
A Specification-Based Approach
to Reasoning about Pointers

Gregory Kulczycki
Virginia Tech

Murali Sitaraman
Clemson University

Bruce W. Weide
The Ohio State University

Atanas Rountev
The Ohio State University

Motivation

Traditional static analysis techniques for
pointers are limited in what they can prove
about pointer programs.

Example: Shape Analysis

01: typedef struct list {
02: struct list *n;
03: int data;
04: } List;
05:
06: List *splice(List *x, List *y) {
07: List *t = NULL;
08: List *z = y;
09: while (x != NULL) {
10: t = x;
11: x = t->n;
12: t->n = y->n;
13: y->n = t;
14: y = y->n->n;
15: }
16: return z;
17: }

Example: Shape Analysis

Example state at the
beginning of splice

Example state at the
end of splice

“Statically verify that, if the input lists x and y
are disjoint and acyclic, then the list returned by
splice is acyclic.”

Region-based shape analysis with tracked locations
Hackett and Rugina, POPL 2005

Example: Shape Analysis

“Statically verify that, if the input lists x and y
are disjoint and acyclic, then the list returned by
splice is acyclic.”

Region-based shape analysis with tracked locations
Hackett and Rugina, POPL 2005

Example: Shape Analysis

Example: Shape Analysis
Shape analysis helps with some properties:

• Is a memory location referenced by more than one
other location?

• Is a location accessed through a dangling references?

• Are memory leaks present?

Example: Shape Analysis
Shape analysis helps with some properties:

• Is a memory location referenced by more than one
other location?

• Is a location accessed through a dangling references?

• Are memory leaks present?

But it does not help with other properties:

• Does the splice operation do what it is supposed to do
(i.e., does the operation interleave the elements of the
incoming lists)?

Specification-Based
Approach

• Provide a generic pointer component

• Include its full formal specification

• Give it a special implementation

• Special syntax is optional

Mathematical Model
Concept Location_Linking_Template (type Info);

 Defines Location: Set;
 Defines Void: Location;
 Var Target: Location → Location;
 Var Contents: Location → Info;
 Var Is_Taken: Location → B;

 Initialization ensures ∀q: Location, ¬Is Taken(q);

 Type Position is modeled by Location;
 exemplar p;
 Initialization ensures p = Void;

 ...

Mathematical Model
Concept Location_Linking_Template (type Info);

 Defines Location: Set;
 Defines Void: Location;
 Var Target: Location → Location;
 Var Contents: Location → Info;
 Var Is_Taken: Location → B;

 Initialization ensures ∀q: Location, ¬Is Taken(q);

 Type Position is modeled by Location;
 exemplar p;
 Initialization ensures p = Void;

 ...

Exported
Type

Definitions

Mathematical Model
Concept Location_Linking_Template (type Info);

 Defines Location: Set;
 Defines Void: Location;
 Var Target: Location → Location;
 Var Contents: Location → Info;
 Var Is_Taken: Location → B;

 Initialization ensures ∀q: Location, ¬Is Taken(q);

 Type Position is modeled by Location;
 exemplar p;
 Initialization ensures p = Void;

 ...

Conceptual
Variables

A System of
Linked Locations

Operation Signatures
Concept Location_Linking_Template (type Info);

 Type Position;

 Operation Take_New_Location (updates p: Position);

 Operation Abandon_Location (clears: p: Position);

 Operation Relocate (updates p: Position;
 preserves q: Position);

 Operation Follow_Link (updates p: Position);

 Operation Redirect_Link (preserves p: Position;
 preserves q: Position);

 ...

end Location_Linking_Template;

Redirect Link

Operation Redirect_Link(preserves p: Position;
 preserves q: Position);
 updates Target;
 requires Is_Taken(p);
 ensures ∀r: Location,

Target(r) =
⎧
⎨
⎩

q if r = p

#Target(r) otherwise
;

Redirect_Link(p, q)

before

Redirect_Link(p, q)

before

PAR

LIS

WAS

Redirect_Link(p, q)

before

Target = { WAS LIS, ... }
Contents = { WAS α,
 PAR β,
 LIS δ, ... }
Is_Taken = { WAS true,
 PAR true,
 LIS true, ... }
p = WAS

q = PAR

PAR

LIS

WAS

Redirect_Link(p, q)

after

Target = { WAS PAR, ... }
Contents = { WAS α,
 PAR β,
 LIS δ, ... }
Is_Taken = { WAS true,
 PAR true,
 LIS true, ... }
p = WAS

q = PAR

PARWAS

LIS

Relocate(p, q)

before

Relocate(p, q)

after

Follow_Link(p)

before

Follow_Link(p)

after

Implementation

Operation invocations such as

•Relocate(p, q)

•Follow_Link(p)

•Redirect_Link(p, q)

are implemented internally by copying a
memory address, not by invoking an
operation.

