

Non-null References by Default in the Java Modeling
Language

Patrice Chalin, Frédéric Rioux
Dept. of Computer Science and Software Engineering,

Dependable Software Research Group, Concordia University
1455 de Maisonneuve Blvd. West, Montréal

Québec, Canada, H3G 1M8
{chalin,f_rioux}@cse.concordia.ca

ABSTRACT
Based on our experiences and those of our peers, we hypothesized
that in Java code, the majority of declarations that are of reference
types are meant to be non-null. Unfortunately, the Java Modeling
Language (JML), like most interface specification and object-
oriented programming languages, assumes that such declarations
are possibly-null by default. As a consequence, developers need
to write specifications that are more verbose than necessary in
order to accurately document their module interfaces. In practice,
this results in module interfaces being left incompletely and
inaccurately specified. In this paper we present the results of a
study that confirms our hypothesis. Hence, we propose an
adaptation to JML that preserves its language design goals and
that allows developers to specify that declarations of reference
types are to be interpreted as non-null by default. We explain
how this default is safer and results in less writing on the part of
specifiers than null-by-default. The paper also reports on an
implementation of the proposal in some of the JML tools.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
programming by contract; D.3.3 [Programming Languages]; F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs

General Terms
Documentation, Design, Languages, Theory, Verification.

Keywords
Contracts, Java Modeling Language, JML, reference types, non-
null references.

1. INTRODUCTION
Null pointer exceptions are among the most common faults raised
by components written in mainstream imperative languages like
Java. Increasingly developers are able to make use of tools that

can detect possible null dereferences (among other things) by
means of static analysis of component source. Unfortunately,
such tools can only perform minimal analysis when provided with
code alone. On the other hand, given that components and their
support libraries are supplemented with appropriate specifications,
then the tools are able to detect a large proportion of potential null
pointer dereferences. The Java Modeling Language (JML) is one
of the most popular behavioral interface specification languages
for Java [11, 12]. ESC/Java2 is an extended static checker for
Java that uses JML as an interface specification language [4].
While writing Java programs and their JML specifications, it has
been our experience, and those of peers, that we generally want
declarations of reference types to be non-null. Unfortunately
JML, like most interface specification and mainstream object-
oriented programming languages, assumes that by default
declarations can be null. As a result, specifiers must explicitly
constrain such declarations to be non-null either by annotating the
declarations with /*@ non_null @*/ or by adding constraints of
the form o != null to class invariants and/or method contracts.
Since most developers tend to write specifications penuriously, in
practice this results in module interfaces being left incompletely
and inaccurately specified.
In this paper we present the results of a study that confirms the
hypothesis that:

In Java programs, the majority of declarations that are of
reference types are meant to be non-null, based on design
intent.

For this study we sampled over 150 KLOC out of 450 KLOC of
Java source. To our knowledge, this is the first formal empirical
study of this kind—though anecdotal evidence has been
mentioned elsewhere, e.g. [7, 8]. In light of our study results, we
propose that JML be adapted to allow developers to specify that
declarations of reference types are to be interpreted as non-null by
default.
The study method and study results are presented in the next two
sections. Our proposal to adapt JML to support non-null by
default is presented in Section 4 along with a discussion of the
way in which the proposal upholds JML’s design goals. We offer
a discussion of related work and conclude in Sections 5 and 6
respectively.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAVCBS’05, September 5–6, 2005, Lisbon, Portugal.
Copyright 2005 ACM 1-58113-000-0/00/0004…$5.00.

2. STUDY

2.1 Metrics
Reference types can be used in the declaration of local variables,
fields, method (return types) and parameters. In our study we
considered all of these types of declaration except for local
variables since the non-null annotation of local variables is not yet
fully supported in JML. Unless specified otherwise, we shall use
the term declaration in the remainder of this article to be a
declaration other than that of a local variable.
We have two principal metrics in this study, both of which shall
be measured on a per file basis:

• d, is a measure of the number of declarations that are of a
reference type, and

• m is a measure of the number of declarations specified to be
non-null (hence m ≤ d).

The main statistic of interest, x, will be a measure of the
proportion of reference type declarations that are non-null, i.e. m /
d. In the next section we explain how m is computed.

