
A Specification Language for Coordinated Objects

Gabriel Ciobanu
Romanian Academy

Institute of Computer Science
Iaşi, Romania

gabriel@iit.tuiasi.ro

Dorel Lucanu
”A.I. Cuza” University

Faculty of Computer Science
Iaşi, Romania

dlucanu@info.uaic.ro

ABSTRACT
The paper presents a specification language of autonomous objects
supervised by a coordinating process. The coordination is defined
by means of an interaction wrapper. The coordination semantics
is described in the terms of bisimulation relations. The properties
of the coordinated objects are expressed as temporal formulas, and
verified by specific model-checking algorithms. We use the alter-
nating bit protocol to exemplify our specification language and its
semantics.
This approach allows a clear separation of concerns: the same coor-
dinating process can be used with different concurrent objects, and
the same objects can be used with a different coordinator. Thus our
specification language allows easy modifications and customiza-
tion. The method is effective in assembling increasingly complex
systems from components. Moreover, composing different coor-
dinating processes can be done without changing the code of the
coordinated objects. In this way, the difficult task of implementing
the mechanism of coordination becomes substantially easier.

Keywords
coordination, process algebra, classes, objects, bisimulation, tem-
poral logic.

1. INTRODUCTION
Coordination of concurrent activities is an important goal of object-
oriented concurrent programming languages, as well for component-
based software community. As far as there was no support for com-
ponents abstraction and high-level coordination, it is difficult to ig-
nore the mismatch between conceptual designs and the implemen-
tation. Object-oriented languages offer little support for synchro-
nization of concurrent objects. While in theory the set of provided
constructs is sufficient to solve the coordination problems, in prac-
tice only good programmers are able to handle non trivial tasks.
Another difficulty was given by the fact that a low-level approach
does not allow the composition of different coordination policies
without changing the implementation of the coordinated entities.
The main problems are represented by no separation of concerns
(expressing coordination abstraction is difficult because the code

of coordination is strongly tied to the implementation of the coor-
dinated objects), the absence of abstraction (no declarative means
to specify coordination), the lack of compositionality and flexibil-
ity, and the difficulties for a programmer to implement the desired
coordination.

As a possible solution, this paper introduces and studies a speci-
fication language where the components are described as objects,
coordination is defined as a process, and their integration is given
by a wrapper. Semantic integration of the coordinating process and
coordinated entities is based on bisimulation. Coordinating process
and coordinated components are rather independent. The explicit
description of collaboration between components defines interac-
tion policies and rely on the methods of the objects they coordinate.
We use a wrapper which, together with the processes associated to
objects provides an interface of the underlying component. The
three languages corresponding to objects, coordinating process and
wrapper reflect the intuitions and practices of software engineers.
In order to support formal manipulation and reasoning, our imple-
mentation provides a semantics based on the models of class spec-
ification in hidden algebra, labelled transition systems represented
as coalgebras, and some theoretical results expressing the coordi-
nation in terms of bisimulations and coalgebra homomorphisms.
These formal aspects are not visible to the user; the implementa-
tion hides them, but ensures both a good matching between intu-
itions and practices of users, and a sound executable system.

2. CLASSES AND OBJECTS
In this section we present the specification of classes and their ob-
jects. We propose a specification language with syntax closer to
that of object-oriented programming language and with semantics
described in hidden algebra [9]. A class specification consists of
specification of attributes and specification of operations. An op-
eration specification includes the signature of the operation and its
behavioural specification expressed in the terms of its parameters
and attributes values before and after its execution. The grammar
supplying the syntax for class specification is given in Figure 1.
The decoration of the attributes names with the prime symbol ’ in
a method specification is similar to that used in Z, and a decorated
attribute name refers the value of the attribute after the execution
of the method. A given set of primitive data types including Bool,
Int, . . . is assumed.

EXAMPLE 1. Alternating Bit Protocol
The alternating bit protocol (ABP) is a communication protocol
consisting of four components (see fig. 2): a sender, a receiver, and
two communication channels. Here is a brief description of each
component.

〈class spec〉 ::= 〈header〉 {〈body〉}
〈header〉 ::= class〈class name〉 |

class〈class name〉 extends 〈class list〉
〈class list〉 ::= 〈class name〉 | 〈class name〉, 〈class list〉
〈body〉 ::= 〈att spec list〉opt 〈opn spec list〉opt

〈att spec list〉 ::= 〈att spec〉 | 〈att spec list〉 〈att spec〉
〈att spec〉 ::= 〈type〉 〈att name;〉
〈opn spec list〉 ::= 〈opn spec〉 | 〈opn spec list〉 〈opn spec〉
〈opn spec〉 ::= 〈type〉 〈opn name〉() {〈assert listopt〉} |

〈type〉 〈opn name〉(〈param list〉) {〈assert list〉opt}
〈param list〉 ::= 〈param〉 | 〈param〉,〈param list〉
〈param〉 ::= 〈type〉 〈param name〉
〈assert list〉 ::= 〈assert〉 | 〈assert〉;〈assert list〉
〈assert〉 ::= boolean expression over attributes names,

parameters, and decorated attributes names
〈type〉 ::= 〈class name〉 | Bool | Int | · · ·

