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ABSTRACT 
Based on our experiences and those of our peers, we hypothesized 
that in Java code, the majority of declarations that are of reference 
types are meant to be non-null.  Unfortunately, the Java Modeling 
Language (JML), like most interface specification and object-
oriented programming languages, assumes that such declarations 
are possibly-null by default.  As a consequence, developers need 
to write specifications that are more verbose than necessary in 
order to accurately document their module interfaces. In practice, 
this results in module interfaces being left incompletely and 
inaccurately specified. In this paper we present the results of a 
study that confirms our hypothesis.  Hence, we propose an 
adaptation to JML that preserves its language design goals and 
that allows developers to specify that declarations of reference 
types are to be interpreted as non-null by default.  We explain 
how this default is safer and results in less writing on the part of 
specifiers than null-by-default.  The paper also reports on an 
implementation of the proposal in some of the JML tools. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification—
programming by contract; D.3.3 [Programming Languages]; F.3.1 
[Logics and Meanings of Programs]: Specifying and Verifying 
and Reasoning about Programs 

General Terms 
Documentation, Design, Languages, Theory, Verification. 

Keywords 
Contracts, Java Modeling Language, JML, reference types, non-
null references. 

1. INTRODUCTION 
Null pointer exceptions are among the most common faults raised 
by components written in mainstream imperative languages like 
Java.  Increasingly developers are able to make use of tools that 

can detect possible null dereferences (among other things) by 
means of static analysis of component source.  Unfortunately, 
such tools can only perform minimal analysis when provided with 
code alone.  On the other hand, given that components and their 
support libraries are supplemented with appropriate specifications, 
then the tools are able to detect a large proportion of potential null 
pointer dereferences.  The Java Modeling Language (JML) is one 
of the most popular behavioral interface specification languages 
for Java [11, 12].  ESC/Java2 is an extended static checker for 
Java that uses JML as an interface specification language [4].   
While writing Java programs and their JML specifications, it has 
been our experience, and those of peers, that we generally want 
declarations of reference types to be non-null.  Unfortunately 
JML, like most interface specification and mainstream object-
oriented programming languages, assumes that by default 
declarations can be null.  As a result, specifiers must explicitly 
constrain such declarations to be non-null either by annotating the 
declarations with /*@ non_null @*/ or by adding constraints of 
the form o != null to class invariants and/or method contracts.  
Since most developers tend to write specifications penuriously, in 
practice this results in module interfaces being left incompletely 
and inaccurately specified.   
In this paper we present the results of a study that confirms the 
hypothesis that: 

In Java programs, the majority of declarations that are of 
reference types are meant to be non-null, based on design 
intent. 

For this study we sampled over 150 KLOC out of 450 KLOC of 
Java source.  To our knowledge, this is the first formal empirical 
study of this kind—though anecdotal evidence has been 
mentioned elsewhere, e.g. [7, 8].  In light of our study results, we 
propose that JML be adapted to allow developers to specify that 
declarations of reference types are to be interpreted as non-null by 
default.   
The study method and study results are presented in the next two 
sections.  Our proposal to adapt JML to support non-null by 
default is presented in Section 4 along with a discussion of the 
way in which the proposal upholds JML’s design goals.  We offer 
a discussion of related work and conclude in Sections 5 and 6 
respectively. 
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2. STUDY 

2.1 Metrics 
Reference types can be used in the declaration of local variables, 
fields, method (return types) and parameters.  In our study we 
considered all of these types of declaration except for local 
variables since the non-null annotation of local variables is not yet 
fully supported in JML.  Unless specified otherwise, we shall use 
the term declaration in the remainder of this article to be a 
declaration other than that of a local variable.  
We have two principal metrics in this study, both of which shall 
be measured on a per file basis: 

• d, is a measure of the number of declarations that are of a 
reference type, and 

• m is a measure of the number of declarations specified to be 
non-null (hence m ≤ d). 

