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SAVCBS 2005 
WORKSHOP INTRODUCTION 

 
This workshop is concerned with how formal (i.e., mathematical) techniques can be or should be used to 
establish a suitable foundation for the specification and verification of component-based systems. 
Component-based systems are a growing concern for the software engineering community. Specification 
and reasoning techniques are urgently needed to permit composition of systems from components. 
Component-based specification and verification is also vital for scaling advanced verification techniques 
such as extended static analysis and model checking to the size of real systems. The workshop will 
consider formalization of both functional and non-functional behavior, such as performance or 
reliability. 
 
This workshop brings together researchers and practitioners in the areas of component-based software 
and formal methods to address the open problems in modular specification and verification of systems 
composed from components. We are interested in bridging the gap between principles and practice. The 
intent of bringing participants together at the workshop is to help form a community-oriented 
understanding of the relevant research problems and help steer formal methods research in a direction 
that will address the problems of component-based systems. For example, researchers in formal methods 
have only recently begun to study principles of object-oriented software specification and verification, 
but do not yet have a good handle on how inheritance can be exploited in specification and verification. 
Other issues are also important in the practice of component-based systems, such as concurrency, 
mechanization and scalability, performance (time and space), reusability, and understandability. The aim 
is to brainstorm about these and related topics to understand both the problems involved and how formal 
techniques may be useful in solving them. 
 
The goals of the workshop are to produce: 
 

1. An outline of collaborative research topics, 
2. A list of areas for further exploration, 
3. An initial taxonomy of the different dimensions along which research in the area can be 

categorized. For instance, static/dynamic verification, modular/whole program analysis, 
partial/complete specification, soundness/completeness of the analysis, are all continuums along 
which particular techniques can be placed, and 

4. A web site that will be maintained after the workshop to act as a central clearinghouse for 
research in this area. 
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Thread-Modular Verification by Context Inference

Ranjit Jhala
∗

Computer Science Department
Jacobs School of Engineering

University of California, San Diego, USA

jhala@cs.ucsd.edu

ABSTRACT
Multithreaded programs are notoriously difficult to verify:
the interleaving of concurrent threads causes an exponential
explosion of the control state, and if threads can be dynami-
cally created, the number of control states is unbounded. A
classical thread-modular approach to verification is to con-
sider the system as composed of a “main” thread and a con-
text which is an abstraction of all the other “environment”
threads of the system, and to then verify that (a) that this
composed system is safe (“assume”), and, (b) that the con-
text is indeed a sound abstraction (“guarantee”). Once the
appropriate context has been divined, the above checks can
be discharged by existing methods. Previously, such a con-
text had to be provided manually, and if the given context
is imprecise, then either check may fail leaving us with no
information about whether the system is safe or not.

We show how to automate the thread-modular approach by:
(a) finding a model for the context that is simultaneously (i)
abstract enough to permit efficient checking and (ii) precise
enough to preclude false positives as well as yield real error
traces when the checks fail, and (b) showing how to infer
such a context automatically. We give a novel way to con-
struct stateful contexts, by representing individual environ-
ment threads as abstract finite state machines, and tracking
arbitrarily many threads by counting the number of threads
at each abstract state. We infer stateful contexts by it-
eratively weakening the abstract reachability analysis used
for sequential programs, until an appropriate context is ob-
tained.

We have implemented this algorithm in our C model checker
BLAST, and used it to look for race conditions on networked
embedded systems applications written in NesC, which use
non-trivial synchronization idioms, that cause previous, im-
precise analyses to race false alarms. We were able to find

∗Joint work with Thomas A. Henzinger(EPFL, Switzerland)
and Rupak Majumdar (UCLA, USA).

potential races in some cases and prove the absence of races
in others.