Figure 1: Class specification grammar

channel 2

����

��

��

��

������������

������������
��
��
��

��
��
��

�
�
�

�
�
�

input
port

output
portsender receiver

channel 1
��

Figure 2: Alternate Bit Protocol

Sender. The sender starts by reading a data element at the in-
put port. Then a frame consisting of the read data element and a
control bit (= a boolean value) is transmitted via channel 1 to the
receiver, until a correct acknowledgment has arrived via channel 2.
An acknowledgement is interpreted as being correct if the boolean
value read via channel 2 is the same with the control bit. Each
time a correct acknowledgement is arrived, the control bit change
its value.
Channels. The channel 1 transports frames consisting a data ele-
ment and a boolean value from the sender to the receiver and the
channel 2 transports boolean values from the receiver to the sender.
The problem with the two channels is that they are unreliable, that
is the message could be damaged in transit. We assume that if
something goes wrong with the message, the receiver/sender will
detect this by computing a checksum. The channel are supposed to
be fair in the sense that they will not produce an infinite consecutive
sequence of erroneous outputs.
Receiver. The receiver starts by receiving a frame via channel 1.
If the control bit of the frame is correct (i.e., different from the con-
trol bit of the receiver), then the data element is sent to the output
port. Each time the frame received is not damaged (checksum is
OK) and the control bit is correct, the receiver changes the value
of its control bit.

We specify first an abstract class including only the common at-
tributes of the sender and receiver:

class AbsComp
{

Bool bit;
Data data;
Bool ack;

}

The class corresponding to the sender is derived from this abstract
class, the class corresponding to the receiver being similar:

class Sender extends AbsComp
{

Bool chBit() {
bit’ = not bit;
data’ = data;
ack’ = ack;

}
void read() {

bit’ = bit;
ack’ = ack;

}
void sendFrame() {

bit’ = bit;
data’ = data;
ack’ = ack;

}
void recAck(Bool pack) {

bit’ = bit;
data’ = data;
ack’ = pack;

}
}

An assertion of the form “bit′ = not bit;” in chBit() says that
the value of the attribute bit is changed by the method. For each
method, even if an attribute is not changed by its execution, this is
explicitly specified. For instance, the method read is underspec-
ified because we know nothing about the attribute data after its
execution; it may have any Data value.

Every object is an autonomous unit of execution which is either
executing the sequential code of exactly one method, or passively
maintaining its state. An object instance is a pair (R | state), where
R is an object reference and state is an ordered sequence of pairs
(attribute,value). It is not necessary to have all attributes included
in a particular object instance. We consider that an object instance
is a canonical element of an behavioural equivalence class, where
the behavioural operations are those included in the description of
the instance. The result of an execution of a method R.m(d) over
a state st consists of a new state st ′ whose attributes values are
computed according to the behavioural specification of m; we write
st ′ = R.m(d)(st). For instance, we have

S.chBit()((bit,true),(ack,false),(data,d)) =
((bit,false),(ack,false),(data,d)).

We suppose that an object reference uniquely determines the class
it belongs to. A configuration is a commutative sequence of object
instances such that an object reference occurs at most once in the
sequence. We also consider a special configuration err for signal-
ing the occurrence of an exception.

We consider a simple set of commands:

〈cmd〉 ::= R = new C(d) | delete R | R.m(d) |
R1.m1(d1)‖R2.m2(d2) | 〈cmd〉;〈cmd〉 |
if 〈bexpr〉 then 〈cmd〉 else 〈cmd〉 | throw error()

where R,Ri range over object references, m,mi over methods, d,di
over data value sequences, and C over class names. The metavari-
able 〈bexpr〉 denotes the boolean expressions. We omit here their

formal definition; intuitively, a boolean expression is a proposi-
tional formula written in the terms of data values, attributes, and
relational operators. A boolean expression e is satisfied by a con-
figuration cnfg, written cnfg |= e, if and only if the evaluation of the
boolean expression e in the configuration cnfg returns true. We also
assume that the sequential composition ; is associative.

The operational semantics is given by the labelled transition system
defined by following rules:

cnfg
R = newC(d1,...,dn)−−−−−−−−−−−→ cnfg,(R|(att1,d1), . . . ,(attn,dn));

cnfg,(R|state) delete R−−−−−−→ cnfg
(we recall that a configuration is a commutative sequence);

cnfg
R.m(d)−−−−→ cnfg′ if and only if cnfg′ is obtained from cnfg

by replacing the object instance (R | state) with (R | state′),
where state′ = R.m(d)(state);

cnfg
R1.m1(d1)‖R2.m2(d2)−−−−−−−−−−−−→ cnfg2 if and only if R1 6= R2, cnfg′

is obtained from cnfg by replacing the object instance (Ri |
statei) with (Ri | state′i), where state′i = Ri.mi(di)(statei),
i = 1,2;

cnfg cmd1;cmd2−−−−−−→ cnfg′′ if and only if there is cnfg′ such that

cnfg cmd1−−−→ cnfg′ and cnfg′ cmd2−−−→ cnfg′′;

if cnfg cmd1−−−→ cnfg′ and cnfg |= e, then

cnfg if e then cmd1 else cmd2−−−−−−−−−−−−−−−−→ cnfg′;

if cnfg cmd2−−−→ cnfg′ and cnfg 6|= e, then

cnfg if e then cmd1 else cmd2−−−−−−−−−−−−−−−−→ cnfg′;

cnfg
throw error()−−−−−−−−−→ err.

3. COORDINATION
We introduce a coordinating process providing a high-level de-
scription of the interaction between objects. Its syntax is inspired
by process algebras as CCS and π-calculus [14]. Interaction with
the environment is given by some global actions, and interaction
between components is given by a nondeterministic matching be-
tween complementary local actions. Each process is described by a
set of equations. In some sense, we can think such a description as
an abstract system interface. The computational world of our coor-
dinator contains processes and messages. Local actions represents
interaction channels. In this way, the coordinating process models
a network in which messages are sent from one object to another.
This formalism is not suitable to describe state changes (the state
changes are described by objects).