Splice Operation

Operation Splice (preserves p: Position; clears q: Position);
 updates Target;

•precondition: p and q point to disjoint and acyclic singly-linked
lists of locations, and p’s list is at least as long as q’s

•postcondition: p’s resulting list is an interleaving of q’s
incoming list with the first locations of p’s incoming list.

Splice Operation

Operation Splice (preserves p: Position; clears q: Position);
 updates Target;

•precondition: p and q point to disjoint and acyclic singly-linked
lists of locations, and p’s list is at least as long as q’s

•postcondition: p’s resulting list is an interleaving of q’s
incoming list with the first locations of p’s incoming list.

before

Splice Operation

Operation Splice (preserves p: Position; clears q: Position);
 updates Target;

•precondition: p and q point to disjoint and acyclic singly-linked
lists of locations, and p’s list is at least as long as q’s

•postcondition: p’s resulting list is an interleaving of q’s
incoming list with the first locations of p’s incoming list.

before after

Definitions

Is_Reachable_in (hops: N; p, q: Location): B

Is_Reachable (p, q: Location): B

Distance(p, q: Location): N

Definitions

Is_Reachable_in (hops: N; p, q: Location): B

Is_Reachable (p, q: Location): B

Distance(p, q: Location): N

Is_Reachable_in(3, p, q)

Definitions

Is_Reachable_in (hops: N; p, q: Location): B

Is_Reachable (p, q: Location): B

Distance(p, q: Location): N

Is_Reachable_in(3, p, q)

Is_Reachable(p, Void)

Definitions

Is_Reachable_in (hops: N; p, q: Location): B

Is_Reachable (p, q: Location): B

Distance(p, q: Location): N

Is_Reachable_in(3, p, q)

Is_Reachable(p, Void)

Distance(q, Void) = 1

Lightweight Specification

Operation Splice (preserves p: Position; clears q: Position);
 updates Target;
 requires (∃ k1, k2 : N ∍

 Is_Reachable_in(k1, p, Void) and
 Is_Reachable_in(k2, q, Void) and
 k2 ≤ k1) and

 (∀ r : Location,

 if Is_Reachable(p, r) and Is_Reachable(q, r)
 then r = Void);
 ensures Is_Reachable(p, Void);

Splice Procedure
Operation Splice (preserves p: Position; clears q: Position);
 updates Target;
Procedure
 Var r: Position;
 Var s: Position;
 Relocate(r, p);
 While (not Is_At_Void(q))
 do
 Relocate(s, r);
 Follow_Link(r);
 Redirect_Link(s, q);
 Follow_Link(s);
 Follow_Link(q);
 Redirect_Link(s, r);
 end;
end Splice;

While (not Is_At_Void(q))
do
 Relocate(s, r);
 Follow_Link(r);
 Redirect_Link(s, q);
 Follow_Link(s);
 Follow_Link(q);
 Redirect_Link(s, r);
end;

While (not Is_At_Void(q))
do
 Relocate(s, r);
 Follow_Link(r);
 Redirect_Link(s, q);
 Follow_Link(s);
 Follow_Link(q);
 Redirect_Link(s, r);
end;

While (not Is_At_Void(q))
do
 Relocate(s, r);
 Follow_Link(r);
 Redirect_Link(s, q);
 Follow_Link(s);
 Follow_Link(q);
 Redirect_Link(s, r);
end;

While (not Is_At_Void(q))
do
 Relocate(s, r);
 Follow_Link(r);
 Redirect_Link(s, q);
 Follow_Link(s);
 Follow_Link(q);
 Redirect_Link(s, r);
end;

