Specification and Design of Component-based
Coordination Systems by Integrating Coordination
Patterns'

Pedro L. Pérez-Serrano
QUERCUS Software Engineering Group,
Computer Science Department,
University of Extremadura
Escuela Politécnica, Avda. Universidad, S/N
10071 Céceres (Spain)
+34-927257173

plperez@unex.es

ABSTRACT

Rewriting logic has been revealed as a powerful tool to represent
concurrent and state-transitions aspects in a declarative way,
providing an adequate environment to specify and execute system
representations. Moreover, rewriting logic is reflective, allowing
for the definition of operations that transform, combine and
manipulate specification modules by making use of the logic
itself. Taking advantage of these capabilities, this paper presents a
set of tools based on the rewriting logic language Maude to
express the specifications of component-based systems with
important coordination constraints, where coordination aspects
are treated as separate components from functional ones. This
representation allows for the testing of the system behavior from
the early stages in the development process by executing the
specifications. In addition, the development of basic coordination
patterns using UML is presented to describe the coordination
relationships between components in any system, providing a
standard notation that complements the tools of the proposal.

Categories and Subject Descriptors
D.2.1 Requirements/Specifications (D.3.1)

D.2.2 Design Tools and Techniques
D.2.4 Software/Program Verification (F.3.1)

General Terms

Performance, Design, Standardization, Languages, Verification.

Keywords
Coordination Requirements, Behavior Simulation, Accordance
Checker, Coordination Patterns.

1 INTRODUCTION

The need to develop more and more complex systems has enabled
the improvement in languages and models to manage the
coordination constraints between system components, promoting

! This work has been supported by the project CICYT under grant
TIC 02-04309-C02-01.

Marisol Sanchez-Alonso
QUERCUS Software Engineering Group,
Computer Science Department,
University of Extremadura
Escuela Politécnica, Avda. Universidad, S/N
10071 Céceres (Spain)
+34-927257807

marisol@unex.es

reusability, and the flexibility to change the interaction policies
between components by means of the separate treatment of
functional and coordination concerns. However, a serious
limitation of these models, with regard to their usability, is that
they do not provide support to manage the coordination
constraints from the early stages in the software life cycle. That
makes the adoption of a particular coordination model or
language more difficult during the detailed design or
implementation phases, due to the fact that coordination aspects
are implicit and dispersed along all the components present in the
system model, and now it is necessary to express explicitly the
coordination aspect in a separate way from the functional one, to
be able to apply a specific coordination model. Dealing with the
specification of complex systems, coordination models should be
encompassing a methodology that supports the separation of
concerns throughout the whole software development process.
Such methodology should be based on the use of formal
techniques providing strictness and allowing the demonstration of
properties that the specifications must satisfy.

Among the varieties of logics on which the formal specification
techniques are based, rewriting logic has been revealed as a well
suited base to express the system specifications in concurrent and
state transition environments. Moreover, rewriting logic supports
a wide spectrum of applications for developing prototypes,
parallel execution and transformations. In addition, the reflective
capability of this logic makes it a powerful tool to express the
system specifications and to develop applications by
transforming, checking and manipulating the logic itself.

In particular, this work focuses on the execution of specifications
from the early stages of the life cycle, to validate and test the
system behavior imposed by the coordination constraints between
components. The use of Maude language [1] supporting rewriting
logic is proposed. This choice is motivated by Maude's
capabilities not only to specify and execute the system
coordination requirements, but also to construct tools that
manipulate the system specifications and transform them from a
representation which is closer to designers to a more detailed and

complex representation that specifies the mechanisms needed to
perform the coordination concerns.

This supposes accepting specifications which adopt the syntax of
a coordination model, and which transform them into represent-
tations detailing how the coordination mechanisms act to simulate
the coordinated behavior by executing this last representation.

As the detailed representation can be refined along the software
development process with features of design and implementation,
a tool to check the accordance between representations of
different abstraction levels is required. This tool manipulates
specifications, and it is developed in the rewriting logic itself,
making use of the reflective capability.