The process expressions E are defined by guarded processes, non-
deterministic choice E1 +E2, and parallel composition E1 | E2. We
have also an empty process 0. Guarded processes are presented by
either a global action followed by a process expression, an object
guard followed by a process expression, or by a local action fol-
lowed by a process expression. The first case describes a global
action involving a state change execution of an object. The sec-
ond case describes a link between the actions of an object over
a certain guard, followed or not by a process expression depend-
ing on the truth evaluation of the guard. Finally, each local action

act involves automatically the existence of its complementary lo-
cal action denoted by ˜act; these two complementary local actions
establish a synchronization and a communication between objects.

A process is described as a sequence of declarations (global actions,
local actions, processes and guards) followed by a set of equations.
The syntax grammar for processes is:

proc 〈proc spec name〉
{
global actions : 〈lact list〉;
local actions : 〈gact list〉;
processes : 〈proc id list〉;
guards : 〈guard id list〉;
equations :
〈eqn list〉

}

where

〈lact list〉 ::= 〈label list〉
〈gact list〉 ::= 〈label list〉
〈label list〉 ::= 〈label〉 | 〈label〉, 〈label list〉
〈label〉 ::= 〈identi f ier〉 | ˜〈identi f ier〉
〈proc id list〉 ::= 〈id list〉
〈guard id list〉 ::= 〈id list〉
〈id list〉 ::= 〈identi f ier〉 | 〈identi f ier〉, 〈id list〉
〈eqn list〉 ::= 〈eqn〉 | 〈eqn〉; 〈eqn list〉
〈eqn〉 ::= 〈proc id〉= 〈pexpr〉;
〈pexpr〉 ::= 0 | 〈label〉.〈pexpr〉 | [〈guard id〉]〈pexpr〉 |

[not 〈guard id〉]〈pexpr〉 | 〈pexpr〉+ 〈pexpr〉 |
〈pexpr〉|〈pexpr〉

The metavariable 〈proc id〉 denotes the identifiers occurring in pro-
cesses list, and 〈guard id〉 denotes the identifiers occurring in guards
list.

A coordinating process specification is finally given by equations of
parametric process expressions. For example, the specification of
ABP communication protocol as a coordination between a Sender
and a Receiver can be described in the following way:

proc ABP
{

global actions: in, out, alterS, alterR;
local actions: ch1, ch2;
processes: A, A’, V, B, B’, T;
guards: sok, rok;
equations:

A = in.A’;
A’ = ˜ch1.ch2.V;
V = [sok]alterS.A + [not sok]A’;
B = ch1.T;
T = [rok]B’ + [not rok]out.alterR.B;
B’ = ˜ch2.B;

}

The structural operational semantics of a coordinating process spec-
ification is given by a labelled transition system. The semantic rules
are presented in Figure 3. In these rules, γ is a function mapping
each guard id into a boolean value, gact ranges over the labels oc-
curring in the global actions list, lact ranges over the labels oc-
curring in the local actions list, and act can be both gact or τ(lact).
Based on these rules, the operational dynamics of the previous ABP

gact.E
gact−−→ E

E act−−→ E ′

E +F act−−→ E ′

E act−−→ E ′

E|F act−−→ E ′|F
EA

act−−→ E ′, A = EA

A act−−→ E ′

E act−−→ E ′, γ(guard id) = true

[guard id]E act−−→ E ′

˜lact.E | lact.E ′
τ(lact)−−−−→ E|E ′

Figure 3: The coordinating process operational rules

process with reliable communication, modelled by γ(sok) = true
and γ(rok) = f alse:

A | B in−→ A′ | B τ(ch1)−−−→ ch2.V | T out−−→

ch2.V | alterR.B′ alterR−−−→ ch2.V | B′ τ(ch2)−−−→
V | B alterS−−−→ A | B.

We use the notation τ(lact) for the interaction between two pro-
cesses prefixed by local actions lact and ˜lact, respectively. In-
teraction is therefore provided by pairs of actions lact and ˜lact
corresponding to some methods by means of an interaction wrap-
per.

4. INTERACTION WRAPPER
If we consider the coordinating process as an abstract interface of
the system, then an interaction wrapper describes an implemen-
tation of this interface by means of a collection of objects. The
coordinating process gives some directives, and the coordinated
objects interpret these directives by using an interaction wrapper
providing the appropriate link between the high level coordinat-
ing process and the lower level executing objects. This is the way
we get a desirable separation of concerns, ensuring a suitable ab-
stract level for designing large component-based systems without
losing the details of low-level implementation of components. In
some sense, our specification language has similarities with a sym-
phonic orchestra, where independent players are synchronized by a
conductor. The concert sheet followed by the conductor represent a
high-level approach of the concert, and the instrumental sheet of the
orchestra players are usually larger, containing more details. The
link between the players and the coordinating conductor is given by
certain entry moments and orchestral scores. The wrapper provides
the players, and the entry scores implementing the desired result-
ing music at a certain moment. Therefore the wrapper provides the
objects, and the necessary information for their executions in order
to realize a coordinated interaction.

The syntax for the interaction wrappers is given by the grammar
presented in Figure 4.