2.2 Counting non-null declarations
2.2.1 JML core and syntactic sugar
Like many languages, the definition of JML consists of a core
(that offers basic syntactic constructs) supplemented with
syntactic sugar that makes the language more practical and
pleasant to use. As is often done in these situations, the semantics
of JML is defined in terms of a desugaring procedure (that
describes how to translate arbitrary specifications into the JML
core), and a semantics of the core [13, 17].
As such, it is much simpler to accurately describe how to count
non-null declarations relative to the core JML. Unfortunately,
such an account would seem foreign to most. Hence, in this paper
we have chosen to provide an informal description of counting
non-null declarations that is based on “sugared” JML. We refer
readers interested in the full details to [5].

2.2.2 General rules
Given a declaration T o, where T is a reference type, we can
constrain o to be non-null either explicitly or implicitly. We do so
explicitly by annotating the declaration with /*@ non_null @*/
as is illustrated in Figure 1(a). Notice that the field nm, the
method welcome() and the parameter aNm of the method set()
are explicitly declared non-null.
Generally speaking, we consider that o is implicitly constrained to
be non-null if an appropriate assertion is of any one of the
following forms, or it contains a conjunct of any one of the
following forms:
• o != null,
• o instanceof C,
• \fresh(o) which states that o is a reference to a newly

allocated object (hence this can only be used in an ensures
clause), or

• \nonnullelements(o), when o is an array reference.
For example, the greeting() method of Figure 1(a) is
considered to be implicitly declared non-null because the
ensures clause constrains the method result to be non-null.
Next, for each kind of declaration, we describe the circumstances
under which we consider declarations of the given kind to be
implicitly declared non-null.

2.2.3 Fields
A non-static (respectively, static) field can be implicitly declared
non-null if a non-static (static) class invariant contains a conjunct
of the form given in Section 2.2.2. For example, given the
declarations of Figure 2, we would count o1, o2 and a as non-null
but not o3 (because the o3 != null term is an argument to a
disjunction rather than a conjunction).

public abstract class Greeting

{
 private /*@ spec_public non_null */ String nm;

 /*@ public normal_behavior
 @ requires !aNm.equals("");

 @ modifies nm;

 @ ensures nm == aNm;
 @*/

 public void set(/*@ non_null @*/ String aNm) {
 nm = aNm;
 }

 //@ ensures \result.equals(greeting()+nm);
 public /*@ pure non_null @*/ String welcome() {
 return greeting() + nm;

 }

 //@ ensures \result != null;

 //@ && !\result.equals("");
 public abstract /*@ pure @*/ String greeting();

}

(a) Greeting class

public class FrenchGreeting extends Greeting

{

 // constructor omitted

 //@ also

 //@ ensures \result.equals("Bonjour ");
 public /*@pure non_null*/ String greeting() {
 return "Bonjour ";

 }
}

(b) FrenchGreeting class

Figure 1. Sample class specifications

/*@ non_null @*/ Object o1;

Object o2;
//@ invariant o2 != null;

int i;

Object o3;
//@ invariant i > 0 || o3 != null;

Object a[];

//@ invariant \nonnullelements(a);

Figure 2. Sample field declarations, some non-null

2.2.4 Method return types
The pseudo variable \result is used in ensures clauses to
represent the value returned by a method. A static method or a
non-overriding non-static method can be implicitly declared as
non-null by constraining \result to be non-null in an ensures
clause as is done for the greeting() method of the Greeting
class—Figure 1(a).
A JML method specification can be given as a list of cases
(having different preconditions) separated by the keyword also
as is illustrated in Figure 3. In such situations, the method can be
counted as non-null if and only if: the method is explicitly
declared as non-null or, it is implicitly declared as non-null in
every normal_behavior specification case (and every
behavior specification case—not discussed here—for which the
ensures clause is neither false nor \not_specified).
Due to behavioral subtyping, the case of overriding methods is
slightly more complicated. In JML, an overriding method like
FrenchGreeting.greeting() of Figure 1(b) must respect the
method specifications of its ancestors—which in this case consists
only of one method, Greeting.greeting(). As a reminder to
readers, all overriding method specifications must start with the
keyword also. Thus, an overriding method m in a class C can be
counted as non-null if and only if m is constrained to be non-null
in C, as well as in all ancestor classes of C where m is explicitly
declared.

2.2.5 Method parameters
The case for method parameters is similar to that for method
return types. That is, a parameter of a static or non-overriding
method is considered non-null if it is constrained as such in a
requires clause. On the other hand, a parameter of an
overriding method can be counted as non-null if and only if it is
declared as non-null in the given class and all ancestor classes.