Biography
Ranjit Jhala is an Assistant Professor of Computer Science
at the University of California, San Diego. Previously, he
received a Ph.D. in Computer Science from the University
of California, Berkeley, and before that, a B. Tech in Com-
puter Science and Engineering from the Indian Institute of
Technology, Delhi. He is interested in Programming Lan-
guages and Software Engineering, more specifically, in tech-
niques for building reliable computer systems. The major-
ity of his work has been on the BLAST software verifica-
tion system which draws from, combines and contributes
to techniques for Automated Deduction, Program Analysis
and Model Checking.
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Assume-Guarantee Testing
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ABSTRACT
Verification techniques for component-based systems should
ideally be able to predict properties of the assembled system
through analysis of individual components before assembly.
This work introduces such a modular technique in the con-
text of testing. Assume-guarantee testing relies on the (au-
tomated) decomposition of key system-level requirements
into local component requirements at design time. Develop-
ers can verify the local requirements by checking components
in isolation; failed checks may indicate violations of system
requirements, while valid traces from different components
compose via the assume-guarantee proof rule to potentially
provide system coverage. These local requirements also form
the foundation of a technique for efficient predictive testing
of assembled systems: given a correct system run, this tech-
nique can predict violations by alternative system runs with-
out constructing those runs. We discuss the application of
our approach to testing a multi-threaded NASA application,
where we treat threads as components.

Keywords
verification, testing, assume-guarantee reasoning, predictive
analysis

1. INTRODUCTION
As software systems continue to grow in size and complexity,
it is becoming common for developers to assemble them from
new or reused components potentially developed by different
parties. For these systems, it is important to have verifica-
tion techniques that are modular as well, since verification
is often the dominant software production cost. Developers
could use such techniques to avoid expensive verification of
assembled systems, instead performing verification primar-
ily on individual components. Unfortunately, the task of ex-
tracting useful results from verification of components in iso-
lation is often difficult: first, developing environments that
will appropriately exercise individual components is chal-
lenging and time-consuming, and second, inferring system

properties from results of local verification is typically non-
trivial. The growing popularity of component-based systems
makes it important for verification researchers to investigate
these challenges.

Assume-guarantee reasoning is a technique that has long
held promise for modular verification. This technique is
a “divide-and-conquer” approach that infers global system
properties by checking individual components in isolation [4,
13, 15, 17]. In its simplest form, it checks whether a compo-
nent M guarantees a property P when it is part of a system
that satisfies an assumption A, and checks that the remain-
ing components in the system (M ’s environment) satisfy A.
Extensions that use an assumption for each component in
the system also exist. Our previous work developed tech-
niques that automatically generate assumptions for perform-
ing assume-guarantee model checking at the design level [2,
5, 9], ameliorating the often difficult challenge of finding an
appropriate assumption.

While design verification is important, it is also necessary
to verify that an implementation preserves the design’s cor-
rectness. For this purpose, we have also previously devel-
oped a methodology that uses the assumptions created at
the design level to model check source code in an assume-
guarantee style [10]; with this methodology, it is possible
to verify source code one component at a time. Hence,
this technique has the potential to meet the challenges of
component-based verification.

Unfortunately, despite the increased scalability that one can
achieve by using assume-guarantee techniques in model check-
ing, it remains a difficult task in the hands of experts to make
the technique scale to the size of industrial systems. Fur-
thermore, model checkers do not exist for many languages
commonly used in industry. This work explores the bene-
fits of assume-guarantee reasoning for testing, which is still
the predominant industrial verification technique. We have
developed assume-guarantee testing, which reuses proper-
ties, assumptions, and proof rules from design-level assume-
guarantee verification to enhance both unit testing and whole-
system testing. The contributions of assume-guarantee test-
ing are as follows:

1. During unit testing, assume-guarantee testing has the
potential to obtain system coverage and detect system-level
errors. Our approach applies assume-guarantee reasoning
to component test traces, using assumptions as environ-