The main statistic of interest, x, will be a measure of the 
proportion of reference type declarations that are non-null, i.e. m / 
d.  In the next section we explain how m is computed. 

2.2 Counting non-null declarations 
2.2.1 JML core and syntactic sugar 
Like many languages, the definition of JML consists of a core 
(that offers basic syntactic constructs) supplemented with 
syntactic sugar that makes the language more practical and 
pleasant to use.  As is often done in these situations, the semantics 
of JML is defined in terms of a desugaring procedure (that 
describes how to translate arbitrary specifications into the JML 
core), and a semantics of the core [13, 17].   
As such, it is much simpler to accurately describe how to count 
non-null declarations relative to the core JML.  Unfortunately, 
such an account would seem foreign to most.  Hence, in this paper 
we have chosen to provide an informal description of counting 
non-null declarations that is based on “sugared” JML.  We refer 
readers interested in the full details to [5]. 

2.2.2 General rules 
Given a declaration T o, where T is a reference type, we can 
constrain o to be non-null either explicitly or implicitly.  We do so 
explicitly by annotating the declaration with /*@ non_null @*/ 
as is illustrated in Figure 1(a).  Notice that the field nm, the 
method welcome() and the parameter aNm of the method set() 
are explicitly declared non-null. 
Generally speaking, we consider that o is implicitly constrained to 
be non-null if an appropriate assertion is of any one of the 
following forms, or it contains a conjunct of any one of the 
following forms: 
• o != null, 
• o instanceof C, 
• \fresh(o) which states that o is a reference to a newly 

allocated object (hence this can only be used in an ensures 
clause), or 

• \nonnullelements(o), when o is an array reference. 
For example, the greeting() method of Figure 1(a) is 
considered to be implicitly declared non-null because the 
ensures clause constrains the method result to be non-null.  
Next, for each kind of declaration, we describe the circumstances 
under which we consider declarations of the given kind to be 
implicitly declared non-null. 

2.2.3 Fields 
A non-static (respectively, static) field can be implicitly declared 
non-null if a non-static (static) class invariant contains a conjunct 
of the form given in Section 2.2.2.  For example, given the 
declarations of Figure 2, we would count o1, o2 and a as non-null 
but not o3 (because the o3 != null term is an argument to a 
disjunction rather than a conjunction). 

public abstract class Greeting  

{ 
 private /*@ spec_public non_null */ String nm; 

 

 /*@ public normal_behavior 
   @  requires !aNm.equals(""); 

   @  modifies nm; 

   @  ensures nm == aNm; 
   @*/ 

 public void set(/*@ non_null @*/ String aNm) { 
   nm = aNm; 
 } 

 

 //@ ensures \result.equals(greeting()+nm); 
 public /*@ pure non_null @*/ String welcome() { 
   return greeting() + nm; 

 } 
 

 //@ ensures \result != null; 

 //@      && !\result.equals(""); 
 public abstract /*@ pure @*/ String greeting(); 
 

} 

(a)  Greeting class 
 
public class FrenchGreeting extends Greeting  

{ 

 // constructor omitted 
 

 //@ also 

 //@ ensures \result.equals("Bonjour "); 
 public /*@pure non_null*/ String greeting() { 
   return "Bonjour "; 

 } 
} 

(b)  FrenchGreeting class 

Figure 1.  Sample class specifications 

 

/*@ non_null @*/ Object o1; 

Object o2; 
//@ invariant o2 != null; 

int i; 

Object o3; 
//@ invariant i > 0 || o3 != null; 

Object a[]; 

//@ invariant \nonnullelements(a); 

Figure 2.  Sample field declarations, some non-null 



   

