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This paper provides a theory of infinite streams and ob-
jects, which contains our point of view on the problem of
formal modelling of behaviors of objects and their systems
with big or infinite number of internal states.

The most closed analogue of our theory are the theory of
finite automata, FOCUS theory of M.Broy and K.Stolen [4],
and Reo calculus introduced by F.Arbab and J.Rutten [3]
together with its alternative semantics given by constraint
finite automata in [2].

In FOCUS objects are described in terms of their in-
put/output behaviors given by sets of stream processing
functions. In the coalgebraic semantics of Reo objects are
modelled by means of relations on timed data streams. The
second semantics of Reo uses constrain finite automata to
describe objects.

Theory of infinite streams and objects differs cardinally:
1) from the automata theory, FOCUS theory and Reo calcu-
lus so, that we use infinite streams for modelling of internal
variables as well as for inputs and outputs of objects; 2)
from FOCUS and Reo so, that we work with all involved
streams concurrently and synchronously. In our theory we
give up the representation of an object through its states
and switch to the representation through the sets of all ad-
missible behaviors of interface streams and internal streams
constituting the object. This provides our theory of infinite
streams and objects greater expressive power than theory
of finite automata and moreover than push-down automata.
The use of streams gives us uniform way for modelling of
inputs, outputs and internal variables of objects, simplifies
object’s definitions, and renders possible our theory to be
not afraid of the object’s dimensionality increase. A side
benefit of the suggested theory is presence of the algorithm
for automatic obtaining of the formal model of a system
from the given models of objects constituting the system
and their topology in the system.

We use the theory of universal coalgebras [5] to describe
semantics of our theory of infinite streams and objects. This
paper provides detailed description of the formal syntax of
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objects, of their composition into more complex ones, and
outlines corresponding coalgebraic semantics.
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1. STREAMS

Stream is an infinite sequence of data (elements of the
stream) of the certain type. Under notion stream data type
we will understand a set A of values, which can be taken
on by elements of this stream. The set A may be finite or
infinite.

Infinite streams of elements from the fixed set A are mod-
elled by means of the final Fa-coalgebra of the functor
Fy : Set — Set defined on sets M by Fa(M) = A x M:

(A%; (head aw,tail g ))
where the function (headaw,taila~) has form A¥ — A“.
The carrier set A“ of the final F4-coalgebra

A 2 {s]s: N o A}

models the set of all streams of this type. It is formally
defined as the set of all functions s : IN — A mapping
natural numbers IV into set A of elements of the stream.

Since elements of the set A“ are functions, we can define
for every infinite stream s € A the operations, which return
the first element of the stream headaw : AY — A and the
tail of the stream after removing its first element tailaw :
AY — A¥in the following way:

headaw(s) = s(0) tailpw (s) = Az € IN. s(z + 1)
THEOREM 1. For arbitrary data types Ai,..., A, the set
of all r-tuples of infinite streams A{ X ... x Ay with head
and tail operations erecuting concurrently on all streams s
1somorphic to the set of infinite streams (A1 X... X A,)* of r-
tuples of the corresponding elements of the streams AY ..., AY.

We illustrate this theorem by the following example. Let
us take two infinite streams: one is the stream of names in
the lexicographical order o € Lez®, a = a1,b1,c1,d1,e1, fi, ...
and the other one is the stream consisting of natural num-
bers in the increasing order 8 € IN“, 8 = 0,1,2,3,4,5,....
The head of the first stream is the element a1, i.e. head(a) =
a1, and its tail is the infinite stream tail(a) = b1, c1,d1, €1, fi, ...



The pair of two streams a and S according to the the-
orem and corollary above is isomorphic to the stream of
pairs v € (Lex x IN)*, i.e. a x 3 = . The stream
Y= (a’17 0)7 (b1: 1)7 (Cl, 2)7 (dla 3)) (617 4): (flu 5) consists of
the pairs of the corresponding elements of the streams a and
B.

Later on we will proceed from the requirements, that
names of all used streams and names of all used objects are
unique.

Semantics [z] of the stream z : Z* in the absence of
additional restrictions is the set of all different streams of
this type, i.e [2] = Z“, where Z“ is the type of the stream
with name z and simultaneously the carrier set of the final
Fz-coalgebra of infinite streams.

Set [z] of all admissible behaviors of the stream z is the
set defined by the semantics of this stream. Instance (vari-
ant) of stream behavior or behavior . of the stream z is
the element from the set [2] of admissible behaviors of this
stream, i.e. a, € [z].

We formulate our rule of stream manipulations by the
following proposition. With all involved streams in every
model, which is created by our theory, we will work concur-
rently, i.e. operations head and tail will be executed concur-
rently on all streams.