7



ments to drive individual components. This process provides
guarantees on trace compositions that are analogous to the
guarantees obtained by assume-guarantee model checking.
Hence, the technique can infer that a (potentially large) set
of system traces satisfies a global property by checking traces
of components in isolation against assume-guarantee pairs.
Moreover, component test traces that fail their assume-guarantee
premises may uncover system-level violations. Assumptions
restrict the context of the components, thus reducing the
number of false positives obtained by verification (i.e., er-
rors that will never exhibit themselves in the context of
the particular system in which the component will be in-
troduced). As a result, the likelihood that a failed local
check corresponds to a system-level error is higher. Early
error detection is desirable, as it is well established that er-
rors discovered earlier in the development phase are easier
and cheaper to fix.

2. During whole-system testing, assume-guarantee testing
has the potential to efficiently detect bugs and provide cov-
erage. In this context, our approach projects system traces
onto individual components, and applies assume-guarantee
reasoning to the projections. This technique is an efficient
means of predictive testing. Predictive testing detects the
existence of bad traces from good traces [19]. It exploits
the insight that one can reorder independent events from a
trace to obtain different legal traces. Typically, predictive
testing techniques discover these alternative traces by com-
posing independent events in different orders. Our technique
uses assume-guarantee reasoning to obtain results about the
alternative interleavings without explicitly exploring them,
and thus is potentially more efficient.

We experimented with our assume-guarantee testing frame-
work in the context of the Eagle runtime analysis tool [3],
and applied our approach to a NASA software system also
used in the demonstration of our design-level assume-guarantee
reasoning techniques. In the analysis of a specific property
(P ) during these experiments, we found a discrepancy be-
tween one of the components and the design that it im-
plements. This discrepancy does not cause the system to
violate P ; monolithic model checking would therefore not
have detected it.

The remainder of the paper is organized as follows. We
first provide some background in Section 2, followed by a
discussion of our assume-guarantee testing approach and its
advantages in Section 3. Section 4 describes the experience
and results obtained by the application of our techniques to
a NASA system. Finally, Section 5 presents related work
and Section 6 concludes the paper.

2. BACKGROUND
LTSs. At design level, this work uses Labeled Transition
Systems (LTSs) to model the behavior of communicating
components. Let Act be the universal set of observable ac-
tions and let τ denote a local action unobservable to a com-
ponent’s environment. An LTSM is a quadruple 〈Q,αM, δ, q0〉
where:

• Q is a non-empty finite set of states

• αM ⊆ Act is a finite set of observable actions called

the alphabet of M

• δ ⊆ Q× αM ∪ {τ} ×Q is a transition relation

• q0 ∈ Q is the initial state

Let M = 〈Q,αM, δ, q0〉 and M ′ = 〈Q′, αM ′, δ′, q0′〉. We say

that M transits into M ′ with action a, denoted M
a−→M ′,

if and only if (q0, a, q0′) ∈ δ and αM = αM ′ and δ = δ′.

Traces. A trace t of an LTS M is a sequence of observable
actions that M can perform starting at its initial state. For
Σ ⊆ Act, we use t�Σ to denote the trace obtained by remov-
ing from t all occurrences of actions a /∈ Σ. The set of all
traces of M is called the language of M , denoted L (M).

Let t = 〈a1, a2, . . . , an〉 be a finite trace of some LTS M .
We use [t] to denote the LTS Mt = 〈Q,αM, δ, q0〉 with Q =
{q0, q1, . . . , qn}, and δ = {(qi−1, ai, qi)}, where 1 ≤ i ≤ n.