EXAMPLE 2. The wrapper for previous described protocol ABP
instruct a Sender S and a Receiver R in order to correctly follow the
directives of the protocol:

〈wrap spec〉 ::= 〈wrap name〉(〈wparam list〉)
implementing 〈proc spec name〉
{〈amap list〉 〈gmap list〉}

〈wparam list〉 ::= 〈wparam〉 | 〈wparam list〉; 〈wparam〉
〈wparam〉 ::= 〈class name〉 〈ob ject re f 〉
〈amap list〉 ::= 〈amap〉 | 〈amap list〉 〈amap〉
〈amap〉 ::= 〈action name〉 -> 〈cmd〉;
〈gmap list〉 ::= 〈gmap〉 | 〈gmap list〉 〈gmap〉
〈gmap〉 ::= 〈guard name〉 -> 〈bexpr〉;

Figure 4: Wrapper syntax grammar

wrapper w(Sender S, Receiver R) implementing ABP
{

in -> S.read();
alterS -> S.chBit();
alterR -> R.chAck();
tau(ch1) ->

R.recFrame(S.data, S.bit) ||
S.sendFrame();

tau(ch2) ->
S.recAck(R.ack()) || R.sendAck();

out -> R.write();
sok -> S.bit == S.ack;
rok -> R.bit =/= R.ack;

}

A directive in received from the coordinating process is translated
into an execution of method read by S. The directives alterS

and alterR are translated into executions of methods chBit and
chAck by S and R, respectively. Whenever a τ(ch1) directive is pos-
sible at the level of the coordinating process, it is translated into a
synchronization of the methods sendFrame of S and recFrame of
R. This synchronization of the autonomous objects is accompanied
by a communication between them; this is given by the fact that the
arguments of the receiver method recFrame are attributes of the
sender. A similar translation is done for τ(ch2). Finally, the last
two lines of the interaction wrapper for ABP emphasize a nice fea-
ture related to the concerns separation. Instead of using a matching
or a mismatching process algebra to compare the sending bit and
the received acknowledge, we clearly separate the computational
and coordinating aspects by moving the comparisons at the object
level, followed by a true/false result to the coordination process.

If act is an action name, and R a sequence of object references, then
w(R)(act) denotes the command associated to act by the particular
wrapper w(R). The operational semantics of such a wrapper w(R)
is given by the labelled transition system of the objects configura-
tions, namely

cnfg act−−→ cnfg′ iff cnfg
w(R)(act)−−−−−−→ cnfg′,

where cnfg and cnfg′ are configurations including the instances of
the objects referred by R and related by the command correspond-
ing to the action name act via the interaction wrapper w.

The definition of the interaction wrapper (and its strong relation-
ship to the dynamics of the involved objects) allows us to define an
integrated semantics in a nice and advanced way. Taking in con-
sideration that each configuration is supervised by a coordinating
process, the whole coordination activity is described as follows:

from the current configuration cn f g supervised by the

process P, the transition cnfg
w(R)(act)−−−−−−→ cnfg′ is valid

if and only if there is a process P′ such that P act−−→ P′
and P′ supervises cnfg′.

In other words, the supervision relation is a bisimulation between
the labelled transition system defined by the wrapper, and the la-
belled transition system defined by the coordinating process speci-
fication. This is formally defined in Section 6.

5. IMPLEMENTATION
We use hidden algebra [8] and Maude [5] for obtaining executable
specifications for classes and their objects. In hidden algebra, an
object is specified by:

1. a set V of visible sorts with a standard interpretation; the
meaning of a visible sort v is a given set Dv of data values;

2. a hidden sort St called state sort;
3. a set Σ of operations including:

(a) constants init ∈ St, or generalized constants
init : v1 · · ·vn→ St indicating initial states,

(b) methods g : Stv1 · · ·vn→ St with v1, · · · ,vn ∈V ,

(c) attributes q : Stv1 · · ·vn→ v with v,v1, · · · ,vn ∈V .

The properties of methods and attributes are described by equa-
tions. The main feature of hidden algebra is given by behavioural
equivalence which abstractly characterizes an object state. Two
states are behavioural equivalent if and only if they cannot be dis-
tinguished by experiments. An experiment is represented by a Γ-
term with the result sort visible and with a place-holder for the
state, where Γ is a subsignature of Σ including the behavioural op-
erations. In other words, the result of an experiment is given by an
attribute value after the execution of a sequence of methods over
the current configuration; all the methods and attributes are in Γ. If
the behavioural equivalence can be decided using only attributes,
then an abstract state is characterized by its attributes values.

Each class is implemented in Maude by a module defining a hidden
sort for the state of the objects, together with attributes and methods
of the class. Here is the module for the sender:

fmod SENDER is
sort Sender .
inc ABP-DATA .
op bit : Sender -> Bit .
op data : Sender -> Data .
op ack : Sender -> Bit .
op send : Sender -> Sender .
op chBit : Sender -> Sender .
op read : Sender -> Sender .
op recAck : Sender Bit -> Sender .
*** equations defining properties
*** of the methods

endfm

The sort Sender is hidden and it is used to describe the instances of the
class. The sorts Bit and Data are visible and they models the data values.

A configuration of objects is a set of pairs (object reference, object state).
We use the sort ObjectReference for object references, and the sort
ObjectState for object states. For each class we add a distinguished sub-
sort of ObjectReference and a distinguished subsort of ObjectState.

fmod CONFIG is
sorts ObjectReference ObjectState EmptyConfig Config .

subsort EmptyConfig < Config .
op empty : -> EmptyConfig .
op ‘(_|_‘) : ObjectRef ObjectState -> Config .
op _‘,_ : Config Config -> Config

[assoc comm id: empty] .
op _.read$‘(‘)_ : ObjectRef Config -> ObjectState .
op _.update$‘(_‘)_ :

ObjectRef ObjectState Config -> Config .
*** equations defining properties of read$()_
*** and update$(_)_

endfm

The composition _,_ of two configurations is specified as being commuta-
tive, associative, and having the identity empty.