2. OBJECT

In our formal theory a fundamental notion is the notion
of an object. An object can have several different inputs
(input streams), outputs (output streams) as well as several
internal streams. Streams describe chronological succession
of occurrences of values on the modelled inputs, outputs and
internal variables of an object.

Object A = (X 3 S;Y 313 ®) consists of the set of
names of input streams X, the set of names of internal
streams S, the set of names of output streams Y, restric-
tion I on initial values of streams, and invariant property @,
which describes relation between streams of the object and
betdwpfeen current and next values of these streams. The set
X = {1 : X{,..,z, : X¥} is the finite set of names of
input streams z1, ..., £, and corresponding types X¢', ..., X
of these streams; the sets S “ {s1: 8Y,...,8m : Sin} and

def
Y = {y1 : Y, .., yr : Y} are the finite sets of names,

correspondingly, of internal streams and of output streams.
In case of when the object has no inputs, or no outputs,
or no internal streams, we will use the keyword empty to
denote the absence of streams in the corresponding field in
the object’s quintuple.
Syntaz of the restriction I on initial values of streams of
the object we define in the following way:

I = true | 2(0) =wal | =1 | L AL, | VI

where true denotes the absence of any restrictions on initial
values of streams; z € X USUY is one of the streams of the
object, and wval is a value from the set of values of elements
of the stream z.

The formal syntaz of invariant property we define as Vi €
IN. &, where ® is a notion of invariant property in its short
form with implicit universal quantifier. The expression Vi €
IN. ® represents a complete form of invariant property, which
holds infinite number of times, i.e. on all elements of all in-
volved streams. In the further at specification of invariant
property we will leave out universal quantifier Vi € IN, nev-

ertheless we will have its presence permanently in mind. By
using of the short form of invariant property under notion
® we have in mind the notion Vi € IN. &.

Syntaz of the short form ® of invariant property with
implicit universal quantifier we define as:

® = true|zi) = f(21@) e, 2o ) | X2) = g(216) 5 oovy 2rG) )

|—|<I>|<I>1/\<I>2|<I>1V<I>2

where true denotes the absence of any relations between
streams in the object; 2,21, ..., 2p, ..., 2r are streams of the
object; f and g are total computable functions, which return
values of the same type as the elements of the stream z.

In the short form of invariant property with implicit uni-
versal quantifier an element z(i) of stream z with index ¢
we call current element of the stream, and its value — cur-
rent value of the stream; an element z(¢ + 1) of stream z
with index ¢ + 1 we call next element of the stream, and its
value — nezt value of the stream. Moreover by the reasons
of visual clearness increasing we will denote current element
of stream z by zu) instead of z(¢), and next element of the

stream by Xzq) Z z(1+1).

For the given object A the two sets: the set X of the
names of input streams and the set Y of the names of output
streams form together the set of names of interface streams

def
of the object: Interface(A) = X UY = {1,...,Tn, Y1, .-, Yk}-

3. PARALLEL COMPOSITION AND CON-
NECTION OF INTERFACE STREAMS

In order to guarantee that our formal theory can be appli-
cable for modelling of system with arbitrary topology and
consisting of big number of objects, we have to introduce
a formal mechanism of step-by-step successive construction
of those systems from their constituting subsystems and ob-
jects. In our theory the mechanism of step-by-step succes-
sive construction of system of objects will be based on the
following proposition. A result of composition of objects is
a system of these objects, which in one’s turn is considered
in our theory as a bigger object, and with which we syntacti-
cally and semantically operate in the same way as with any
other object, i.e. we will use it as a constituting part for
building of even bigger objects.

We lay operations of composition of objects under a num-
ber of practical-oriented requirements. Operations of com-
position must have adequate expressive power in order to
create big practical-oriented systems by using them. More-
over, operations of composition have to provide an ability
of all-around automatization of generating process of formal
models of systems from models of objects, which constitute
these systems, and from their topology.

In order to satisfy the requirements above we define two
operations of composition: the first one is called parallel
composition and serves for for putting objects in parallel;
the second one is called connection and serves for connecting
of inputs and outputs of an object.

For the first time analogous operations of composition
were introduced in the papers of Henzinger on component
and interface theories [1] and of Lee on block-diagram lan-
guages [6]. Operations of composition, which are used in
our theory, simplify the representation and understanding of
different kinds of object compositions, and, moreover, they
provide us ability to create objects of arbitrary topology and
dimension.



For two arbitrary objects A and B:
A=(Xa3;543Ya31a5%4) B=(Xp;S8;Yp;lp;®p)

parallel composition transforms these two objects into new
object A||B in the following way:

def
A||B = (XA UXp;SaUSB;YaUYp;IaAnIp ;(I>A/\<1>B)

Sets of names of input, internal and output streams of
composition A||B are set-theoretical unions of the corre-
sponding sets of stream names of objects A and B: X, p =
XaUXp, SA||B =SaUSp and YAHB =Y, UYg. Conse-
quently, we define the set of names of interface streams of the
new object as Interface(A||B) = Inrface(A)UInterface(B).