2.2.4 Method return types 
The pseudo variable \result is used in ensures clauses to 
represent the value returned by a method.  A static method or a 
non-overriding non-static method can be implicitly declared as 
non-null by constraining \result to be non-null in an ensures 
clause as is done for the greeting() method of the Greeting 
class—Figure 1(a). 
A JML method specification can be given as a list of cases 
(having different preconditions) separated by the keyword also 
as is illustrated in Figure 3.  In such situations, the method can be 
counted as non-null if and only if: the method is explicitly 
declared as non-null or, it is implicitly declared as non-null in 
every normal_behavior specification case (and every 
behavior specification case—not discussed here—for which the 
ensures clause is neither false nor \not_specified).   
Due to behavioral subtyping, the case of overriding methods is 
slightly more complicated.  In JML, an overriding method like 
FrenchGreeting.greeting() of Figure 1(b) must respect the 
method specifications of its ancestors—which in this case consists 
only of one method, Greeting.greeting().  As a reminder to 
readers, all overriding method specifications must start with the 
keyword also.  Thus, an overriding method m in a class C can be 
counted as non-null if and only if m is constrained to be non-null 
in C, as well as in all ancestor classes of C where m is explicitly 
declared.   

2.2.5 Method parameters 
The case for method parameters is similar to that for method 
return types.  That is, a parameter of a static or non-overriding 
method is considered non-null if it is constrained as such in a 
requires clause.  On the other hand, a parameter of an 
overriding method can be counted as non-null if and only if it is 
declared as non-null in the given class and all ancestor classes. 

2.3 Statistics tool 
In order to gather statistics concerning non-null declarations, the 
Iowa State University (ISU) JML checker was extended.  The tool 
uses heuristics similar to those described in the previous section.  
The metrics gathered are conservative (i.e. when given the choice 
between soundness and completeness, the tool opts for 
soundness).  The tool gathers data for normal, ghost, and model 
references. It also warns the user of inconsistent specifications 

(e.g. pre- or post-conditions trivially simplifying to false in all 
method specification cases). 

2.4 Case study subjects 
It was actually our work on an ESC/Java2 case study in the 
specification and verification of a small web-based enterprise 
application framework named SoenEA [18] that provided the final 
impetus to initiate the study reported in this paper.  Hence, we 
chose SoenEA as one of our case study subjects.  As our three 
other subjects we chose the ISU JML checker, the ESC/Java2 tool 
and the tallying subsystem of Koa, a recently developed Dutch 
internet voting application1.  We chose these projects because: 

• We believe that they are representative of typical designs in 
Java applications and that they are of a non-trivial size 
(numbers will be given shortly). 

• We were familiar with the source code (and/or had peers that 
were) and hence expected that it would be easier to write 
accurate JML specifications for it.  Too much effort would 
have been required to study and understand unfamiliar and 
sizeable projects in sufficient detail to be able to write correct 
specifications2. 

• The project sources are freely available to be reviewed by 
others who may want to validate our specification efforts.   

• The sources were at least partly annotated with JML 
specifications; hence we would not be starting entirely from 
scratch. 

Aside from SoenEA, the other study subjects are actually an 
integral (and dependant) part of a larger project.  For example, the 
JML checker is only one of the tools provided as part of the ISU 
tool suite—others include JmlUnit and the JML run-time assertion 
checker compiler.   
Table 1 provides the number of files, lines-of-code (LOC) and 
source-lines-of-code (SLOC) for our study subjects as well as the 
projects that they are subcomponents of.  Overall the source for all 
four projects consists of 457 KLOC (278 KSLOC) from over 
almost 1800 Java source files.  Our study subjects account for 161 
KLOC from over 500 files. 

                                                                 
1 Koa was used, e.g., in the 2004 European parliamentary elections. 
2 Particularly since projects often lack detailed design documentation. 

 /*@  normal_behavior 

   @    requires i == 0 
   @    ensures  \result != null  

   @          && \result.equals("zero"); 

   @ also  
   @  normal_behavior 

   @    requires i > 0; 

   @    ensures  \result != null 
   @          && \result.equals("positive"); 

   @ also  

   @  exceptional_behavior 
   @    requires i < 0; 

   @    signals(Exception e) true; 

   @*/ 
 /*@ pure @*/ String m(int i) { 

    ... 