For ABP we have a configuration containing objects of classes Sender, Re-
ceiver and Channel. The hidden sorts defined in SENDER, RECEIVER, and
CHANNEL are the state sorts and we make them subsorts of the ObjectState
sort. We also add three distinguished sorts for the references to these ob-
jects. The ABP configurations expose the methods and attributes of three
classes using attributes and methods with similar names and arguments. We
show here only the bit attribute and the recFrame method.

fmod ABP-CONFIG is
inc CONFIG + SENDER + RECEIVER + CHANNEL .
subsort Sender < ObjectState .
subsort Receiver < ObjectState .
subsort Channel < ObjectState .
sort ObjectRef<SENDER> .
subsort ObjectRef<SENDER> < ObjectRef .
sort ObjectRef<RECEIVER> .
subsort ObjectRef<RECEIVER> < ObjectRef .
sort ObjectRef<CHANNEL> .
subsort ObjectRef<CHANNEL> < ObjectRef .

op _.bit‘(‘)_ : ObjectRef<SENDER> Config -> Bool .
eq S .bit() C = bit(S .read$() C) .

op _.recFrame‘(_‘,_‘)_ :
ObjectRef<RECEIVER> Data Bit Config -> Config .

eq S .recFrame(D, B) C = recFrame(S .read$() C, D, B) .

*** other methods and attributes,
*** and their equations

endfm

The initial ABP configuration contains a Sender object referred by the ref-
erence S, a Receiver object referred by the reference R, a data channel
referred by the reference CHD, and an acknowledge channel referred by the
reference CHA. We have the constants initS, initR, initCHD and initCHA
as the initial states for each object, and init as the initial configuration.

fmod ABP is
inc CONFIG<SENDER+RECEIVER> .
op S : -> ObjectRef<SENDER> .
op R : -> ObjectRef<RECEIVER> .
ops CHD CHA : -> ObjectRef<CHANNEL> .
op initS : -> Sender .
op initR : -> Receiver .
ops initCHD initCHA : -> Channel .

eq bit(initS) = b1 .
eq ack(initS) = b0 .
eq data(initS) = d1 .
*** other equations for initR, initCHD, initCHA

op init : -> Config .

eq init = < S | initS >, < R | initR >,
< CHD | initCHD >, < CHA | initCHA > .

endfm

Since Maude implements rewriting logic, it is capable to specify a process
algebra [18]. The following Maude module defines the syntax of our pro-
cess algebra:

mod PROC is
sorts Action Process Guard

ActionProcess ActionProcessSeq .
subsort ActionProcess < ActionProcessSeq .
op ˜_ : Action -> Action .
op tau_ : Action -> Action .
op _._ : Action Process -> Process [strat(0) frozen] .
op _|_ : Process Process -> Process [frozen assoc comm] .
op _+_ : Process Process -> Process [frozen assoc comm] .
op [_]_ : Guard Process -> Process [frozen] .
op __ : Process Action -> Process [frozen] .
op next : Process Config -> ActionProcessSeq .
*** equations

endm

The operations are declared as being “frozen”, i.e., we forbid the use of the
rewriting rules in the evaluation of the arguments. An action is represented
by a constant of sort Action, or by a term of sort Action as it is ∼a which
identifies the complemented action of a. We denote by tau(a) the special
action τ generated by a pair (a, ∼a). The distinction between local and
global actions is given by the restriction operator P \ L, where L is (a subset
of) the set of local actions. This syntax is closer to that used for CCS [18].

Given a process, we want to have the list of actions which can be executed.
For this we introduce next operation; next builds a list of pairs (action,
process) for a specific process and configuration. For concurrent processes,
the list of pairs (action, process) contains the possible interleavings of ac-
tions which can be executed by each process, together with the possible
communications between each pair of processes.

mod ABP-PROC is
inc PROC .
ops ABP S S1 V CHD CHA R T R1 : -> Process .
ops in alterS alterR out schd

scha rchd rcha chdt chat : -> Action .
ops rOK sOK : -> Guard .

rl S => in . S1 .
rl S1 => ˜ schd . scha . V .
rl V => ([sOK](alterS . S)) + ([not sOK]S1) .
rl CHD => schd . chdt . ˜ rchd . CHD .
rl CHA => rcha . chat . ˜ scha . CHA .
rl R => rchd . T .
rl T => ([not rOK]R1) + ([rOK](˜ out . alterR . R1)) .
rl R1 => ˜ rcha . R .
rl ABP => (S | CHD | CHA | R)

\ scha \ schd \ rcha \ rchd .
endm

The interaction wrapper is described by the following module:

mod ABP-COORDINATED is
inc ABP + ABP-PROC .
op w : Action Config -> Config .
var C : Config .
eq w(in, C) = S .read() C .
eq w(tau schd, C) =

CHD .read(S .bit() C,
S .data() C) S .send() C .

eq w(chdt, C) = CHD .transfer() C .
eq w(tau rchd, C) =

R .recFrame(CHD .data() C,
CHD .bit() C) CHD .send() C .

eq w(˜ out, C) = R .write() C .
eq w(alterR, C) = R .chAck() C .
eq w(tau rcha, C) =

CHA .read(R .ack() C , null) R .sendAck() C .
eq w(chat, C) = CHA .transfer() C .
eq w(tau scha, C) =