With these aims, we have developed COFRE (Coordination
Formal Requirements Environment) [2], a set of tools considering
all the above features, providing a methodology to make the
system specification easy based on formal and graphic techniques,
and dealing with coordination constraints from the early stages in
the software development process. As regards benefits, changing
and reusing components and coordination patterns from
requirements are more systematic and pleasant tasks; in addition,
the system behavior can be simulated by executing the formal
specifications, simplifying the validation process, and the use of a
model checker allows for the verification of the accordance
between specifications in different abstraction levels.

In order to provide a standard notation to specify the system
coordination constraints, we have developed a set of basic
coordination patterns in UML that can be combined to express
any kind of coordination constraints between the components of a
system, even the most complex. Although these patterns are
proposed to complete COFRE, they can also be used
independently of this set of tools and the coordination model or
language in which the system will be implemented.

The structure of this paper is organized as follows: In Section 2
the motivation for this work is presented. The steps of our
proposal which makes use of a language based on rewriting logic
to represent the system model along the software development
process are described in Section 3. Section 4 gives an overview of
the work in progress, describing the design of coordination
patterns and their integration into the proposal. Finally, Section 5
provides the conclusions.

2 MOTIVATIONS

In recent years a wide range of tools combining both graphical
and formal techniques have been developed with the aim of
making software development easier. These tools can express in a
detailed way the static and dynamic aspects of the system. But,
initial requirements making use of these techniques are expressed
in a global way which makes it difficult to adopt an architectural
or design technique based on the separation of concerns
(including coordination constraints). Particularly, in coordination
environments, the adoption of a coordination language requires
the separation of the specification of the coordination behavior
from the functional one. But this task is delegated to designers or
programmers starting from a conceptual model where these
concerns are mixed. By avoiding this problem, the development
processes are made more agile and consistent. Consequently, we
proposed a set of tools named COFRE, based on the use of a
rewriting logic language that tries to separate the functional

concerns described for each component from concerns related to
the interactions between components starting from the
requirements definition in the development process.

Simulation by means of the execution of the model is the
technique that best permits the observation and testing of the
system dynamic properties. Often the simulation techniques by
formal specifications execution, named animation techniques,
required the translation of the specification to an imperative
programming language like C++ or Java to be executed [10,11].
However, the different abstraction levels of the languages used to
specify and to animate the model can provoke lack of precision
and fidelity between both representations. This justifies the use of
formal techniques allowing the execution of specifications to
check the system behavior when implementation details have not
yet been described.

Particularly, in coordination systems, special attention must be
paid to guaranteeing that the final behavior obtained in the
composed application is semantically coherent. That means
verifying whether gluing together a coordination policy and a set
of components in an application (which can have been coded and
checked separately) will produce the expected behavior, and
whether the addition or change of coordination constraints will
produce conflicts with the current behavior.

Because the adoption of a coordination model means specifying
the system constraints in a more detailed way, it is necessary to
guarantee the accordance of this representation with regard to the
initial requirements definition by means of a verification process
checking that the interaction between the system components are
maintained.

3 COFRE: SPECIFYING COORDINATION
SYSTEMS

In this section, the above topics are focused on, proposing
COFRE to make the specification and validation process easier
for both software engineers and users. This proposal is based on
the use of the formal language Maude to express the different
representations of the system specifications and as a language in
which the tools that manipulate and transform these specifications
are implemented.

Maude is an executable algebraic language based on rewriting
logic, that describes the specifications in a concurrent and non-
deterministic way. The specifications can be executed by means
of reducing terms in equations and rewrite rules performed by the
interpreter provided by the language, which facilitates its use for
prototyping and for checking the specifications behavior.

Maude allows for the definition of functional modules containing
operations and equations, system modules also containing rewrite
rules and object modules that are system modules allowing the
specification of features concern to O-O paradigm. The use of
rewrite rules is particularly appropriate to represent state
transitions in systems of concurrent objects, where a configuration
formed by the object instances and the current messages present
in the system determine the system state in each moment. Maude
provides specific definitions and operations to efficiently manage
system configurations.

These are the capabilities that make the use of Maude appropriate
to represent the different abstraction level specifications of the

system as well as to manipulate the specifications themselves,
being the language in which part of the tools composing COFRE
are implemented.