In the next step we introduce the operation of connection,
which transforms an arbitrary object A and a well-formed
interconnect ¢4 into new object A - 4.

Interconnect ¢ defined on an object A is a finite list (with
length [)

© = [(251, 211), (252, 272), .-, (251, 211)]

of pairs of stream names of the object A such that in every
pair (zsi, #273), where 0 <7 <[, both streams are interface
streams zs;, 21 € Interface(A), and moreover the types of
these streams must be the same. In every pair (zsi, zr;) the
first component zs; we call source and the second one zr;
— target.

A special case of interconnect is an empty interconnect.
Empty interconnect is interconnect containing no pairs of
stream names, and we will denote it by the empty list [ ]
The empty interconnect is an identity element for the con-
nection operation. Therefore, by the connection of an arbi-
trary object A with the empty interconnect we obtain the
previous object A, ie. A-[]= A.

The other special case of interconnect is an atomic inter-
connect, which will be needed in the inductive definition of
the connection operation. Atomic interconnect is an inter-
connect containing only one pair of stream names.

In the operation of connection we produce pairwise con-
nection of interface streams of an object according to list
of pairs of their names, which is contained in interconnect.
There are a number of interconnects admissible from the
point of view of the definition above, but which can not be
used in the operation of connection in the form, in which it
is defined in this paper. Therefore we introduce a notion of
“well-formed” interconnect, and later on in the operation of
connection we will use only well-formed interconnects. In-
terconnect pa defined on an object A is called well-formed,
if it satisfy the following conditions: 1) the target and source
in every pair are different, i.e. in the interconnect ¢4 there
is no pair of the form (z, z); 2) all targets of the interconnect
4 are pairwise different; 3) when the same name of stream
occurs in the interconnect ¢4 in different pairs in source
position as well as in target position, then it must appear
as target ounly after all its occurrences as source; 4) in ev-
ery pair either both stream names denote input streams,
or both denote output streams, or the source is a name of
output stream and the target is a name of input stream.

In the cases, when at least one of these four conditions
is not satisfied, we will consider that such interconnects are
not well-formed, and such interconnects we will not use in
the operations of connection.

For an arbitrary object A and a well-formed on it atomic
interconnect [(zs,zr)] the operation of connection trans-

e
b c e

Figure 1: Three different cases of connection of an
object and a well-formed interconnect.

forms the object A into new object A - [(zs,2r)] accord-
ing to the pair of names of the connected streams, which
is contained in the atomic interconnect. Depending on the
kind of atomic interconnect there are three possible cases of
connection:

1. in the case where both elements of the pair [(zs, z7)]
are names of input streams zg,zr € Xa, we remove
from the set X 4 of names of input streams of the object
A the target of the atomic interconnect, i.e. the name

A-(zs,2r)) =
(Xa\{zr}; SasYas Ia{zr/2s}; ®a {27/25})

of the stream zr:

2. in the case where both elements of the pair [(zs, 27)]
are names of output streams zs, zr € Y4, we remove
from the set Ya of names of output streams of the
object A the target of the atomic interconnect, i.e.

A-[(zs,27)] =
(Xa;8a3Ya\{2r}; Ia{er/2s}; ®a {27/2s})

the name of the stream z7:

3. in the case where in the atomic interconnect [(zs, 27)]
the source is a name of output stream zs € Y4 and
the target is a name of input stream zr € X4, we
remove from the set X4 of names of input streams of

the object A the target of the atomic interconnect, i.e.
def

A[(zs,2r)] =
(Xa\{zr}; Sa3Yas Ia{2r/2s}; ®a {27/25})

the name of the stream z7:

In all three cases restriction on initial values Ia{zr/2zs} and
invariant property ® 4{zr/zs} of the new object A-[(zs, z1)]
are obtained, correspondingly, from restriction on initial val-
ues I4 and invariant property @4 of the original object A
by means of substitution of all occurrences of the name zr
by name zs.

Hypothetic fourth case, where the source is a name of in-
put stream and the target is a name of output stream, is
syntactically impossible, since it is filtered out by the re-
quirements of the well-formedness of atomic interconnect.