 } 

Figure 3.  Method specification cases separated using ‘also’ 

Overall 
Project  

ISU 
Tools 

ESC 
Tools SoenEA Koa Total 

# of files 831 455 52 459 1797 
LOC (K) 243 124 3 87 457 

SLOC (K) 140 75 2 62 278 
 

Project 
subsys.  

JML 
Checker 

ESC/ 
Java2 SoenEA 

Koa Tally 
Subsys. Total 

# of files 217 216 52 29 514 
LOC (K) 86 63 3 10 161 

SLOC (K) 58 41 2 4 104  
Table 1 General statistics of study subjects 



   

2.5 Procedure 
2.5.1 Selection of sample files 
With the study projects identified, our objective was to add JML 
specifications to all of the source files, or, if there were too many, 
a randomly chosen sample of files.  In the later case, we fixed our 
sample size at 35 (as sample sizes of 30 or more are generally 
considered “sufficiently large”).  Our random sampling for a 
given project was created by first listing the N project files in 
alphabetical order, generating 35 random numbers in the range 
1..N, and then choosing the corresponding files. 

2.5.2 Annotating the sample files 
We then added to the selected files JML specifications consisting 
essentially of constraints on declarations of reference types, where 
appropriate.  In most situations we added non_null declaration 
modifiers. 
An example of a field declaration that we would constrain to be 
non-null is: 

static final String MSG1 = “abc”; 

Similarly we would conservatively annotate constructor and 
method return types as well as parameters based on our 
understanding of the software applications.  As an example, 
consider the following method: 

String m(int a[]) { 
  String result = ""; 
  for(int i = 0; i < a.length; i++) { 
    result += a[i] + " "; 
  } 
  return result; 
} 

In the absence of any specification or documentation for such a 
method we would assume that the designer intended a to be non-
null (since there is no test for nullity and yet the length field of a 
is used).  We can also deduce that the method will always return a 
non-null String. 
As was previously explained, constraining the method return type 
or parameters for an inherited method requires adding annotations 
to the method’s class as well as to all ancestors of the class in 
which the method is declared.  This was particularly evident in the 
case of the JML checker code since the class hierarchy is up to 6 
levels of inheritance for some of files that we worked on (e.g. 
JmlCompilationUnit). 

2.6 Threats to validity 
2.6.1 Internal validity 
We see two threats to internal validity.  Firstly, in adding non-null 
constraints to the sample files we may have been excessive.  As 
was discussed in the previous section, we chose to be conservative 
in our specification exercise.  Furthermore, the code samples 
(both before the exercise and after) are available for peer review.  
The JML checker is accessible from SourceForge 
(sourceforge.net); ESC/Java2 and Koa are available from Joseph 
Kiniry’s GForge site (sort.ucd.ie) and SoenEA is available from 
the authors3. 
Secondly, our statistics tool may have incorrectly counted a 
declaration as being non-null.  Again, as was previously 

                                                                 
3 At the time of writing, the updated Koa source has not yet been 

committed to GForge; it is available from the authors. 

explained, we chose soundness over completeness during our 
design of the tool.  The tool source (which is part of the ISU JML 
tool suite) is also available via anonymous CVS for peer review. 

2.6.2 External validity 
Will we be able to draw general conclusions from our study 
results?  The main question is: can our sample of source files be 
taken as representative of typical Java applications?  There are 
two aspects that can be considered here: the design style used in 
the samples, and the application domains. 
Modern object-oriented programming best-practices promote e.g., 
a disciplined (i.e. moderate) use of null with the Null Object 
pattern recommended as an alternative [9].  Of course, not all Java 
code is written following recommended best practices; hence our 
sample applications should include such “non-OO-style” code.  
This is the case for some of the ESC/Java2 core classes (which 
were designed quite early in the project history); e.g. some of the 
classes declare their fields as public (a practice that is 
discouraged) rather than using getters and setters, making it more 
difficult to ascertain if a field was intended to be non-null.  Also, 
the class hierarchy is very flat, with some classes resembling a 
module in the traditional sense (i.e. a collection of static methods) 
more than a class. 
With a four sample set, it is impossible to claim that we have 
coverage in application domains, but we note that the SoenEA 
sample represents one of the most popular uses of Java—namely, 
servlet-based web applications. 