Parallel Composition. The parallel composition oper-
ator ‖ is commutative and associative. It combines the
behavior of two components by synchronizing the actions
common to their alphabets and interleaving the remaining
actions. Formally, let M1 = 〈Q1, αM1, δ1, q01〉 and M2 =
〈Q2, αM2, δ2, q02〉 be two LTSs. Then M1 ‖ M2 is an LTS
M = 〈Q,αM, δ, q0〉, where Q = Q1 × Q2, q0 = (q01, q02),
αM = αM1 ∪ αM2, and δ is defined as follows, where a is
either an observable action or τ (note that commutativity
implies the symmetric rules):

M1
a−→M ′1, a /∈ αM2

M1 ‖M2
a−→M ′1 ‖M2

M1
a−→M ′1, M2

a−→M ′2, a 6= τ

M1 ‖M2
a−→M ′1 ‖M ′2

Properties and Satisfiability. A property is specified as
an LTS P , whose language L (P ) defines the set of accept-
able behaviors over αP . An LTS M satisfies P , denoted as
M |= P , if and only if ∀t ∈ L (M).t�αP ∈ L (P ).

Assume-guarantee Triples. In the assume-guarantee paradigm
a formula is a triple 〈A〉 M 〈P 〉, where M is a component,
P is a property and A is an assumption about M ’s environ-
ment [17]. The formula is true if whenever M is part of a
system satisfying A, then the system guarantees P . At de-
sign level in our framework, the user expresses all of A,M,P
as LTSs.

Assume-guarantee Reasoning. Consider for simplicity a
system that is made up of components M1 and M2. The aim
of assume-guarantee reasoning is to establish M1 ‖ M2 |=
P without composing M1 with M2. For this purpose, the
simplest proof rule consists of showing that the following
two premises hold: 〈A〉 M1 〈P 〉 and 〈true〉 M2 〈A〉. From
these, the rule infers that 〈true〉 M1 ‖ M2 〈P 〉 also holds.
Note that for this rule to be useful, the assumption must
be more abstract than M2, but still reflect M2’s behavior.
Additionally, an appropriate assumption for the rule needs
to be strong enough for M1 to satisfy P . Unfortunately, it
is often difficult to find such an assumption.
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Our previous work developed frameworks that compute as-
sumptions automatically for finite-state models and safety
properties expressed as LTSs. More specifically, Giannakopoulou
et al. [9] present an approach to synthesizing the assump-
tion that a component needs to make about its environment
for a given property to hold. The assumption produced is
the weakest, that is, it restricts the environment no more
and no less than is necessary for the component to satisfy
the property. Barringer et al. [2] and Cobleigh et al. [5]
use a learning algorithm to compute assumptions in an in-
cremental fashion in the context of simple and symmetric
assume-guarantee rules, respectively.

3. ASSUME-GUARANTEE TESTING
This section describes our methodology for using the arti-
facts of the design-level analysis, i.e. models, properties and
generated assumptions, for testing the implementation of a
software system. This work assumes a top-down software
development process, where one creates and debugs design
models and then uses these models to guide the development
of source code, possibly by (semi-) automatic code synthesis.

Our approach is illustrated by Figure 1. Consider a system
that consists of two (finite-state) design models M1 and M2,
and a global safety property P . Assume that the property
holds at the design level (if the property does not hold, de-
velopers can use the feedback provided by the verification
framework to correct the models). The assume-guarantee
framework that is used to check that the property holds will
also generate an assumption A that is strong enough for M1

to satisfy P but weak enough to be discharged by M2 (i.e.
〈A〉 M1 〈P 〉 and 〈true〉 M2 〈A〉 both hold), as described in
Section 2.

Once design-level verification establishes the property, it is
necessary to verify that the property holds at the implemen-
tation level, i.e. that C1 ‖ C2 |= P . This work assumes that
each component implements one of the design models, e.g.
components C1 and C2 implement M1 and M2, respectively,
in Figure 1. We propose assume-guarantee testing as a way
of checking C1 ‖ C2 |= P . This consists of producing test
traces by each of the two components, and checking these
traces against the respective assume-guarantee premises ap-
plied at the design level. If each of the checks succeeds, then
the proof rule guarantees that the composition of the traces
satisfies the property P .