We define operation of connection, which transforms an
arbitrary object A and a well-formed on it interconnect
va = [(zs1,211), (252, 212), - -, (251, 211)] into new object
A - @a, in the following inductive way:

def
A-[] = A
A - [(zs1,211), (252, 2T2); ., (250, 271)]

et (A-[(zs1,211)]) - [(z52,212), .., (251, 271))]



The sets of names of input and output streams of the
connection A - ¢ of an object A and a well-formed inter-
connect ¢ = [(2s1,2r11), ..., (251, 211)] represent them self
set-theoretical difference of the corresponding sets of stream
names of the original object and the sets of targets of the
interconnects: Xa., = X4\ {21 | Vi€ IN. 1 <i<IAzp; €
Xatand Ya., =Ya\{zri | Vi€ IN.1 <3 <IAzp; € Ya}.
The set of names of internal streams of the connection A- ¢
is the set of names of internal streams of the original ob-
ject A, since internal streams of the object are not influ-
enced by operations of connection, i.e. Sa., = Sa. There-
fore we define the set of names of interface streams of the
new object A - ¢ as a set-theoretical difference of the set of
names of interface streams of the original object A and the
set of targets of the interconnect ¢, i.e. Interface(A - @) =
Interface(A) \ {zr: | Vi€ IN. 1 <i <}

Let us illustrate the three cases of connection described
above by the following example (see on the Fig. 1). We take
the object A with two input a, b and two output ¢, d streams
of the same type:

A = (a, biempty;c d;b(0) =05c6) =aw +5 A day =2 *ba) )

We connect in the first case two input streams a and b by
means of the interconnect ¢1 =[(a, b)], in the second case —
two output streams by @2 =[(c, d)], and in the third case —
one input stream with one output ¢3 =[(d,a)]. As a result
we obtain three new objects: first object with one input
stream a and two output streams c, d:

A-[(a,b)] = (asempty;c, d;a(0)=0sci) = an) A6 =2*ad) ),
second object with two input a, b and one output ¢ streams:
A-[(¢c,d)] = (a, bjempty;c;b(0)=0;c) =an) +5Act) =2xbg) ),
third object with one input b and two output ¢, d streams:

A-[(d, a)] = (bjempty;c, d;b(0)=03c) =de) +DAdi) =2xbg) ).

4. SEMANTICS

According to the theorem in the first section, a tuple of
stream is isomorphic to the stream of tuples of the corre-
sponding elements of these streams. Let a stream of type Z¢
be isomorphic to all streams, which constitute a structure of
an object A. We call this stream generalized stream of the
object. Then semantics [A] of the object A is a set of all
admissible behaviors of generalized object’s stream, which
satisfy all requirements imposed on the object. Moreover,
every element from the set [A] is a concrete instance of be-
havior of the generalized stream, or in other words, a tuple
of concrete instances of behaviors of all streams constituting
the object.

Formal semantics [A] of an object A= (X ;S;Y ;1;®)
is given by:

de;
(41 = {1 n {a)
where {IT} C Z“ is the set of generalized streams, which sat-
isfy the restriction on initial values I; the invariant {{®]} C
Z* is the set of generalized streams, on which the invariant
property @ is satisfied infinitely long on every element of the
stream. Formally {{®]} is the carrier set of the subcoalgebra
of the invariant constructed by the invariant property ®.

5. COMPARISON WITH AUTOMATA
THEORY

THEOREM 2. Theory of infinite streams and objects has
strictly greater expressive power than the theory of push-
down automata.

In our theory we can encode arbitrary push-down au-
tomata. We know that the language {a"b"c"+* | n € IN}
can not be recognized by push-down automata . In con-
trast, in our theory we can create object, which recognizes
this language. This object is given by:
A=A(z;kl,m;empty; k(0)=0AL0)=0Am(0)=0; ®a)

def

with the invariant property ®4 =
zy =a = (Xko =ko +1AXlo =l AXma = me
A Xz =aV Xza =b))
A
o =b = (Xko =ko AXloy =lon +1AXmae = mae
Ako =lo +1 = Xeo =c)A (ko #lo +1 = Xza =b)
A
zo) =c¢ = (Xko =ko AXloy =1lo AXme =ma) +1
Al =mo+1 = Xzo = *)A(lo #mo+1=> Xeo =c)
A TG =% —> XI@G = *.
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7. CONCLUSIONS

This paper provides formal theory of infinite streams and
objects, which contains our point of view on the problem
of formal modelling of behaviors of objects and their sys-
tems with big or infinite number of internal states. In our
theory we give up the representation of an object through
its states and switch to the representation through the sets
of all admissible behaviors of interface streams and inter-
nal streams constituting the object. The synchronous use of
all involved streams provides us uniform way for modelling
of inputs, outputs and internal variables of objects, simpli-
fies object’s definitions, renders possible our theory to be
not afraid of the object’s dimensionality increase, and gives
us enough expressive power. We have shown in this paper
that our theory has strictly greater expressive power than
push-down automata.
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