S .recAck(CHA .bit() C) CHA .send() C .
eq w(alterS, C) = S .chBit() C .

eq eval(sOK, C) = (S .bit() C == S .ack() C) and

(CHA .error() C == b0) .
eq eval(rOK, C) = (CHD .error() C == b0) and

(R .bit() C =/= R .ack() C) .
endm

6. FORMAL SEMANTICS OF THE IMPLE-
MENTATION

When designing a software system it is important to clarify its intended pur-
pose. In [17], it is expressed that if the main purpose is to support reasoning
and formal approach, then the system should strive for minimality; on the
other hand if the main purpose is to be intuitive for the practitioners, then
it should reflect the expected intuitions and practices. We want to put these
purposes together, offering both intuitive languages for components, coor-
dinator and wrapper, and supporting formal approaches and reasoning. We
achieve this goal by using the formal models of object specification in hid-
den algebra, and a coalgebraic treatment of the labelled transition systems
for the coordinator and wrapper.

A model for a class specification in hidden algebra is a Σ-algebra M such
that Mv = Dv for each visible sort v∈V . The M-interpretation of a Γ-context
c is a function which maps a variable assignment ϑ : X → D and a state st
to the value [[c]]M(ϑ)(st) obtained by replacing the occurrences of in c
by st, the occurrences of x ∈ X by ϑ(x), and evaluating the operations in c
according to their interpretation in M. The behavioural equivalence relation
≡ over the set of states MSt is defined as follows: st ≡ st ′ iff [[c]]M(ϑ)(st) =
[[c]]M(ϑ)(st ′) for each Γ-experiment c.

If B is a specification of concurrent objects, then a B-model consists of
a model for each class together with a model for their instances and con-
figurations. This can be expressed in the terms of models for structured
specifications [6].

The operational semantics of a process algebra is given by a labelled tran-
sition system. We prefer to represent a labelled transition system as a coal-
gebra. We denote by Set the category of sets. Let A be a given set of action
names. Let TLTS : Set→ Set the functor given by

TLTS(X) = {Y ⊆ A×X | Y finite}
for each set X , and TLTS(f) is the function TLTS(f) : TLTS(X)→TLTS(X ′)
given by

TLTS(f)(Y) = {(a, f (x)) ∈ A×X ′ | (a,x) ∈ Y}
for each function f : X → X ′. A labelled transition system associated to a
process algebra is a coalgebra π : P→ TLTS(P), where P is a set of pro-
cesses. We have p act−→ q iff (act,q) ∈ π(p).

Considering a wrapper w(R), we define a coalgebra w(R)M : MConfig →
TLTS(MConfig) by (act,cnfg′) ∈ w(R)M(cnfg) iff one of the following two
conditions holds:

1. if the result sort of w(R)(act) is Config,
then cnfg′ = [[w(R)(act)]]M(cnfg), and

2. if w(R)(act) = O.q(X1, . . . ,Xn)(Y) with q an attribute,
then cnfg′ = [[Y]]M(cnfg).

Moreover, we suppose that there is a coalgebra

w(R)M/≡ : MConfig/≡→ TLTS(MConfig/≡)

which commutes the following diagram:

MConfig
can−−−−−→ MConfig/≡

w(R)M

y
yw(R)M/≡

TLTS(MConfig) −−−−−−→
TLTS(can)

TLTS(MConfig/≡)

where can denotes the canonical onto morphism. The behavioural equiva-
lence must be preserved by the transitions defined by w(R)M . Therefore the
action terms include only behavioural congruent operations, the transitions

are extended to the quotient model, and we require the commutativity of
the above diagram. The coalgebra w(R)M represents the labelled transition
system cnfg act−→ cnfg′ defined in Section 4.

A (π,w(R))-coordinated B-model is a triple (M,γ,proc), where M is a B-
model, proc : MConfig/≡ → P is a partial colouring operation (supervising
operation), and γ : dom(proc)→ TLTS(MConfig) is a coalgebra commuting
the following diagram:

MConfig/≡
id←−−−−− dom(proc)

proc−−−−−→ P

w(R)M

y
yγ

yπ

TLTS(MConfig/≡) ←−−−−−
TLTS(id)

TLTS(dom(proc)) −−−−−−→
TLTS(proc)

TLTS(P)

The rectangle from the right-hand side of the diagram says that proc is a
homomorphism of coalgebras. We take the advantage of using hidden alge-
bra, and we define the configuration supervisor as an attribute. By defining
proc as a partial function, we restrict the coordinator to be aware of the
coordinated configurations, and nothing more.

Each (π,w(R))-coordinated B-model defines a bisimulation:

PROPOSITION 1. Let γ∼ : graph(proc) → TLTS(graph(proc)) be the
coalgebra given by (a,〈cnfg′, p′〉) ∈ γ∼(〈cnfg, p〉) iff proc(cnfg) = p,
proc(cnfg′) = p′, and (act,cnfg′) ∈ γ(cnfg). Then γ∼ is a bisimulation be-
tween w(R)M and π.

A homomorphism of (π,w(R))-coordinated B-models from (M,γ,proc) to
(M′,γ′,proc′) consists of a Σ-homomorphism h : M→M′ such that
proc′(hConfig(cnfg)) = proc(cnfg) for all cnfg ∈ dom(proc).
Let Mod(B,π,w(R)) denote the category of the (π,w(R))-coordinated B-
models. The following result shows that a homomorphism preserves the
coalgebraic structure:

PROPOSITION 2. Let h : M → M′ be a homomorphism of (π,w(R))-
coordinated B-models defined as above.
Then hConfig : dom(proc) → dom(proc′) is a coalgebra homomorphism
from γ to γ′.