We illustrate assume-guarantee testing through a simple ex-
ample. Consider a communication channel that has two
components, designs M1 and M2 and corresponding code
C1 and C2 (see Figure 2). Property P describes all legal
executions of the channel in terms of events {in, out}; it
essentially states that for a trace to be legal, in must oc-
cur in the trace before any occurrence of out. Figure 2
also shows the assumption A that design-level analysis of
M1 ‖ M2 generates (see Section 2). Note that although
M1 ‖ M2 |= P , C1 ‖ C2 does not. Testing C1 and C2

in isolation may produce the traces t1 and t2 (respectively)
that Figure 3 (left) shows. Checking 〈true〉 t2 〈A〉 during
assume-guarantee testing will detect the fact that t2 violates
the assumption A and will thus uncover the problem with
the implementation. Assume now that the developers do not
use assume-guarantee testing, but rather test the assembled

Figure 1: Design and code level analysis

system (we call the latter monolithic testing). The system
might first produce the first two traces illustrated in Fig-
ure 3 (right). These traces satisfy the property, which could
lead the developers to mistakenly believe that the system
is correct. They may even achieve some coverage criterion
without detecting the bug, as discussed later in this section.

In summary, assume-guarantee testing can obtain results on
all interleavings of two individual component traces simply
by checking each against the appropriate assume-guarantee
premise. In the context of our example, checking t1 and t2
corresponds to checking all four traces illustrated in Figure 3
(right).

While our example illustrates the benefits of assume-guarantee
reasoning for unit testing, similar benefits apply to testing
of assembled systems. When the system is assembled, the
testing framework uses assume-guarantee reasoning to con-
duct analysis that can efficiently predict, based on correct
system runs, violations by alternative system runs. We dis-
cuss both flavors of assume-guarantee testing in more detail
below.

3.1 Assume-Guarantee Component Testing
The first step in assume-guarantee component testing in-
volves the implementation of 1) UA for C1, where UA en-
codes C1’s universal environment restricted by assumption
A, and 2) the universal environment U for C2. The univer-
sal environment for a component may exercise any service
that the component provides in any order, and may provide
or refuse any service that the component requires. The next
step is to execute C1 in UA and C2 in U to produce sets of
traces T1 and T2 respectively. The technique then performs
assume-guarantee reasoning, checking each trace t1 ∈ T1

against P and each trace t2 ∈ T2 against A. If either of
these checks fail (as in Figure 3), this is an indication that
there is an incompatibility between the models and the im-
plementations, which the developers can then correct. If all
these tests succeed, then the assume-guarantee rule implies
that [t1]||[t2] |= P , for all t1 ∈ T1 and t2 ∈ T2.

Using this approach, one can check system correctness through
local tests of components. It is possible to perform assume-
guarantee testing as soon as each component becomes “code
complete”, and before assembling an executable system or
even implementing other components. A secondary advan-
tage of this approach is that it ameliorates the problem of
choosing appropriate testing environments for components
in isolation. This is a difficult problem in general, as finding
an environment that is both general enough to fully exercise
the component under testing and specific enough to avoid
many false positives is usually a time-consuming iterative
process. Here, this problem is reduced to that of correctly

9



Figure 2: Assume-guarantee testing

implementing UA and U . Note that alternatively, one may
wish to check preservation of properties by checking directly
that each implemented component refines its model. In our
experience, for well-designed systems, the interfaces between
components are small, and the generated assumptions are
much smaller than the component models. Therefore, it is
more efficient to check the assumptions than to check refine-
ment directly. Finally, note that, when checking components
in isolation, one has more control over the component inter-
face (since it is exercised directly rather than through some
other component). As a result, it is both easier to repro-
duce problematic behavior, and to exercise more traces for
constructing sets T1 and T2.

