid();

//@ assume i.hasNext();

i.next();

i.remove();

//@ assert i.isValid();

//@ assert !ii.isValid();

}

//@ requires c != cc; // Line A

public void m6(/*@ non_null @*/Collection c,

/*@ non_null @*/Collection cc) {

Iterator i = c.iterator();

Iterator ii = cc.iterator();

//@ assert i.isValid();

//@ assert ii.isValid();

//@ assume i.hasNext();

i.next();

i.remove();

//@ assert i.isValid();

//@ assert ii.isValid(); // Line B

}

public void m7(/*@ non_null @*/Collection c) {

Iterator i = c.iterator();

//@ assume i.hasNext();

c.clear();

i.hasNext();//FAILS - precondition isValid()

} // is not satisfied

}

Figure 4: Additional test methods (in Java 1.4).

result and its use on other specifications would mimic
the specification and use of the model field. Static
checking with such model methods is just as easy (and
as hard) as when using model fields. Runtime checking
has the same problems as with model fields: we need
an implementation in terms of concrete or ghost fields.

One enhancement of JML that would help the above is-
sues with runtime checking would be to provide syntax in
which updates to ghost fields could be specified and com-
piled by a runtime checker even for methods for which the
runtime checker did not compile the Java implementation of
the method itself.

5.3 Specifying mutating methods
As stated earlier, the specification described here requires

that all methods (of any subtype) that modify an Iterable
object must specify that the values of lastModifiedTime

and maxIteratorTime are appropriately changed. This re-
quirement is easily forgotten. Any method that calls remove()
will encounter those requirements in that method’s specifi-
cation, but other methods, such as add, will not. Aside

from the specifications of overridden methods, there is no
way within JML to require that all methods with certain
properties have certain specifications without individually
annotating the methods to indicate the desired property.

5.4 Specifying sequences of calls
The main limitation of JML in this context is that it pro-

vides no means to write specifications about sequences of
method calls. The specification above essentially encodes
two state machines: a simple one using removeOK and a more
complicated one involving the other model fields. These
machines are used to specify implicitly the behavior of se-
quences of method calls. However, there is no way in JML
to write a specification requirement about this behavior that
can be checked by some reasoning engine; in Section 3 we
were only able to argue the correctness of the specifications
informally. The best we can do in current JML is to write
example programs and then check using a static checker that
those examples are properly handled; that process, like run-
time testing, does not ensure that all possible examples will
behave correctly. Another common restriction is when a
class has an initialization method that must be called be-
fore any other method of the class is called.

To express these conditions, JML would need to have syn-
tax that could encode, for example, the following require-
ments: that two calls of Iterator.remove with no interven-
ing call of Iterator.next must result in particular behav-
ior; that a call of a class method not preceded by a call of
the class’s init method results in an exception being thrown;
that a call of a particular method will render calls of another
set of methods undefined. These all would require syntax
enabling the expression of combinations of parameterized
sequences of method calls, with options such as are found
in regular expressions. In addition, we would need trans-
lation to verification conditions in an appropriate logic and
suitable for a logical prover.

6. REFERENCES
[1] Many references to papers on JML can be found on the

JML project website, http:
//www.cs.iastate.edu/∼leavens/JML/papers.shtml.

[2] L. Burdy, et al. An overview of JML tools and
applications. In T. Arts and W. Fokkink, editors,
Eighth International Workshop on Formal Methods for
Industrial Critical Systems (FMICS 03), volume 80 of
Electronic Notes in Theoretical Computer Science
(ENTCS), pages 73–89. Elsevier, June 2003.

[3] D. R. Cok and J. Kiniry. ESC/Java2: Uniting
ESC/Java and JML. Technical report, University of
Nijmegen, 2004. NIII Technical Report NIII-R0413.

[4] D. R. Cok and J. Kiniry. ESC/Java2 : Uniting
ESC/Java and JML. Progress and issues in building
and using ESC/Java2 and a report on a case study
involving the use of ESC/Java2 to verify portions of an
internet voting tally system. Lecture Notes in
Computer Science, 3362:108–128, Jan. 2005.

[5] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,
J. B. Saxe, and R. Stata. Extended static checking for
Java. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and
Implementation (PLDI’02), volume 37, 5 of SIGPLAN,
pages 234–245, New York, June 2002. ACM Press.

74

http://www.cs.iastate.edu/~leavens/JML/papers.shtml
http://www.cs.iastate.edu/~leavens/JML/papers.shtml