While (not Is_At_Void(q))
do
 Relocate(s, r);
 Follow_Link(r);
 Redirect_Link(s, q);
 Follow_Link(s);
 Follow_Link(q);
 Redirect_Link(s, r);
end;

While (not Is_At_Void(q))
do
 Relocate(s, r);
 Follow_Link(r);
 Redirect_Link(s, q);
 Follow_Link(s);
 Follow_Link(q);
 Redirect_Link(s, r);
end;

While (not Is_At_Void(q))
do
 Relocate(s, r);
 Follow_Link(r);
 Redirect_Link(s, q);
 Follow_Link(s);
 Follow_Link(q);
 Redirect_Link(s, r);
end;

While (not Is_At_Void(q))
do
 Relocate(s, r);
 Follow_Link(r);
 Redirect_Link(s, q);
 Follow_Link(s);
 Follow_Link(q);
 Redirect_Link(s, r);
end;

Splice Procedure
Procedure
 Var r: Position;
 Var s: Position;
 Relocate(r, p);
 While (not Is_At_Void(q))

 maintaining ???
 do
 Relocate(s, r);
 Follow_Link(r);
 Redirect_Link(s, q);
 Follow_Link(s);
 Follow_Link(q);
 Redirect_Link(s, r);
 end;
end Splice;

Operation Splice (preserves p: Position;
 clears q: Position);
 updates Target;
 requires (∃ k1, k2 : N ∍
 Is_Reachable_in(k1, p, Void) and
 Is_Reachable_in(k2, q, Void) and
 k2 ≤ k1) and
 (∀ r : Location,
 if Is_Reachable(p, r) and Is_Reachable(q, r)
 then r = Void);
 ensures Is_Reachable(p, Void);

Splice Procedure
Procedure
 Var r: Position;
 Var s: Position;
 Relocate(r, p);
 While (not Is_At_Void(q))

 maintaining Is_Reachable(p, Void);
 do
 Relocate(s, r);
 Follow_Link(r);
 Redirect_Link(s, q);
 Follow_Link(s);
 Follow_Link(q);
 Redirect_Link(s, r);
 end;
end Splice;

Operation Splice (preserves p: Position;
 clears q: Position);
 updates Target;
 requires (∃ k1, k2 : N ∍
 Is_Reachable_in(k1, p, Void) and
 Is_Reachable_in(k2, q, Void) and
 k2 ≤ k1) and
 (∀ r : Location,
 if Is_Reachable(p, r) and Is_Reachable(q, r)
 then r = Void);
 ensures Is_Reachable(p, Void);

Splice Procedure
Procedure
 Var r: Position;
 Var s: Position;
 Relocate(r, p);
 While (not Is_At_Void(q))
 decreasing ???
 maintaining Is_Reachable(p, Void);
 do
 Relocate(s, r);
 Follow_Link(r);
 Redirect_Link(s, q);
 Follow_Link(s);
 Follow_Link(q);
 Redirect_Link(s, r);
 end;
end Splice;

Operation Splice (preserves p: Position;
 clears q: Position);
 updates Target;
 requires (∃ k1, k2 : N ∍
 Is_Reachable_in(k1, p, Void) and
 Is_Reachable_in(k2, q, Void) and
 k2 ≤ k1) and
 (∀ r : Location,
 if Is_Reachable(p, r) and Is_Reachable(q, r)
 then r = Void);
 ensures Is_Reachable(p, Void);

Splice Procedure
Procedure
 Var r: Position;
 Var s: Position;
 Relocate(r, p);
 While (not Is_At_Void(q))
 decreasing Distance(q, Void);
 maintaining Is_Reachable(p, Void);
 do
 Relocate(s, r);
 Follow_Link(r);
 Redirect_Link(s, q);
 Follow_Link(s);
 Follow_Link(q);
 Redirect_Link(s, r);
 end;
end Splice;

Operation Splice (preserves p: Position;
 clears q: Position);
 updates Target;
 requires (∃ k1, k2 : N ∍
 Is_Reachable_in(k1, p, Void) and
 Is_Reachable_in(k2, q, Void) and
 k2 ≤ k1) and
 (∀ r : Location,
 if Is_Reachable(p, r) and Is_Reachable(q, r)
 then r = Void);
 ensures Is_Reachable(p, Void);

Procedure
 Var r: Position;
 Var s: Position;
 Relocate(r, p);
 While (not Is_At_Void(q))
 decreasing Distance(q, Void);
 maintaining Is_Reachable(p, Void);
 do
 Relocate(s, r);
 Follow_Link(r);
 Redirect_Link(s, q);
 Follow_Link(s);
 Follow_Link(q);
 Redirect_Link(s, r);
 end;
end Splice;

1. Initialization – Is
the invariant true at
the start of the loop?

2.Maintenance – Is
the invariant true from
one iteration to the
next?