Coverage. Unlike model checking, testing is not an ex-
haustive verification technique. As a result, it is possible for
defects to escape despite testing. For this reason, software
quality assurance engineers and researchers on software test-
ing have traditionally associated the notion of coverage with
the technique. Coverage criteria dictate how much testing is
“enough” testing. A typical coverage criterion that works on
the structure of the code is “node” coverage, which requires
that the tests performed cover all nodes in the control flow
graph of a system’s implementation. Assume that in our ex-
ample our coverage criterion is node coverage for C1 and C2.
Then t1 and t2 in Figure 3 (left) together achieve 100% cov-
erage. Similarly, the first trace of the assembled system in
Figure 3 (right) achieves 100% node coverage. It is therefore
obvious that assume-guarantee testing has the potential of
checking more behaviors of the system even when it achieves
the same amount of coverage. This example also reflects the
fact that traditional coverage criteria are often not appro-
priate for concurrent or component-based systems, which is
an area of active research. One could also measure coverage
by the number of behaviors or paths through the system
that are exercised. The question of what benefits assume-
guarantee reasoning can provide in such a context is open
research.

Discussion. As stated above, our hope is that by checking
individual traces of components, the technique covers mul-
tiple traces of the assembled system. Unfortunately, this is
not always true, due to the problem of incompatible traces,
which are traces that do not execute the same shared events

Figure 3: Discovering bugs with fewer tests

in the same order. These traces are from different execu-
tion paths, and thus give the empty trace on composition.
For example, suppose that the first event in t1 is a function
call on the procedure foo in C1, while the first event in t2
is a function call on the procedure bar in C2; these traces
executed on different paths and are incompatible. Thus,
assume-guarantee testing faces the question of producing
compatible traces during component testing. One potential
way to guarantee that T1 and T2 contain compatible traces
is to use the component models as a coverage metric when
generating traces in T1 and T2, and require that each set of
traces cover certain sequences of shared events in the mod-
els.

3.2 Predictive Analysis on Assembled Systems
Assume-guarantee testing can also be a mechanism for pre-
dictive testing of component assemblies. Assume-guarantee
testing for predictive analysis has the following steps:

• Obtain a system trace t (by running C1||C2).

• Project the trace on the alphabets of each component;
obtain t1 = t�αC1 and t2 = t�αC2.

• Use the design-level assumption to study the compo-
sition of the projections; i.e. check that 〈A〉 [t1] 〈P 〉
and 〈true〉 [t2] 〈A〉 hold, using model checking.

The approach is illustrated in Figure 4: on the right, we
show a trace t of C1||C2 that does not violate the property.
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Figure 4: Predictive analysis

On the left, we show the projections t1 and t2. Note that
〈true〉 [t2] 〈A〉 does not hold, hence from a single “good”
trace the methodology has been able to show that C1||C2

violates the property. Using the design-level assumption to
analyze the projections is more efficient than composing the
projections and checking that the composition satisfies the
property (as is performed by other predictive analysis tech-
niques) as long as the assumption is small; in our experience,
this is often the case [9].

An alternative approach is to generate the assumption di-
rectly from the projected trace t1, and then test that t2
satisfies this assumption. This approach is a way to do
assume-guarantee predictive testing in a system where there
are no design-level models. However, it may not be practi-
cal to generate a new assumption for each trace; we plan to
experiment with this approach in the future.

Discussion. It is desirable to use assume-guarantee pre-
dictive testing as a means of efficiently generating system
coverage. This technique does not suffer from incompatible
traces, as the two projected traces occur in the same sys-
tem trace and are thus guaranteed to be compatible. How-
ever, to gain the full benefits of assume-guarantee testing
in this context, trace generation should take into account
the results of predictive analysis. For example, suppose that
trace generation produces a trace t, projected onto t1 and t2.
Assume-guarantee testing proves that [t1]||[t2] |= P . Further
trace generation should avoid traces in [t1]||[t2] since these
are covered by the assume-guarantee checking of t1 and t2.
Again, one possible way to ensure avoidance of such redun-
dant traces is to use the design-level model as a coverage
metric; two traces that have different sequences of shared
events through the model will project onto different traces.
Test input generation techniques could also be useful for this
purpose. This topic is a subject of future work.