The methodology under COFRE proposes the use of IRD
diagrams to represent the system components and their
interactions from requirements analysis. IRDs have a correspon-
ding specification in Maude language. However, this
representation is not executable, because a specific coordination
model needs to be adopted, but it is necessary to check the
accordance of subsequent detailed specifications with regard to
the initial requirements. COFRE adopts a specific coordination
model and generates, starting from this initial specification, the
equivalent specification making use of the coordination model
syntax. This specification can be transformed in a more detailed
Maude representation, expressing all the artifacts to represent the
coordination aspects. This more detailed representation can be
executed to simulate the system coordinated behavior [3],
contributing to the system validation. Moreover, the specification
adopting the coordination model can be verified with respect to
the initial formal representation of the IRD to determine their
accordance making use of the accordance checker, developed for
this purpose. Figure 1 shows a schematic representation of the
method.

CR
Coordinated Roles
Coordination Model

Graphic
IRD
Representation

COORDMAUDE
CR Syntax
Interface
IRD Formal Executable
Representation |]|]|::> R ||]|::> representation of
CR CR
" Representation

g Accordance Checker) ¢

MAUDE

Figure 1. Schematic representation of COFRE method steps

Figure 1 shows the main steps of COFRE:

1. The main system components, their external interface and
the interaction rules of the system are expressed using
Interelement Relation Diagrams (IRDs). IRDs are used to
specify the cooperation rules (coordinated interactions)
between components in a graphical way.

2. The system IRD has a Maude representation allowing for
verification of the agreement of a detailed Maude specification
with regard to the original requirements expressed in the IRD.

3. The system specification can adopt a specific coordination
model making use of its syntax, and this specification has a
Maude representation of the coordination details permitting the
model execution.

4. The behavior simulation of the system can be tested and
validated after each iteration in the refinement of the
development process.

5. The accordance with regard to the requirements expressed
in the system IRD can be checked.

The transition to the design stage is made by adopting the
exogenous coordination model Coordinated Roles (CR) [4]. CR is
inspired by /WIM model [5] and based on the Event Notification
Protocols (ENP) mechanism. This mechanism allows a
coordinator component to ask for the occurrence of an event in
another component, and the notifications can be asked for in a
synchronous and an asynchronous way. The process must be
transparent for the components to be coordinated.

Each coordination component imposes a coordination pattern
structured as a set of roles. A role represents each of the
characters that can be played in a coordination pattern. Behavior
components will have to adopt these roles in order to be
coordinated. For each role, coordination components specify the
set of events required to represent the desired coordination
constraints. The binding between coordinators and components to
be coordinated is done at run-time via composition syntax.

4 COORDINATION PATTERN DESIGN

Design patterns [6] are common solutions accepted as being
correct for specific design problems. They constitute an apprecia-
ted tool to improve of the quality of software development.

In order to take the advantage of using design patterns and
applying them to the coordination aspects, we are working on the
definition of a set of coordination patterns. These coordination
patterns are specified using some diagrams of UML [7], to
provide a standard representation that facilitates their use. We are
starting with the definition of patterns representing basic
coordination events and patterns representing the coordinators to
develop the solution to problems in coordinated environments, in
a level of abstraction independent of the programming language
or the platform used.

The coordination patterns are developed with the aim of being
widely applied, and with the purpose of being integrated in
developing tools making use of UML. However, we propose to
integrate coordination patterns in COFRE, to provide a standard
notation that improves this set of tools and facilitates its use and
its comprehension.

The coordination pattern integration is divided into three phases
that are shown in figure 2:

Phase 1: This phase includes several steps:

e Specification of the events and the coordinators in a Class
Diagram. Thus, it will define the static part of the system, the
functional and singular aspects of each of its components of
it. Also, the coordination aspects will be defined, that is, the
system coordinated behaviour with the Interaction Diagrams
of UML, composed of two kind of diagrams:

— The Sequence Diagrams, showing the messages
temporary ordination of the different objects in the
system. The behavior and the role of the coordinator or
coordinators in an action will be shown in these diagrams.

— The Collaboration Diagrams, showing the structural orga-
nization of the objects, that is, the set of messages sent
and received between different objects in a collaboration.

e Generation of the formal definition of the system in Maude.
Starting from this representation the sequence of steps
proposed in COFRE can be applied to obtain a representation
of the system in CoordMaude and to simulate the system
behaviour.

e A detailed system specification is obtained independent of
the platform and the programming language to be
implemented. This solution will be saved in a repository
together the documentation generated. The coordinated
patterns are proposed to be reused and the documentation
generated could be exploited to help in their reutilization.