7. TEMPORAL PROPERTIES OF THE CO-
ORDINATED OBJECTS

Since the semantics of the coordinated objects is given by labelled tran-
sitional systems, we are able to use the temporal formulas for describing
their properties. We use Computational Tree Logic (CTL) [4]. CTL is a
branching time logic, meaning that its model of time is a tree-like structure
in which the future is not determined; there are different paths in the fu-
ture, any one of which might be the “actual” path that is desired. The CTL
formulas are inductively defined as follows:

p ::= R.att()() = d | R.att(d1, . . . ,dn)() = d

φ ::=tt | ff | p | (¬φ) | (φ1 ∧φ2) | EXφ | EGφ | E [φ1 Uφ2].

The intuitive meaning of an atomic proposition of the form R.att()() = d
is “the value of the attribute att for the object R in the current configura-
tion is d”. The meaning for each propositional connective is the usual one.
The set of propositional connectives is extended in the standard way. The
temporal connectives are pairs of symbols. The first is E, meaning “there
Exists one path”. The second one is X, G, or U, meaning “neXt state”, “all
future state (Globally)”, and “Until”, respectively. We can express other
five operators, where A means “for All paths”:

EFφ = E[ttUφ] AXφ = ¬EX(¬φ)
AGφ = ¬EF(¬φ) AFφ = ¬EG(¬φ)
A[φ1 Uφ2] = ¬E[¬φ2 U(¬φ1 ∧¬φ2)]∧¬EG¬φ2

The satisfaction relation cnfg |= p, expressing that a configuration cnfg sat-
isfies a CTL atomic proposition p, is defined as follows:

1. cnfg |= R.att()() = d if and only if cnfg = cnfg1,(R|state) and
R.att()(state) = d.

2. cnfg |= R.att(d1, . . . ,dn)() = d if and only if
cnfg = cnfg1,(R|state) and R.att(d1, . . . ,dn)(state) = d.

Then the satisfaction relation cnfg |= φ is extended to arbitrary CTL formu-
las φ in the standard way [4].

For the ABP example, the following CTL formula:

AG((S.bit()() = true ∧R.ack()() = false ∧S.data()() = d)→
AF(S.bit()() = false ∧R.ack()() = true ∧R.data()() = d))

expresses the fact that if in the current configuration the sender S has the
bit equal to true and the sending data equal to d, the receiver R has the
ack equal to false, then always there is in the future a configuration where
S has the bit equal to falsa, R has the ack equal to false and the received
data equal to d.

The temporal formulas are verified using a model-checking algorithm [4].
Our approach consists in extracting an SMV description [13] of the labelled
transition system in a similar way to that described in [11]. The advantage
of this method is that it allows the use of underspecified methods and of
CTL formulas.

The algorithm building the Kripke structure is implemented by a Maude
“built-in” operation called writeSmv. This operation yields a SMV module
describing the Kripke structure [13]. The signature of this operation is given
as follows:

mod SMV-WRITER is
inc CTL .

op writeSmv : Config Process FormulaSeq FormulaSeq
String -> Nat [special (...)] .

endm

The first two arguments are the starting configuration and process needed
to build the Kripke structure. The third argument is a sequence of CTL
formula that represents the fairness constraints. The fourth argument is
a sequence of CTL formula that represents the temporal properties to be
verified. The last argument is the name of the output file. The result of this
operation is the number of states generated.

The use of the writeSmv operation for the ABP correctness formula is as
follows:

red writeSmv(
init, ABP, none,
(AG(

AP(S .bit() C == b1)
& AP(R .ack() C == b0)
& AP(S .data() C == d1)
->

AP(S .bit() C == b0)
& AP(R .ack() C == b1)
& AP(R .data() C == d1))

)
),
"abp.smv") .

It is worth to note that we use a simplified form of the correctness formula.
The execution of the SMV model checker over the input file “abp.smv”
provides the following result:

-- specification
!E(1 U (S_bit__ = b1 & R_ack__ = b0 & ... is false

SMV says that the correctness property does not hold, and provides a coun-
terexample. The counterexample shows an infinite path where a channel
always generates errors. We recall that ABP works properly under the as-
sumption that the channels are fair, i.e., they do not produce such infinite
sequences of errors. This assumption can be easily specified by adding a
fairness constraint for each channel.

red writeSmv(
init, ABP,
(AP(CHD .error() C == b0)

& AP(CHD .procName() C == transfer>),
AP(CHA .error() C == b0)

& AP(CHA .procName() C == transfer>)),
(AG(

AP(S .bit() C == b1)
& AP(R .ack() C == b0)
& AP(S .data() C == d1)
->

AF(AP(S .bit() C == b0)
& AP(R .ack() C == b1)
& AP(R .data() C == d1))

)
),
"abp.smv") .