3. STUDY RESULTS 
A summary of the output of the non-null statistics tool run on our 
study samples (after having completed our specification exercise) 
is given in Table 2.  As is usually done, the number of files in 
each sample is denoted by n and the population size by N.  Note 
that for SoenEA, 11 of the files did not contain any declarations of 
reference types, hence the population size is 41 = 52 – 11; the 
reason that we exclude such files from our sample is because it is 
not possible to compute the proportion of non-null references for 
files without any declarations of reference types.  We see that the 
total number of declarations that are of a reference type (d) across 
all samples is 1978.  The total number of such declarations 
constrained to be non-null (m) is 1254.  The proportion of non-
null references across all files is 63%. 
We also computed the mean, x, of the proportion of non-null 
declarations on a per file basis (xi = di / mi).  The mean ranges 
from 59% for the JML checker sample, to 72% for the SoenEA 

  
JML 

Checker 
ESC/ 
Java2 

Soen-
EA 

Koa 
TS 

Sum or 
Average 

n 35 35 41 29 140 
N 217 216 41 29 503 
∑ di 376 807 231 564 1978 
∑ mi 210 499 177 368 1254 

∑di / ∑mi 56% 62% 77% 65% 63% 
mean (x) 59% 60% 72% 64% 64% 

std.dev.(s) 0.24 0.31 0.37 0.32 - 
E (α=5%) 7.4% 9.3% - - - 

µ min 52% 51% 72% 64% 60%  
Table 2. Distribution of the number of  

declarations of reference types 



   

sample.  Also given are the standard deviation (s) and a measure 
of the maximum error (E) of our sample mean as an estimate for 
the population mean with a confidence level of 1 – α = 95%.  
Hence we can conclude with 95% certainty that the population 
means are above 50% in all cases. 
It should be noted that for both the JML checker and ESC/Java2 
samples, we stopped annotating the files once we had reached a 
value for µ min (i.e. µ − E) that was greater than 50% for α = 5%.  
Hence, it is quite likely that µ is actually higher for these samples.  
In the case of SoenEA we essentially completed the annotation 
exercise for all files, and as a result µ is 72%. 
A distribution of x, the proportion of non-null declarations, is 
given in Figure 4—following standard notation, [a,b) represents 
the interval of values v in the range a ≤ v < b.  The bar length 
represents the percentage of files for which x is in the given range.  
We see that the checker has no files with an x in the range [0-
10%).  On the other hand, SoenEA has the largest proportion of 
files in this range as well as for x = 100%.   
The mean of x by kind of declaration (fields, methods and 
parameters) for each of the study samples is given in Figure 5.  
Almost all samples have a mean for parameters that is higher than 

for methods.  The mean of x for fields is much higher in the case 
of the JML checker possibly because the checker sample had the 
smallest number of field declarations. 
We believe that the study results support our hypothesis that in 
Java code, the majority of declarations that are of reference types 
are meant to be non-null.  It is for this reason that we propose a 
modification to JML as is explained next. 

4. ADAPTING JML 
Motivated by the study results, we propose that JML be adapted to 
support  

• the module4 modifier non_null_ref_by_default that will 
allow developers to indicate that reference type declarations 
in the given module are to be interpreted as non-null by 
default, 

• a null declaration modifier, to be used in the context of 
non_null_ref_by_default classes, indicating that a 
given declaration can be null, and 

• a null_ref_by_default module modifier. 
An example of the use of these modifiers is given in Figure 6.  We 
justify our proposal in the following subsections. 