2.3 Statistics tool
In order to gather statistics concerning non-null declarations, the
Iowa State University (ISU) JML checker was extended. The tool
uses heuristics similar to those described in the previous section.
The metrics gathered are conservative (i.e. when given the choice
between soundness and completeness, the tool opts for
soundness). The tool gathers data for normal, ghost, and model
references. It also warns the user of inconsistent specifications

(e.g. pre- or post-conditions trivially simplifying to false in all
method specification cases).

2.4 Case study subjects
It was actually our work on an ESC/Java2 case study in the
specification and verification of a small web-based enterprise
application framework named SoenEA [18] that provided the final
impetus to initiate the study reported in this paper. Hence, we
chose SoenEA as one of our case study subjects. As our three
other subjects we chose the ISU JML checker, the ESC/Java2 tool
and the tallying subsystem of Koa, a recently developed Dutch
internet voting application1. We chose these projects because:

• We believe that they are representative of typical designs in
Java applications and that they are of a non-trivial size
(numbers will be given shortly).

• We were familiar with the source code (and/or had peers that
were) and hence expected that it would be easier to write
accurate JML specifications for it. Too much effort would
have been required to study and understand unfamiliar and
sizeable projects in sufficient detail to be able to write correct
specifications2.

• The project sources are freely available to be reviewed by
others who may want to validate our specification efforts.

• The sources were at least partly annotated with JML
specifications; hence we would not be starting entirely from
scratch.

Aside from SoenEA, the other study subjects are actually an
integral (and dependant) part of a larger project. For example, the
JML checker is only one of the tools provided as part of the ISU
tool suite—others include JmlUnit and the JML run-time assertion
checker compiler.
Table 1 provides the number of files, lines-of-code (LOC) and
source-lines-of-code (SLOC) for our study subjects as well as the
projects that they are subcomponents of. Overall the source for all
four projects consists of 457 KLOC (278 KSLOC) from over
almost 1800 Java source files. Our study subjects account for 161
KLOC from over 500 files.

1 Koa was used, e.g., in the 2004 European parliamentary elections.
2 Particularly since projects often lack detailed design documentation.

 /*@ normal_behavior

 @ requires i == 0
 @ ensures \result != null

 @ && \result.equals("zero");

 @ also
 @ normal_behavior

 @ requires i > 0;

 @ ensures \result != null
 @ && \result.equals("positive");

 @ also

 @ exceptional_behavior
 @ requires i < 0;

 @ signals(Exception e) true;

 @*/
 /*@ pure @*/ String m(int i) {

 ...

 }

Figure 3. Method specification cases separated using ‘also’

Overall
Project

ISU
Tools

ESC
Tools SoenEA Koa Total

of files 831 455 52 459 1797
LOC (K) 243 124 3 87 457

SLOC (K) 140 75 2 62 278

Project
subsys.

JML
Checker

ESC/
Java2 SoenEA

Koa Tally
Subsys. Total

of files 217 216 52 29 514
LOC (K) 86 63 3 10 161

SLOC (K) 58 41 2 4 104
Table 1 General statistics of study subjects

2.5 Procedure
2.5.1 Selection of sample files
With the study projects identified, our objective was to add JML
specifications to all of the source files, or, if there were too many,
a randomly chosen sample of files. In the later case, we fixed our
sample size at 35 (as sample sizes of 30 or more are generally
considered “sufficiently large”). Our random sampling for a
given project was created by first listing the N project files in
alphabetical order, generating 35 random numbers in the range
1..N, and then choosing the corresponding files.

2.5.2 Annotating the sample files
We then added to the selected files JML specifications consisting
essentially of constraints on declarations of reference types, where
appropriate. In most situations we added non_null declaration
modifiers.
An example of a field declaration that we would constrain to be
non-null is:

static final String MSG1 = “abc”;

Similarly we would conservatively annotate constructor and
method return types as well as parameters based on our
understanding of the software applications. As an example,
consider the following method:

String m(int a[]) {
 String result = "";
 for(int i = 0; i < a.length; i++) {
 result += a[i] + " ";
 }
 return result;
}

In the absence of any specification or documentation for such a
method we would assume that the designer intended a to be non-
null (since there is no test for nullity and yet the length field of a
is used). We can also deduce that the method will always return a
non-null String.
As was previously explained, constraining the method return type
or parameters for an inherited method requires adding annotations
to the method’s class as well as to all ancestors of the class in
which the method is declared. This was particularly evident in the
case of the JML checker code since the class hierarchy is up to 6
levels of inheritance for some of files that we worked on (e.g.
JmlCompilationUnit).

