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Motivation

Traditional static analysis techniques for 
pointers are limited in what they can prove 
about pointer programs.



Example: Shape Analysis

01: typedef struct list {
02:   struct list *n;
03:   int data;
04: } List;
05:
06: List *splice(List *x, List *y) {
07:   List *t = NULL;
08:   List *z = y;
09:   while (x != NULL) {
10:     t = x;
11:     x = t->n;
12:     t->n = y->n;
13:     y->n = t;
14:     y = y->n->n;
15:   }
16:   return z;
17: }



Example: Shape Analysis

Example state at the 
beginning of splice

Example state at the 
end of splice



“Statically verify that, if the input lists x and y 
are disjoint and acyclic, then the list returned by 
splice is acyclic.”

Region-based shape analysis with tracked locations
Hackett and Rugina, POPL 2005
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Example: Shape Analysis
Shape analysis helps with some properties: 

• Is a memory location referenced by more than one 
other location?

• Is a location accessed through a dangling references?

• Are memory leaks present?



Example: Shape Analysis
Shape analysis helps with some properties: 

• Is a memory location referenced by more than one 
other location?

• Is a location accessed through a dangling references?

• Are memory leaks present?

But it does not help with other properties: 

• Does the splice operation do what it is supposed to do 
(i.e., does the operation interleave the elements of the 
incoming lists)?



Specification-Based 
Approach

• Provide a generic pointer component

• Include its full formal specification

• Give it a special implementation

• Special syntax is optional



Mathematical Model
Concept Location_Linking_Template (type Info);

      Defines Location: Set;
      Defines Void: Location;
      Var Target: Location → Location;
      Var Contents: Location → Info; 
      Var Is_Taken: Location → B;

      Initialization ensures ∀q: Location, ¬Is Taken(q);

      Type Position is modeled by Location;
            exemplar p;
            Initialization ensures p = Void;

      ...
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Mathematical Model
Concept Location_Linking_Template (type Info);

      Defines Location: Set;
      Defines Void: Location;
      Var Target: Location → Location;
      Var Contents: Location → Info; 
      Var Is_Taken: Location → B;

      Initialization ensures ∀q: Location, ¬Is Taken(q);

      Type Position is modeled by Location;
            exemplar p;
            Initialization ensures p = Void;

      ...

Conceptual 
Variables



A System of
Linked Locations



Operation Signatures
Concept Location_Linking_Template (type Info);

      Type Position;

      Operation Take_New_Location (updates p: Position);

      Operation Abandon_Location (clears: p: Position);

      Operation Relocate (updates p: Position;
                                               preserves q: Position);

      Operation Follow_Link (updates p: Position);

      Operation Redirect_Link (preserves p: Position;
                                                          preserves q: Position);

      ...

end Location_Linking_Template;



Redirect Link

Operation Redirect_Link(preserves p: Position;
                                                   preserves q: Position);
      updates Target;
      requires Is_Taken(p);
      ensures ∀r: Location,

Target(r)  =
⎧
⎨
⎩

q                     if r = p

#Target(r)    otherwise
;



Redirect_Link(p, q)

before



Redirect_Link(p, q)

before

PAR

LIS

WAS



Redirect_Link(p, q)

before

Target = { WAS        LIS, ... }
Contents = { WAS        α,
                        PAR        β,
                        LIS        δ, ... }
Is_Taken = { WAS        true,
                         PAR        true,
                         LIS        true, ... }
p = WAS

q = PAR  

PAR

LIS

WAS



Redirect_Link(p, q)

after

Target = { WAS        PAR, ... }
Contents = { WAS        α,
                        PAR        β,
                        LIS        δ, ... }
Is_Taken = { WAS        true,
                         PAR        true,
                         LIS        true, ... }
p = WAS

q = PAR  

PARWAS

LIS



Relocate(p, q)

before



Relocate(p, q)

after



Follow_Link(p)

before



Follow_Link(p)

after



Implementation

Operation invocations such as

•Relocate(p, q)

•Follow_Link(p)

•Redirect_Link(p, q)

are implemented internally by copying a 
memory address, not by invoking an 
operation.