4.1 Null vs. non-null by default 
The study results support the hypothesis that, in general, designers 
want more than 50% of declarations of reference types to be non-
null.  Thus, under the current JML semantics, designers must 
effectively add /*@ non_null @*/ annotations to the majority of 
declarations if he or she wants the non-null constraints to be 
accurately documented.  As was remarked in the introduction, 
since developers tend to write specifications penuriously, in 
practice this results in module interfaces being left incompletely 
and inaccurately specified.  Thus, module clients might call 
methods with null arguments when these should be prohibited, 
resulting in NullPointerException’s—one of the most 
common programming errors. 
It would seem more sensible for declarations to be non-null by 
default.  Adopting this default would allow, on average, over 50% 
of declarations of reference types in an unannotated source file to 
be accurately constrained to be non-null.  Designers could then 
gradually add /*@ null @*/ annotations. A consequence of 
forgetting or delaying the addition of null annotations would, at 
worst, present a more restrictive interface to a module’s clients.  
This is a safer alternative than null-by-default.  Furthermore, since 
developers must generally provide special code to handle null, it 
is best for them to be explicitly informed that a value might be 
null by the presence of an annotation rather than by its absence. 

4.2 Upholding JML design goals 
One of the language design goals of JML is to adhere to the 
semantics of Java to the extent possible.  In those situations where 
JML semantics differ from Java, it should not come as a surprise 
to Java developers [14].  In our case, since Java assumes that 
references are possibly-null by default, it would not be appropriate 
to simply propose that JML’s default be non-null.  Instead, there 
should be an explicit indication in a JML module specification 
that unadorned references are to be interpreted as non-null. (Of 
course, it would be preferable for Java to adopt non-null as a 

                                                                 
4 I.e., class or interface. 
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Figure 4. Percentage of files having a value for x (the 
proportion of non-null declarations) in a given range 
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default, as will be done in the next release of Eiffel for example—
see Section 5.2.2.) 
Hence we propose the addition of a module modifier named 
non_null_ref_by_default that can be placed just ahead of the 
class or interface keywords. In this way, a completely 
unadorned Java module will have the same semantics as Java 
(with respect to the interpretation of declarations of reference 
types).  An example of the use of this module modifier is given in 
Figure 6; it is a revised version of the Greeting class 
specification of Figure 1.  
As was previously mentioned, we believe that it is safer to have 
declarations represent non-null references rather than possibly-
null references by default.  As a final enhancement we suggest 
that JML tools emit a warning if neither default has been explicitly 
specified for any given Java module5.  In those situations where a 
developer wishes to preserve Java semantics, he or she can make 
use of the null_ref_by_default module modifier.  Such a 
behavior will help developers who are new to JML remember to 
use the safer non_null_ref_by_default when appropriate 
(which should be most of the time). 

4.3 Implementation 
The given proposal has been implemented in the JML checker and 
the JML Run-time Assertion Checker.  Since these tools already 
supported the notion of possibly-null and non-null declarations, 
the adaptation was relatively easy (approximately two person-
weeks).  We expect that the adaptation of other JML tools should 
be just as straight-forward.  Joseph Kiniry and the first author are 
currently implementing the proposal in ESC/Java2. 

5. RELATED WORK 

5.1 Nullity annotations 
Most closely related to our current proposal for JML are the 
nullity annotations supported by Splint [6].  Splint is a static 
                                                                 
5 Of course, such warnings can be disabled using a command-line option. 

analysis tool for C programs that evolved out of work on Lclint.  
Lclint was essentially a type checker for Larch/C, a behavioral 
interface specification language for C [10].  In Splint, all pointer 
variables are assumed to be non-null by default, unless adored 
with @null.  Splint can be used to statically detect potential null 
dereferences. 

5.2 Non-null types 
In contrast to using assertions or special annotations, some 
languages have enriched type systems supporting the notion of 
non-null types.  Of the three described here, two are proposing 
that references be non-null by default.  