2.6 Threats to validity
2.6.1 Internal validity
We see two threats to internal validity. Firstly, in adding non-null
constraints to the sample files we may have been excessive. As
was discussed in the previous section, we chose to be conservative
in our specification exercise. Furthermore, the code samples
(both before the exercise and after) are available for peer review.
The JML checker is accessible from SourceForge
(sourceforge.net); ESC/Java2 and Koa are available from Joseph
Kiniry’s GForge site (sort.ucd.ie) and SoenEA is available from
the authors3.
Secondly, our statistics tool may have incorrectly counted a
declaration as being non-null. Again, as was previously

3 At the time of writing, the updated Koa source has not yet been

committed to GForge; it is available from the authors.

explained, we chose soundness over completeness during our
design of the tool. The tool source (which is part of the ISU JML
tool suite) is also available via anonymous CVS for peer review.

2.6.2 External validity
Will we be able to draw general conclusions from our study
results? The main question is: can our sample of source files be
taken as representative of typical Java applications? There are
two aspects that can be considered here: the design style used in
the samples, and the application domains.
Modern object-oriented programming best-practices promote e.g.,
a disciplined (i.e. moderate) use of null with the Null Object
pattern recommended as an alternative [9]. Of course, not all Java
code is written following recommended best practices; hence our
sample applications should include such “non-OO-style” code.
This is the case for some of the ESC/Java2 core classes (which
were designed quite early in the project history); e.g. some of the
classes declare their fields as public (a practice that is
discouraged) rather than using getters and setters, making it more
difficult to ascertain if a field was intended to be non-null. Also,
the class hierarchy is very flat, with some classes resembling a
module in the traditional sense (i.e. a collection of static methods)
more than a class.
With a four sample set, it is impossible to claim that we have
coverage in application domains, but we note that the SoenEA
sample represents one of the most popular uses of Java—namely,
servlet-based web applications.

3. STUDY RESULTS
A summary of the output of the non-null statistics tool run on our
study samples (after having completed our specification exercise)
is given in Table 2. As is usually done, the number of files in
each sample is denoted by n and the population size by N. Note
that for SoenEA, 11 of the files did not contain any declarations of
reference types, hence the population size is 41 = 52 – 11; the
reason that we exclude such files from our sample is because it is
not possible to compute the proportion of non-null references for
files without any declarations of reference types. We see that the
total number of declarations that are of a reference type (d) across
all samples is 1978. The total number of such declarations
constrained to be non-null (m) is 1254. The proportion of non-
null references across all files is 63%.
We also computed the mean, x, of the proportion of non-null
declarations on a per file basis (xi = di / mi). The mean ranges
from 59% for the JML checker sample, to 72% for the SoenEA

JML

Checker
ESC/
Java2

Soen-
EA

Koa
TS

Sum or
Average

n 35 35 41 29 140
N 217 216 41 29 503
∑ di 376 807 231 564 1978
∑ mi 210 499 177 368 1254

∑di / ∑mi 56% 62% 77% 65% 63%
mean (x) 59% 60% 72% 64% 64%

std.dev.(s) 0.24 0.31 0.37 0.32 -
E (α=5%) 7.4% 9.3% - - -

µ min 52% 51% 72% 64% 60%
Table 2. Distribution of the number of

declarations of reference types

sample. Also given are the standard deviation (s) and a measure
of the maximum error (E) of our sample mean as an estimate for
the population mean with a confidence level of 1 – α = 95%.
Hence we can conclude with 95% certainty that the population
means are above 50% in all cases.
It should be noted that for both the JML checker and ESC/Java2
samples, we stopped annotating the files once we had reached a
value for µ min (i.e. µ − E) that was greater than 50% for α = 5%.
Hence, it is quite likely that µ is actually higher for these samples.
In the case of SoenEA we essentially completed the annotation
exercise for all files, and as a result µ is 72%.
A distribution of x, the proportion of non-null declarations, is
given in Figure 4—following standard notation, [a,b) represents
the interval of values v in the range a ≤ v < b. The bar length
represents the percentage of files for which x is in the given range.
We see that the checker has no files with an x in the range [0-
10%). On the other hand, SoenEA has the largest proportion of
files in this range as well as for x = 100%.
The mean of x by kind of declaration (fields, methods and
parameters) for each of the study samples is given in Figure 5.
Almost all samples have a mean for parameters that is higher than

for methods. The mean of x for fields is much higher in the case
of the JML checker possibly because the checker sample had the
smallest number of field declarations.
We believe that the study results support our hypothesis that in
Java code, the majority of declarations that are of reference types
are meant to be non-null. It is for this reason that we propose a
modification to JML as is explained next.