Phase 2: This phase will consist of the development of a tool
(black arrow number 1 in the figure 2) that transforms the Class
and the Interaction Diagrams of Phase 1 to the IRD diagrams of
COFRE. In this way, the development of the coordinated system
is performed in the analysis phase with COFRE and in the design
phase with the tools developed in phase 1. Thus, it will be
necessary to develop a new tool (black arrow number 2 in figure
2) to check the accordance between the results of both phases.

Phase 3: In this phase, a tool will be developed to allow the
inverse process to the explained one in phase 2; that is, a tool that
converts the IRD diagram to the corresponding UML diagrams.

rd Dosumentation Phase 1
i =

{i:u Comrdraton s

inwL Covrdnation xipet of CRin Meude
@ Gy
[SR o0 corommen

e

simme || S
o) Exesuraie Mt represenain

/ Tol o) ~

/ J

'lﬁ e

if

Phase 3[\ {:1)
o ® |
N “ i
- Reccotar Chackar H

\ (= |
i i
P e I i
H } Cocratu l:’[o | Pliase 2 I
N~ -] it

Figure 2. Integration of the Coordination Patterns in COFRE

S CONCLUSIONS

The system requirements representation must be done performed
making use of formal techniques allowing the validation of
system requirements from the early stages in the development
process, by executing specifications. This is especially important
in coordination environments, where it is necessary to guarantee
that interactions between system components work properly.

COFRE has been developed for this purpose, providing these
advantages:

1. The coordinated interactions between components can be
specified independently from component functionality By

using IRDs. The formal representation of IRDs in Maude
avoids ambiguity, adding precision to the model.

2. The adoption of a specific coordination model is facilitated
from early stages in the development process due to the
separation of functional and coordination concerns.

3. The features and event notification protocols are represented in
Maude to make use of the rewrite engine of the language and
with the aim to simulate the system behavior with different
configurations.

4. The system representation making use of the CR syntax is
possible, using CoordMaude that extends Maude, to accept
specifications made on CR and generating all the mechanisms
needed for the representation of the coordination model in
Maude, in order to execute the system specifications.

5. Formal representation of IRDs can be checked with the
specifications resulting from applying the coordination model
to determine whether the accordance between both
representations is maintained.

The definition of basic and generic coordination patterns in a
standardized notation like UML allows the system specification to
be expressed in an independent way from the tools used for the
developing process and the coordination model adopted for the
implementation of the system. The specification of complex coor-
dination constraints can be made by combining basic coordination
patterns, maintaining the separation of the coordination and the
functional aspects of the systems. This separation contributes to
making the software development and modification easier.

6 REFERENCES

[1] Clavel, M. Duran, F. Eker, S. Lincoln, P. Marti-Oliet N.
Meseguer, J. and Quesada, J. Maude: Specification and
Programming in Rewriting Logic. Computer Science
Laboratory. SRI International. March'99.

[2] Sanchez-Alonso, M. Murillo, JM. and Hernandez J.
COFRE: Environment for Specifying Coordination Require-
ments using Formal and Graphical Techniques. Journal of
Research and Practice in Information Technology, Vol. (36)
pp: 231-246, Australian Computer Society Inc. 2004.

[3] Séanchez-Alonso, M. and Murillo, J.M. Specifying
Cooperation Environment Requirements using Formal and
Graphical Techniques. In WER’2000, 5th. Workshop on
Requirements Engineering, 2000.

[4] Sanchez-Alonso, M. Clemente, P.J. Murillo, J.M. and
Hernandez, J. CoordMaude: Simplifying Formal
Coordination Specifications of Cooperation Environments.
2nd Workshop on Languages Description Tools and
Applications (LDTA'03). ENTCS n° 82.

[5] Arbab, F. (1996): The IWIM Model for Coordination of
Concurrent Activities.. Ist Int. Conf. on Coordination’96.
LNCS 1061. Springer-Verlag.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John M.
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison Wesley Professional, 1995.

[71 J. Rumbaugh, I. Jacobson, G. Booch. The Unified Modeling
Language Reference Manual. Addison-Wesley, 1999.