5.2.1 Nice 
The Nice programming language can be seen as an enriched 
variant of Java supporting parametric types, multi-methods, and 
contracts among other features [2].  Nice also supports non-null 
types.  By default, a reference type name T denotes non-null 
instances of T.  To express the possibility that a declaration of 
type T might be null, one prefixes the type name with a question 
mark [3]. 

5.2.2 Eiffel 
The next major release of the Eiffel programming language [15] 
will also include support for attached types (i.e. non-null types, or 
non-void types as they might be called in Eiffel) as opposed to 
detachable types (that can be null) [16].  The proposed default for 
this new release of Eiffel will be attached types.  Special 
consideration has been given to minimizing the migration effort of 
current Eiffel code. 

5.2.3 Spec# 
Spec# is an extension of the C# programming language that adds 
support for contracts, checked exceptions and non-null types.  The 
Spec# compiler statically enforces non-null types and generates 
run-time assertion checking code for contracts [1].  For reasons of 
backwards compatibility with C#, a reference type name T refers 
to possibly null references of type T whereas T! is used to 
represent non-null references of type T.   

public abstract /*@ non_null_ref_by_default @*/

class Greeting  
{ 

 private /*@ spec_public @*/ String nm; 

 
 /*@ public normal_behavior 

   @  requires !aNm.equals(""); 

   @  modifies nm; 
   @  ensures nm == aNm; 

   @*/ 

 public void set(String aNm) { 
   nm = aNm; 

 } 

 
 //@ ensures \result.equals(greeting()+nm); 

 public /*@ pure @*/ String welcome() { 

   return greeting() + nm; 
 } 

 

 //@ ensures !\result.equals(""); 
 public abstract  

  /*@ pure @*/ String greeting(); 

} 

Figure 6.  Greeting specification using 
non_null_ref_by_default 

class GenericGreeting : Greeting {  

 string! greeting; 
 public GenericGreeting(string! n, string! g) {  

   base(n); 

   // (1) 
 } 

 // ... 

} 

(a) Partially initialized object (Spec#) 

 
class GenericGreeting : Greeting {  

 string! greeting; 

 public GenericGreeting(string! n, string! g) { 
   greeting = g; 

   base(n); 

   // (1) 
 } 

 // ... 

} 

(b) Use of initializer (Spec#) 

Figure 7.  Spec# GenericGreeting examples 



   

The introduction of non-null types naturally complicates the type 
system and leads to other issues.  The main issue has to do with 
partially initialized objects [7].  Consider the example given in 
Figure 7(a). At point (1) in the constructor code, the field 
greeting will be null—due to the automatic initialization 
performed on instance fields.  To solve this problem, Spec# 
allows constructors to provide field initializers as is illustrated in 
Figure 7(b). 
In the case of JML, no such special measures are required since a 
non-null constraint on a field like greeting would be translated 
into a non-null constraint in a class invariant.  Class invariants are 
not assumed to hold on entry to or during the execution of a 
constructor body.  This is not to claim that JML’s approach is 
better—especially given the open issues related to the treatment of 
invariants—but rather than it is an alternative approach. 

6. CONCLUSION  
In this paper, we report on a novel study of four open projects 
(totaling over 450 KLOC) taken from various domains of 
application.  The study results support the hypothesis that, by 
design, the majority of reference type declarations are meant to be 
non-null in Java.  
It would be preferable that Java be adapted so that declarations are 
interpreted as non-null by default (as will be the case, for 
example, in the next release of Eiffel).  In the meantime, we have 
suggested an adaptation to JML that would allow specifications to 
be more concise by interpreting reference types as non-null unless 
explicitly annotated with the null declaration modifier.  Our 
proposal results in a safer default since in the absence of 
declaration annotations, modules simply present stricter interfaces 
to their clients. 
We have implemented our proposal in the JML checker and run-
time assertion checker compiler.  As future work, we intend to 
complete the implementation of the proposal in ESC/Java2, and to 
conduct further studies in an attempt to measure the effectiveness 
of our new proposed default for reference type declarations. 
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