4. ADAPTING JML
Motivated by the study results, we propose that JML be adapted to
support

• the module4 modifier non_null_ref_by_default that will
allow developers to indicate that reference type declarations
in the given module are to be interpreted as non-null by
default,

• a null declaration modifier, to be used in the context of
non_null_ref_by_default classes, indicating that a
given declaration can be null, and

• a null_ref_by_default module modifier.
An example of the use of these modifiers is given in Figure 6. We
justify our proposal in the following subsections.

4.1 Null vs. non-null by default
The study results support the hypothesis that, in general, designers
want more than 50% of declarations of reference types to be non-
null. Thus, under the current JML semantics, designers must
effectively add /*@ non_null @*/ annotations to the majority of
declarations if he or she wants the non-null constraints to be
accurately documented. As was remarked in the introduction,
since developers tend to write specifications penuriously, in
practice this results in module interfaces being left incompletely
and inaccurately specified. Thus, module clients might call
methods with null arguments when these should be prohibited,
resulting in NullPointerException’s—one of the most
common programming errors.
It would seem more sensible for declarations to be non-null by
default. Adopting this default would allow, on average, over 50%
of declarations of reference types in an unannotated source file to
be accurately constrained to be non-null. Designers could then
gradually add /*@ null @*/ annotations. A consequence of
forgetting or delaying the addition of null annotations would, at
worst, present a more restrictive interface to a module’s clients.
This is a safer alternative than null-by-default. Furthermore, since
developers must generally provide special code to handle null, it
is best for them to be explicitly informed that a value might be
null by the presence of an annotation rather than by its absence.

4.2 Upholding JML design goals
One of the language design goals of JML is to adhere to the
semantics of Java to the extent possible. In those situations where
JML semantics differ from Java, it should not come as a surprise
to Java developers [14]. In our case, since Java assumes that
references are possibly-null by default, it would not be appropriate
to simply propose that JML’s default be non-null. Instead, there
should be an explicit indication in a JML module specification
that unadorned references are to be interpreted as non-null. (Of
course, it would be preferable for Java to adopt non-null as a

4 I.e., class or interface.

0% 5% 10% 15% 20% 25% 30%

[0-10%)

[10-20%)

[20-30%)

[30-40%)

[40-50%)

[50-60%)

[60-70%)

[70-80%)

[80-90%)

[90-100%)

[100%]

JML Checker ESC/Java2 SoenEA Koa TS

Figure 4. Percentage of files having a value for x (the
proportion of non-null declarations) in a given range

50%

55%

60%

65%

70%

75%

80%

85%

JML
Checker

ESC/Java2 SoenEA Koa TS Overall

Fields Methods Parameters

Figure 5. Mean of x, the proportion of
non-null declarations, by kind

default, as will be done in the next release of Eiffel for example—
see Section 5.2.2.)
Hence we propose the addition of a module modifier named
non_null_ref_by_default that can be placed just ahead of the
class or interface keywords. In this way, a completely
unadorned Java module will have the same semantics as Java
(with respect to the interpretation of declarations of reference
types). An example of the use of this module modifier is given in
Figure 6; it is a revised version of the Greeting class
specification of Figure 1.
As was previously mentioned, we believe that it is safer to have
declarations represent non-null references rather than possibly-
null references by default. As a final enhancement we suggest
that JML tools emit a warning if neither default has been explicitly
specified for any given Java module5. In those situations where a
developer wishes to preserve Java semantics, he or she can make
use of the null_ref_by_default module modifier. Such a
behavior will help developers who are new to JML remember to
use the safer non_null_ref_by_default when appropriate
(which should be most of the time).

4.3 Implementation
The given proposal has been implemented in the JML checker and
the JML Run-time Assertion Checker. Since these tools already
supported the notion of possibly-null and non-null declarations,
the adaptation was relatively easy (approximately two person-
weeks). We expect that the adaptation of other JML tools should
be just as straight-forward. Joseph Kiniry and the first author are
currently implementing the proposal in ESC/Java2.