4. EXPERIENCE
Our case study is the planetary rover controller K9, and
in particular its executive subsystem, developed at NASA
Ames Research Center. We performed this study in the con-
text of an ongoing collaboration with the developers of the
rover, in which we have performed verification during devel-
opment to increase the quality of the design and implemen-
tation of the system. Below we describe the rover executive,
our design-level analysis, how we used the assumptions gen-

Figure 5: The Executive of the K9 Mars Rover

erated by this analysis to conduct assume-guarantee testing,
and results of this testing.

4.1 K9 Rover Executive Subsystem
The executive sub-system commands the rover through the
use of high-level plans, which it interprets and executes in
the context of the execution environment. The executive
monitors execution of plan actions and performs appropriate
responses and cleanup when execution fails.

The executive implementation is a multi-threaded system
(see Figure 5), made up of a main coordinating component
named Executive, components for monitoring temporal con-
ditions ExecTimerChecker and state conditions ExecCond-
Checker, and an ActionExecution thread that is responsible
for issuing the commands (actions) to the rover. The com-
munication between different components (threads) is made
through an EventQueue. The implementation has 35K lines
of C++ code and it uses the POSIX thread library.

4.2 Design-level Analysis
We previously developed detailed design models for the ex-
ecutive subsystem [9]. We then checked these models in an
assume-guarantee manner for several properties specified by
the developers. Model checking of the design models uncov-
ered a number of synchronization problems such as dead-
locks and data races, which we then fixed in collaboration
with the developers. After finishing this process, for each
property we had an assumption on one of the components
stating what behavior was needed of it for the property to
hold of the entire system.

4.3 Assume-guarantee Testing Framework
We have developed a framework that uses the assumptions
and properties built during the design-level analysis for the
assume-guarantee testing of the executive implementation.
In order to apply assume-guarantee testing, we broke up the
implementation into two components, with the Executive
thread, the EventQueue and the ActionExecution thread on
one side (M1), and the ExecCondChecker thread and the
other threads on the other side (M2), as shown in Figure 5.

To test the components in isolation, we generated envi-
ronments that encode the design-level assumptions (as de-
scribed in Section 3). We implemented each environment as

11



Figure 6: Testing Environment

a thread running a state machine (the respective design-level
assumption) that executes in an infinite loop. In each itera-
tion of the loop, the environment makes a random choice to
perform an “active” event (such as calling a component func-
tion) that is enabled in the current state; the state machine
then makes the appropriate transition. To make function
calls on the component, we provided dummy values of irrel-
evant arguments (while ensuring that these dummy values
did not cause any loss of relevant information). The envi-
ronment implementations also provide stubs for the exter-
nal functions that the component under testing calls; when
called, these functions cause state machine transitions.

The methodology uses the Eagle run-time monitoring frame-
work [3] to check that the components conform with the
assume-guarantee pairs. Eagle is an advanced testing frame-
work that provides means for constructing test oracles that
examine the internal computational status of the analyzed
system. For run-time monitoring, the user instruments the
program to emit events that provide a trace of the run-
ning system. Eagle then checks to see whether the current
trace conforms to formalized requirements, stated as tem-
poral logic assertions or finite-state automata.

For our experiments, we instrumented (by hand) the code
of the executive components to emit events that appear in
the design-level assumptions and properties. We also (auto-
matically) translated these assumptions and properties into
Eagle monitors.

Note that in order to run the executive system (or its com-
ponents), the user needs to provide an input plan and an
environment simulating the actual rover hardware. For our
assume-guarantee testing experiments, the hardware envi-
ronment was stubbed out. For plan input generation, we
built upon our previous work, which combines model check-
ing and symbolic execution for specification-based test input
generation [21]. To generate test input plans, we encoded
the plan language grammar as a nondeterministic specifi-
cation. Running model checking on this model generates
hundreds of input plans in a few seconds.