The two fairness constraints are specified by the lines 3-6. Using these con-
straints, SMV succeeds to prove the correctness of ABP under the fairness
assumption:

-- specification
!E(1 U (S_bit__ = b1 & R_ack__ = b0 & ... is true

resources used:
processor time: 0.062 s,
BDD nodes allocated: 10057
Bytes allocated: 1695620
BDD nodes representing transition relation: 1191 + 1

8. CONCLUSION
Modelling complex systems out of components and building correspond-
ing applications is currently a challenge for software community. This
task assumes the description of the whole system from different points
of view: data, concurrency, synchronization, communication, coordina-
tion. Since each specific aspect related to data, concurrency, and coordi-
nated component-based systems can be described using a specific formal-
ism, the final description of the system could be a multiformalism specifi-
cation. HiddenCCS formalism introduced in [2, 3] is a formal specification
framework based on hidden algebra and CCS. This specification extends the
object specification with synchronization and communication elements as-
sociated with methods and attributes of the objects, and use a CCS descrip-
tion of the interaction patterns. The operational semantics of hiddenCCS
specifications is based on labelled transition systems. Another related mul-
tiformalism can also be found in [16]. Frølund and Agha [7] introduce in-
dependent support constructs for coordination of concurrent objects using
synchronizers. We extend their synchronizers in providing a more general
and elegant approach based on process algebra and related notions.

In [1] the authors focus on a formal basis for one aspect of software archi-
tecture design, namely the interactions between components. They define
architectural connectors as explicit semantic entities characterizing the par-
ticipants roles in an interaction. A system is described by its components
and connectors. A variant of CSP is used to define the roles, ports, and
glue specifications. An important motivation for the authors is represented
by the potential for automating the analysis of architectural description by
using tools to determine whether connectors are well formed, and ports are
compatible with their roles. In [12], the authors describe a distributed a
software architecture in terms of its components and their interactions, as-
sociating behavioural specifications with the components and then check-
ing whether the system satisfies certain properties. The approach is based
on labelled transition systems to specify the behaviour, and compositional
reachability analysis to check composite system models. Our approach add
an important feature to these architecture description languages, namely a
useful separation of concerns. Moreover, we use an efficient model checker
for verifying temporal properties of a component-based system.

More precisely, in this paper we design a specification language for coor-
dinated objects with a syntax closer to OOP languages, and a semantics of
coordination given by an integrating bisimulation. The interaction between
the coordinating process and autonomous objects is given via interaction
wrapper. Operational semantics of the coordinated objects is given by la-
belled transition systems, and we express their temporal properties in CTL.

These temporal properties can be verified automatically by using adapted
algorithms and new specific tools.

9. REFERENCES
[1] R. Allen and D. Garlan. A Formal Basis for Architectural

Connection. ACM Transactions on Software Engineering and
Methodology, vol.6, pp.213-249, 1997.

[2] G. Ciobanu and D. Lucanu. Specification and verification of
synchronizing concurrent objects. In J.Derrick E.Boiten and G.Smith
(Eds.): Integrated Formal Methods 2004, Lecture Notes in Computer
Science, vol.2999, pp.307-327, Springer, 2004.

[3] G. Ciobanu and D. Lucanu. Communicating Concurrent Objects in
HiddenCCS. Electronic Notes in Theoretical Computer Science,
vol.117, pp.353-373, Elsevier, 2004.

[4] E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. MIT
Press, 2000.

[5] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer,
and J. F. Quesada Maude: Specification and Programming in
Rewriting Logic Theoretical Computer Science, vol. 285,
pp.187-243, 2002.

[6] F. Durán and J. Meseguer. Structured Theories and Institutions.
Theoretical Computer Science, vol.309, pp.357-380, 2003.

[7] S. Frølund and G. Agha. A language framework for multi-object
coordination. In Proc. ECOOP’93, Lecture Notes in Computer
Science, vol. 707, pp.346-360, Springer, 1993.

[8] J. Goguen, and G. Malcolm. A hidden agenda. Theoretical Computer
Science vol.245, pp.55-101, 2000.

[9] Gh. Grigoraş and D. Lucanu. On Hidden Algebra Semantics of
Object Oriented Languages. Sci. Ann. of the “A.I.Cuza” Univ. of Iaşi,
14(Computer Science), pp.51-68, 2004.

[10] B. Jacobs. Coalgebraic Reasoning about Classes in Object-Oriented
Languages. In Electronic Notes in Theoretical Computer Science,
vol.11, pp.231-242, Elsevier, 1998.

[11] D. Lucanu, and G. Ciobanu. Model Checking for Object
Specifications in Hidden Algebra. In B.Steffen, G.Levi (Eds.)
Verification, Model Checking, and Abstract Interpretation, Lecture
Notes in Computer Science vol.2937, Springer, pp.97-109, 2004.

[12] J. Magee, J. Krammer, and D. Giannnakopoulou. Analysing the
Behaviour of Distributed Software Architecture: a Case Study. In
Proc. of the 5th IEEE Workshop on Future Trends of Distributed
Computing Systems, Tunis, pp.240-245, 1997.

[13] K. L. McMillan. Symbolic Model Checking. Kluwer Academic
Publishers, 1993.

[14] R. Milner. Communicating and Mobile Systems: the π-calculus.
Cambridge University Press, 1999.

[15] J. Rutten. Universal Coalgebra: A Theory of Systems. Theoretical
Computer Science vol.249, pp.3-80, 2000.

[16] G. Salaün, M. Allemand, and C. Attiogbé. A Formalism Combining
CCS and CASL. Research Report 00.14, IRIN, Univ. Nantes, 2001.

[17] M. Shaw and D. Garlan. Formulations and Formalisms in Software
Architecture. In J. van Leeuwen (Ed.): Computer Science Today:
Recent Trends and Developments, Lecture Notes in Computer
Science, vol.1000, Springer, 1995.

[18] A. Verdejo, and N. Martı́-Oliet. Implementing CCS in Maude 2. In
4th WRLA, Electronic Notes in Theoretical Computer Science,
vol.71, pp.239-257, Elsevier, 2002.