5. RELATED WORK

5.1 Nullity annotations
Most closely related to our current proposal for JML are the
nullity annotations supported by Splint [6]. Splint is a static

5 Of course, such warnings can be disabled using a command-line option.

analysis tool for C programs that evolved out of work on Lclint.
Lclint was essentially a type checker for Larch/C, a behavioral
interface specification language for C [10]. In Splint, all pointer
variables are assumed to be non-null by default, unless adored
with @null. Splint can be used to statically detect potential null
dereferences.

5.2 Non-null types
In contrast to using assertions or special annotations, some
languages have enriched type systems supporting the notion of
non-null types. Of the three described here, two are proposing
that references be non-null by default.

5.2.1 Nice
The Nice programming language can be seen as an enriched
variant of Java supporting parametric types, multi-methods, and
contracts among other features [2]. Nice also supports non-null
types. By default, a reference type name T denotes non-null
instances of T. To express the possibility that a declaration of
type T might be null, one prefixes the type name with a question
mark [3].

5.2.2 Eiffel
The next major release of the Eiffel programming language [15]
will also include support for attached types (i.e. non-null types, or
non-void types as they might be called in Eiffel) as opposed to
detachable types (that can be null) [16]. The proposed default for
this new release of Eiffel will be attached types. Special
consideration has been given to minimizing the migration effort of
current Eiffel code.

5.2.3 Spec#
Spec# is an extension of the C# programming language that adds
support for contracts, checked exceptions and non-null types. The
Spec# compiler statically enforces non-null types and generates
run-time assertion checking code for contracts [1]. For reasons of
backwards compatibility with C#, a reference type name T refers
to possibly null references of type T whereas T! is used to
represent non-null references of type T.

public abstract /*@ non_null_ref_by_default @*/

class Greeting
{

 private /*@ spec_public @*/ String nm;

 /*@ public normal_behavior

 @ requires !aNm.equals("");

 @ modifies nm;
 @ ensures nm == aNm;

 @*/

 public void set(String aNm) {
 nm = aNm;

 }

 //@ ensures \result.equals(greeting()+nm);

 public /*@ pure @*/ String welcome() {

 return greeting() + nm;
 }

 //@ ensures !\result.equals("");
 public abstract

 /*@ pure @*/ String greeting();

}

Figure 6. Greeting specification using
non_null_ref_by_default

class GenericGreeting : Greeting {

 string! greeting;
 public GenericGreeting(string! n, string! g) {

 base(n);

 // (1)
 }

 // ...

}

(a) Partially initialized object (Spec#)

class GenericGreeting : Greeting {

 string! greeting;

 public GenericGreeting(string! n, string! g) {
 greeting = g;

 base(n);

 // (1)
 }

 // ...

}

(b) Use of initializer (Spec#)

Figure 7. Spec# GenericGreeting examples

The introduction of non-null types naturally complicates the type
system and leads to other issues. The main issue has to do with
partially initialized objects [7]. Consider the example given in
Figure 7(a). At point (1) in the constructor code, the field
greeting will be null—due to the automatic initialization
performed on instance fields. To solve this problem, Spec#
allows constructors to provide field initializers as is illustrated in
Figure 7(b).
In the case of JML, no such special measures are required since a
non-null constraint on a field like greeting would be translated
into a non-null constraint in a class invariant. Class invariants are
not assumed to hold on entry to or during the execution of a
constructor body. This is not to claim that JML’s approach is
better—especially given the open issues related to the treatment of
invariants—but rather than it is an alternative approach.

6. CONCLUSION
In this paper, we report on a novel study of four open projects
(totaling over 450 KLOC) taken from various domains of
application. The study results support the hypothesis that, by
design, the majority of reference type declarations are meant to be
non-null in Java.
It would be preferable that Java be adapted so that declarations are
interpreted as non-null by default (as will be the case, for
example, in the next release of Eiffel). In the meantime, we have
suggested an adaptation to JML that would allow specifications to
be more concise by interpreting reference types as non-null unless
explicitly annotated with the null declaration modifier. Our
proposal results in a safer default since in the absence of
declaration annotations, modules simply present stricter interfaces
to their clients.
We have implemented our proposal in the JML checker and run-
time assertion checker compiler. As future work, we intend to
complete the implementation of the proposal in ESC/Java2, and to
conduct further studies in an attempt to measure the effectiveness
of our new proposed default for reference type declarations.