3.Termination –
Does the invariant
allow you to prove
what you need to?

Loop Invariant Proof

Loop Invariant Proof

Lemma #1: Is_Reachable(q, Void);
Lemma #2: Is_Reachable(r, Void);
Lemma #3: Is_Reachable(p, r) or Is_Reachable(p, q);

While (not Is_At_Void(q))
do
 Relocate(s, r);
 Follow_Link(r);
 Redirect_Link(s, q);
 Follow_Link(s);
 Follow_Link(q);
 Redirect_Link(s, r);
end;

Splice Operation

Operation Splice (preserves p: Position; clears q: Position);
 updates Target;

•precondition: p and q point to disjoint and acyclic singly-linked
lists of locations, and p’s list is at least as long as q’s

•postcondition: p’s resulting list is an interleaving of q’s
incoming list with the first locations of p’s incoming list.

before after

String Notation
The following notations are defined in a module that specifies the
properties of mathematical strings.

〈 x 〉 a string containing x

α ◦ β
the concatenation of strings
α and β

α ≤!≥ (β, γ)
asserts that α is a perfect
shuffle of strings β and γ

Definitions

Is_Info_Str(p, q: Location, α: Str(Info): B

Definitions

Is_Info_Str(p, q, 〈 α, β, γ 〉)

Is_Info_Str(p, q: Location, α: Str(Info): B

Heavyweight Specification

Operation Splice (preserves p: Position; clears q: Position);

 updates Target;

 requires ** Same as in lightweight specification **

 ensures (∀ t: Location, if not Is_Reachable(#p, t) and

 not Is_Reachable(#q, t) then Target(t) = #Target(t)) and

 (∀ p0, old_p0, old_q0: Str(Info),

 if (Is_Info_Str(p, Void, p0) and

 Is_Info_Str(#p, Void, old_p0) and

 Is_Info_Str(#q, Void, old_q0))

 then p0 ≤!≥ (old_p0, old_q0));

Let rq_shuffle be a
perfect shuffle of info
strings r0 and q0.

Then pr ◦ rq_shuffle is a
perfect shuffle of info
strings old_p0 and
old_q0.

Loop Invariant

maintaining (∀ t: Location, if not Is_Reachable(#p, t) and

 not Is_Reachable(#q, t) then Target(t) = #Target(t)) and

 (∀ pr, r0, q0, old_p0, old_q0, rq_shuffle: Str(Info),

 if (Is_Info_Str(p, r, p0) and

 Is_Info_Str(r, Void, r0) and Is_Info_Str(q, Void, q0)

 Is_Info_Str(#p, Void, old_p0) and

 Is_Info_Str(#q, Void, old_q0) and

 rq_shuffle ≤!≥ (r0, q0)

 then pr ◦ rq_shuffle ≤!≥ (old_p0, old_q0));

Loop Invariant

maintaining (∀ t: Location, if not Is_Reachable(#p, t) and

 not Is_Reachable(#q, t) then Target(t) = #Target(t)) and

 (∀ pr, r0, q0, old_p0, old_q0, rq_shuffle: Str(Info),

 if (Is_Info_Str(p, r, p0) and

 Is_Info_Str(r, Void, r0) and Is_Info_Str(q, Void, q0)

 Is_Info_Str(#p, Void, old_p0) and

 Is_Info_Str(#q, Void, old_q0) and

 rq_shuffle ≤!≥ (r0, q0)

 then pr ◦ rq_shuffle ≤!≥ (old_p0, old_q0));

Sketch of Proof
Initialization
We need to show pr ◦ rq_shuffle ≤!≥ (old_p0, old_q0)
Since p = r, it suffices to show
empty_string ◦ pq_shuffle ≤!≥ (old_p0, old_q0)