Splice Operation

Operation Splice (preserves p: Position; clears q: Position );
      updates Target;

•precondition: p and q point to disjoint and acyclic singly-linked 
lists of locations, and p’s list is at least as long as q’s

•postcondition: p’s resulting list is an interleaving of q’s 
incoming list with the first locations of p’s incoming list.
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Is_Reachable_in (hops: N; p, q: Location): B

Is_Reachable (p, q: Location): B

Distance(p, q: Location): N
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Definitions

Is_Reachable_in (hops: N; p, q: Location): B

Is_Reachable (p, q: Location): B

Distance(p, q: Location): N

Is_Reachable_in(3, p, q)

Is_Reachable(p, Void)

Distance(q, Void) = 1



Lightweight Specification

Operation Splice (preserves p: Position; clears q: Position);
      updates Target;
      requires ( ∃ k1, k2 : N ∍

                  Is_Reachable_in(k1, p, Void) and
                  Is_Reachable_in(k2, q, Void) and 
                  k2 ≤ k1 ) and

            ( ∀ r : Location,

                  if Is_Reachable(p, r) and Is_Reachable(q, r)
                  then r = Void );
      ensures Is_Reachable(p, Void);



Splice Procedure
Operation Splice (preserves p: Position; clears q: Position );
      updates Target;
Procedure
      Var r: Position;
      Var s: Position;
      Relocate(r, p);
      While (not Is_At_Void(q))
      do
            Relocate(s, r);
            Follow_Link(r);
            Redirect_Link(s, q);
            Follow_Link(s);
            Follow_Link(q);
            Redirect_Link(s, r);
      end;
end Splice;
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Splice Procedure
Procedure
      Var r: Position;
      Var s: Position;
      Relocate(r, p);
      While (not Is_At_Void(q))
           
            maintaining ???
      do
            Relocate(s, r);
            Follow_Link(r);
            Redirect_Link(s, q);
            Follow_Link(s);
            Follow_Link(q);
            Redirect_Link(s, r);
      end;
end Splice;
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                                    clears q: Position);
      updates Target;
      requires ( ∃ k1, k2 : N ∍
                  Is_Reachable_in(k1, p, Void) and
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                  k2 ≤ k1 ) and
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      ensures Is_Reachable(p, Void);



Splice Procedure
Procedure
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      Var s: Position;
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Splice Procedure
Procedure
      Var r: Position;
      Var s: Position;
      Relocate(r, p);
      While (not Is_At_Void(q))
            decreasing ???
            maintaining Is_Reachable(p, Void);
      do
            Relocate(s, r);
            Follow_Link(r);
            Redirect_Link(s, q);
            Follow_Link(s);
            Follow_Link(q);
            Redirect_Link(s, r);
      end;
end Splice;
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                  Is_Reachable_in(k1, p, Void) and
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                  if Is_Reachable(p, r) and Is_Reachable(q, r)
                  then r = Void );
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Splice Procedure
Procedure
      Var r: Position;
      Var s: Position;
      Relocate(r, p);
      While (not Is_At_Void(q))
            decreasing Distance(q, Void);
            maintaining Is_Reachable(p, Void);
      do
            Relocate(s, r);
            Follow_Link(r);
            Redirect_Link(s, q);
            Follow_Link(s);
            Follow_Link(q);
            Redirect_Link(s, r);
      end;
end Splice;

Operation Splice (preserves p: Position;
                                    clears q: Position);
      updates Target;
      requires ( ∃ k1, k2 : N ∍
                  Is_Reachable_in(k1, p, Void) and
                  Is_Reachable_in(k2, q, Void) and 
                  k2 ≤ k1 ) and
            ( ∀ r : Location,
                  if Is_Reachable(p, r) and Is_Reachable(q, r)
                  then r = Void );
      ensures Is_Reachable(p, Void);



Procedure
      Var r: Position;
      Var s: Position;
      Relocate(r, p);
      While (not Is_At_Void(q))
            decreasing Distance(q, Void);
            maintaining Is_Reachable(p, Void);
      do
            Relocate(s, r);
            Follow_Link(r);
            Redirect_Link(s, q);
            Follow_Link(s);
            Follow_Link(q);
            Redirect_Link(s, r);
      end;
end Splice;

1. Initialization – Is 
the invariant true at 
the start of the loop?

2.Maintenance – Is 
the invariant true from 
one iteration to the 
next?