ACKNOWLEDGMENTS
We are grateful to the anonymous referees for their helpful
comments. The authors would like to thank Joseph Kiniry for
providing access to, and assistance on the Koa source, and for
discussions about Eiffel. We thank Kui Dai for implementing the
proposed changes to JML in the checker and RAC, as well as Hao
Xi for contributing to the non-null metrics tool. Research support
was provided by NSERC of Canada (261573-03) and the Quebec
FQRNT (100221).

REFERENCES
[1] M. Barnett, K. R. M. Leino, and W. Schulte, "The Spec#

Programming System: An Overview." In Proceedings of
the International Workshop on the Construction and
Analysis of Safe, Secure, and Interoperable Smart Devices
(CASSIS 2004), Marseille, France, LNCS, vol. 3362, 2004.

[2] D. Bonniot. The Nice programming language,
http://nice.sourceforge.net/, June 2005.

[3] D. Bonniot. Type safety in Nice: Why programs written in
Nice have less bugs, http://nice.sourceforge.net/safety.html,
June 2005.

[4] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll, "An overview

of JML tools and applications," International Journal on
Software Tools for Technology Transfer (STTT), 2004.

[5] P. Chalin and F. Rioux, Non-null References by Default in
the Java Modeling Language, Dependable Software
Research Group, Concordia University, ENCS-CSE TR
2005-004. June, 2005.

[6] D. Evans and D. Larochelle, "Improving security using
extensible lightweight static analysis," IEEE Software, vol.
19, no. 1, pp. 42-51, Jan.-Feb., 2002.

[7] M. Fähndrich and K. R. M. Leino, "Declaring and checking
non-null types in an object-oriented language," in
Proceedings of the 18th annual ACM SIGPLAN conference
on Object-oriented programing, systems, languages, and
applications. OOPSLA'03: ACM Press, 2003, pp. 302-312.

[8] C. Flanagan and K. R. M. Leino, "Houdini, an Annotation
Assistant for ESC/Java." In Proceedings of the
International Symposium of Formal Methods Europe,
Berlin, Germany, vol. 2021, pp. 500-517, 2001.

[9] M. Fowler, Refactoring: Improving the Design of Existing
Code. Object Technology Series. Addison-Wesley, 1999.

[10] J. V. Guttag and J. J. Horning, Larch: Languages and Tools
for Formal Specification. Texts and Monographs in
Computer Science. Springer-Verlag, 1993.

[11] G. T. Leavens, A. L. Baker, and C. Ruby, "JML: A Notation
for Detailed Design," in Behavioral Specifications of
Businesses and Systems, B. R. Haim Kilov, Ian Simmonds,
Ed.: Kluwer, 1999, pp. 175-188.

[12] G. T. Leavens, K. R. M. Leino, E. Poll, C. Ruby, and B.
Jacobs, "JML: notations and tools supporting detailed
design in Java," in OOPSLA 2000 Companion, Minneapolis,
Minnesota, 2000, pp. 105-106.

[13] G. T. Leavens, A. L. Baker, and C. Ruby, Preliminary
Design of JML: A Behavioral Interface Specification
Language for Java, Department of Computer Science, Iowa
State University TR #98-06-rev27. April, 2005.

[14] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R.
Cok, "How the design of JML accommodates both runtime
assertion checking and formal verification," Science of
Computer Programming, vol. 55, no. 1-3, pp. 185-208,
2005.

[15] B. Meyer, Eiffel: The Language. Object-Oriented Series.
New York. Prentice-Hall, 1991.

[16] B. Meyer, Eiffel: The Language, Draft of future edition,
revision 5.00 (June 2005) ed. Unpublished, 2005.

[17] A. D. Raghavan and G. T. Leavens, Desugaring JML
Method Specifications, Department of Computer Science,
Iowa State University TR #00-03e. May, 2005.

[18] F. Rioux and P. Chalin, "Improving the Quality of Web-
based Enterprise Applications with Extended Static
Checking: A Case Study." In Proceedings of the 1st
International Workshop on Automated Specification and
Verification of Web Sites, Valencia, Spain, Electronic Notes
in Theoretical Computer Science, March 14-15, 2005 (to
appear).