Termination
We know pr ◦ rq_shuffle ≤!≥ (old_p0, old_q0)
Since q = Void, rq_shuffle = r0, we know
pr ◦ r0 ≤!≥ (old_p0, old_q0)

Sketch of Proof

Maintenance
Assume: pr ◦ rq_shuffle ≤!≥ (old_p0, old_q0)
Show: pr′ ◦ rq_shuffle′ ≤!≥ (old_p0, old_q0)

r0 = 〈 x 〉 ◦ r0′
q0 = 〈 y 〉 ◦ q0′

rq_shuffle = 〈 x 〉 ◦ 〈 y 〉 ◦ rq_shuffle′

ps′ = pr ◦ 〈 x 〉
pr′ = pr ◦ 〈 x 〉 ◦ 〈 y 〉

pr′ ◦ rq_shuffle′ = pr ◦ rq_shuffle

 While (not Is_At_Void(q))
 do
 Relocate(s, r);
 Follow_Link(r);
 Redirect_Link(s, q);
 Follow_Link(s);
 Follow_Link(q);
 Redirect_Link(s, r);
 end;

Summary

Traditional Analysis
of Pointers

Specification-Based
Approach

 –

 –

 –

 –

Fully automated

Relatively fast

Low (but present) false
positive rate

Limited in what it can
prove

 –

 –

 –

Partly automated

Requires programmer
supplied assertions

Handles both lightweight
and heavyweight
specifications

Related Work

• Region-based shape analysis

• Logic of stores

• Constraint solver with Alloy

• ESC/Java

• LOOP compiler

• Safe pointers and checked pointers

• Pointer component

Questions

Additional Slides

Objective

Allow programmers to reason about pointers and
programs that involve pointers using the same
techniques they use to reason about programs
without pointers.

• The technique should not require special language
semantics or proof rules that apply only to pointers.

• The technique should not be limited in what it can prove
about programs with pointers.

Approach

Introduce a fully specified component into the
programming language that captures the functional
and performance behavior of pointers.

• Programmers can reason about pointers as they reason
about any other component.

• For appropriate performance behavior, the compiler must
implement the component differently than it implements
other components.

Shape Analysis
Memory Abstraction

Shape
Abstraction

Region
Abstraction

. . . “Each configuration
characterizes the
state of one single
heap location, called
the tracked location.”

Swap_Contents(p, t)

before after

Shape Analysis
Overview

Reason about invariants that describe the
“shapes” of dynamic data structures.

• A memory location is not referenced by more
than one other location.

• A tree structure is maintained by a program.

• A list does not contain cycles.

• No accesses through dangling references.

• Memory leaks do not occur.

Shape Analysis: Tracking the State

08: List *z = y;

09: while (x != NULL)

10: t = x;

11: x = t->n;

12: t->n = y->n;

13: y->n = t;

14: y = y->n->n;

16: return z;

Shape Analysis
Input state and abstraction

Example state at the
beginning of splice

Region
Points-to

Component

Configuration

Shape Analysis
Output state and abstraction

Example state at the
end of splice

Region
Points-to

Component

Configuration

Shape Analysis
L2 presents a problem

Region
Points-to

Component

Configuration

Shape Analysis
L2 with acyclic output

Region
Points-to

Component

Configuration

Pointer Component

Redirect_Link(p, q)

before

Redirect_Link(p, q)

after

Splice Operation

Definitions

Definition Var Is_Reachable_in (hops: N; p, q: Location): B

 = Targethops(p) = q and ∀ k: N, if Targetk(p) = q then k ≥ hops;

Is_Reachable_in(3, p, q)

Definitions

Definition Var Is_Reachable (p, q: Location): B

 = ∃ k: N ∍ Is_Reachable_in(k, p, q);

Is_Reachable(p, Void)

Definitions

Definition Var Distance(p, q: Location): N

=
⎧
⎨
⎩

k if Is_Reachable_in(k, p, q)

0 otherwise
;

Distance(q, Void) = 1

Definition

Definition Var Is_Info_Str(p, q: Location, α: Str(Info): B

 = ∃ n: N ∍ Is_Reachable_in(n, p, q) and

 α = ∏ k=1..n 〈 Contents(Targetk(p)) 〉;

Is_Info_Str(p, q, 〈 α, β, γ 〉)