3.Termination – 
Does the invariant 
allow you to prove 
what you need to?

Loop Invariant Proof



Loop Invariant Proof

Lemma #1: Is_Reachable(q, Void);
Lemma #2: Is_Reachable(r, Void);
Lemma #3: Is_Reachable(p, r) or Is_Reachable(p, q);

While (not Is_At_Void(q))
do
      Relocate(s, r);
      Follow_Link(r);
      Redirect_Link(s, q);
      Follow_Link(s);
      Follow_Link(q);
      Redirect_Link(s, r);
end;



Splice Operation

Operation Splice (preserves p: Position; clears q: Position );
      updates Target;

•precondition: p and q point to disjoint and acyclic singly-linked 
lists of locations, and p’s list is at least as long as q’s

•postcondition: p’s resulting list is an interleaving of q’s 
incoming list with the first locations of p’s incoming list.

before after



String Notation
The following notations are defined in a module that specifies the 
properties of mathematical strings.

〈 x 〉 a string containing x

α ◦ β
the concatenation of strings 
α and β

α ≤!≥ (β, γ)
asserts that α is a perfect 
shuffle of strings β and γ



Definitions

Is_Info_Str(p, q: Location, α: Str(Info): B 



Definitions

Is_Info_Str(p, q, 〈 α, β, γ 〉)

Is_Info_Str(p, q: Location, α: Str(Info): B 



Heavyweight Specification

Operation Splice (preserves p: Position; clears q: Position);

      updates Target;

      requires ** Same as in lightweight specification ** 

      ensures ( ∀ t: Location, if not Is_Reachable(#p, t) and

            not Is_Reachable(#q, t) then Target(t) = #Target(t) ) and

         ( ∀ p0, old_p0, old_q0: Str(Info),

            if ( Is_Info_Str(p, Void, p0) and

                   Is_Info_Str(#p, Void, old_p0) and 

                   Is_Info_Str(#q, Void, old_q0) )

            then p0 ≤!≥ (old_p0, old_q0) );





Let rq_shuffle be a 
perfect shuffle of info 
strings r0 and q0.

Then pr ◦ rq_shuffle is a 
perfect shuffle of info 
strings old_p0 and 
old_q0.



Loop Invariant

maintaining ( ∀ t: Location, if not Is_Reachable(#p, t) and

      not Is_Reachable(#q, t) then Target(t) = #Target(t) ) and

   ( ∀ pr, r0, q0, old_p0, old_q0, rq_shuffle: Str(Info),

      if ( Is_Info_Str(p, r, p0) and

             Is_Info_Str(r, Void, r0) and Is_Info_Str(q, Void, q0)            

             Is_Info_Str(#p, Void, old_p0) and

             Is_Info_Str(#q, Void, old_q0) and

             rq_shuffle ≤!≥ (r0, q0)

      then pr ◦ rq_shuffle ≤!≥ (old_p0, old_q0) );



Loop Invariant

maintaining ( ∀ t: Location, if not Is_Reachable(#p, t) and

      not Is_Reachable(#q, t) then Target(t) = #Target(t) ) and

   ( ∀ pr, r0, q0, old_p0, old_q0, rq_shuffle: Str(Info),

      if ( Is_Info_Str(p, r, p0) and

             Is_Info_Str(r, Void, r0) and Is_Info_Str(q, Void, q0)            

             Is_Info_Str(#p, Void, old_p0) and

             Is_Info_Str(#q, Void, old_q0) and

             rq_shuffle ≤!≥ (r0, q0)

      then pr ◦ rq_shuffle ≤!≥ (old_p0, old_q0) );



Sketch of Proof
Initialization
We need to show pr ◦ rq_shuffle ≤!≥ (old_p0, old_q0)
Since p = r, it suffices to show
empty_string ◦ pq_shuffle ≤!≥ (old_p0, old_q0)

Termination
We know pr ◦ rq_shuffle ≤!≥ (old_p0, old_q0)
Since q = Void, rq_shuffle = r0, we know
pr ◦ r0 ≤!≥ (old_p0, old_q0)



Sketch of Proof

Maintenance
Assume: pr ◦ rq_shuffle ≤!≥ (old_p0, old_q0)
Show: pr′ ◦ rq_shuffle′ ≤!≥ (old_p0, old_q0)

r0 = 〈 x 〉 ◦ r0′
q0 = 〈 y 〉 ◦ q0′

rq_shuffle = 〈 x 〉 ◦ 〈 y 〉 ◦ rq_shuffle′

ps′ = pr ◦ 〈 x 〉
pr′ = pr ◦ 〈 x 〉 ◦ 〈 y 〉

pr′ ◦ rq_shuffle′ = pr ◦ rq_shuffle

 While (not Is_At_Void(q))
 do
       Relocate(s, r);
       Follow_Link(r);
       Redirect_Link(s, q);
       Follow_Link(s);
       Follow_Link(q);
       Redirect_Link(s, r);
 end;



Summary

Traditional Analysis 
of Pointers

Specification-Based 
Approach

 –

 –

 –

 –

Fully automated

Relatively fast

Low (but present) false 
positive rate

Limited in what it can 
prove

 –

 –

 –

Partly automated

Requires programmer 
supplied assertions

Handles both lightweight 
and heavyweight 
specifications



Related Work

• Region-based shape analysis

• Logic of stores

• Constraint solver with Alloy

• ESC/Java

• LOOP compiler

• Safe pointers and checked pointers

• Pointer component



Questions



Additional Slides



Objective

Allow programmers to reason about pointers and 
programs that involve pointers using the same 
techniques they use to reason about programs 
without pointers.

• The technique should not require special language 
semantics or proof rules that apply only to pointers.

• The technique should not be limited in what it can prove 
about programs with pointers.



Approach

Introduce a fully specified component into the 
programming language that captures the functional 
and performance behavior of pointers.

• Programmers can reason about pointers as they reason 
about any other component.

• For appropriate performance behavior, the compiler must 
implement the component differently than it implements 
other components.



Shape Analysis
Memory Abstraction

Shape
Abstraction

Region
Abstraction

. . . “Each configuration
characterizes the
state of one single
heap location, called
the tracked location.”



Swap_Contents(p, t)

before after



Shape Analysis
Overview

Reason about invariants that describe the 
“shapes” of dynamic data structures.

• A memory location is not referenced by more 
than one other location.

• A tree structure is maintained by a program.

• A list does not contain cycles.

• No accesses through dangling references.

• Memory leaks do not occur.



Shape Analysis: Tracking the State

08: List *z = y;

09: while (x != NULL)

10:   t = x;

11:   x = t->n;

12:   t->n = y->n;

13:   y->n = t;

14:   y = y->n->n;

16: return z;



Shape Analysis
Input state and abstraction

Example state at the 
beginning of splice

Region
Points-to

Component

Configuration



Shape Analysis
Output state and abstraction

Example state at the 
end of splice

Region
Points-to

Component

Configuration



Shape Analysis
L2 presents a problem

Region
Points-to

Component

Configuration



Shape Analysis
L2 with acyclic output

Region
Points-to

Component

Configuration



Pointer Component



Redirect_Link(p, q)

before



Redirect_Link(p, q)

after



Splice Operation



Definitions

Definition Var Is_Reachable_in (hops: N; p, q: Location): B 

      = Targethops(p) = q and ∀ k: N, if Targetk(p) = q then k ≥ hops;

Is_Reachable_in(3, p, q)



Definitions

Definition Var Is_Reachable (p, q: Location): B 

      = ∃ k: N ∍ Is_Reachable_in(k, p, q);

Is_Reachable(p, Void)



Definitions

Definition Var Distance(p, q: Location): N

=
⎧
⎨
⎩

k       if Is_Reachable_in(k, p, q)

0      otherwise
;

Distance(q, Void) = 1



Definition

Definition Var Is_Info_Str(p, q: Location, α: Str(Info): B 

      = ∃ n: N ∍ Is_Reachable_in(n, p, q) and

          α = ∏ k=1..n 〈 Contents(Targetk(p)) 〉;

Is_Info_Str(p, q, 〈 α, β, γ 〉)