We have integrated the above techniques to perform assume-
guarantee testing on the executive (see Figure 6). We first
instrument the code and generate Eagle monitors encod-
ing design-level assumptions and properties. The framework
generates a set of test input plans, a script runs the exec-
utive on each plan and it calls Eagle to monitor the gen-

erated run-time traces. The user can choose to perform a
whole-program (monolithic) analysis or to perform assume-
guarantee reasoning.

4.4 Results
We ran several experiments (according to different input
plans). For one property, we found a discrepancy between
the implementation and the models. The property (P ) states
that the ExecCondChecker should not push events onto the
EventQueue unless the Executive has sent the ExecCond-
Checker conditions to check. The design-level assumption
(A) on the ExecCondChecker states that the property will
hold as long as the ExecCondChecker sets a flag variable to 1
before pushing events, since these assignments only happen
in response to the Executive sending conditions.

To check this property, we generated an environment that
drives component C1 (which contains the Executive) accord-
ing to assumption A. We instrumented C1 to emit relevant
events and we ran Eagle to check if the generated traces
conform to property P .

We also generated a universal environment for component
C2 (which contains the ExecCondChecker); we instrumented
C2 to emit events and we used Eagle to check if the gener-
ated traces conform to A. In fact, component C2 did not
conform with the assumption. The obtained counterexam-
ple traces exhibit a scenario where the ExecCondChecker
pushes events onto the EventQueue without first setting the
flag variable to 1. This turned out to be due to the fact
that an input plan can contain null conditions. Instead of
putting these in the condition list for monitoring, the Ex-
ecCondChecker immediately pushes an event to the queue.
This behavior exposed an inconsistency between the mod-
els and the implementation, which we corrected. Monolithic
model checking of the property P would not have uncovered
this inconsistency.

5. RELATED WORK
Assume-guarantee reasoning leverages the observation that
verification techniques can analyze the individual compo-
nents of large systems in isolation to improve performance.
Formal techniques and tools for support of component-based
design and verification are gaining prominence; see for ex-
ample [1, 6, 8]. All these approaches use some form of envi-
ronment assumptions (either implicit or explicit), to reason
about components in isolation.
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Our previous work [10] presented a technique for using design-
level assumptions for compositional analysis of source code.
That work used model checking (Java PathFinder [20]), while
the focus here is on testing. Dingel [7] also uses model check-
ing (the VeriSoft state-less model checker [11]) for perform-
ing assume-guarantee verification for C/C++ components.
However, the burden of generating assumptions is on the
user.

Our work is also related to specification-based testing, a
widely-researched topic. For example, Jagadeesan et al. [14]
and Raymond et al. [18] use formal specifications for the
generation of test inputs and oracles. These works generate
test inputs from constraints (or assumptions) on the envi-
ronment of a software component and test oracles from the
guarantees of the component under test. The AsmLT Test
Generator [12] translates Abstract State Machine Language
(AsmL) specifications into finite state machines (FSMs) and
different traversals of the FSMs are used to construct test
inputs. We plan to investigate the use of different traver-
sal techniques for test input generation from assumptions
and properties (which are in essence FSMs). None of the
above-described approaches address predictive analysis.

Sen et al. [19] have also explored predictive runtime anal-
ysis of multithreaded programs. Their work uses a partial
ordering on events to extract alternative interleavings that
are consistent with the observed interleaving; states from
these interleavings form a lattice that is similar to our com-
position of projected traces. However, to verify that no bad
state exists in this lattice, they construct the lattice level by
level, while this work proposes using assume-guarantee rea-
soning to give similar guarantees without having to explore
the composition of the projected traces.

Levy et al. [16] use assume-guarantee reasoning in the con-
text of runtime monitoring. Unlike our work, which aims at
improving testing, the goal of their work is to combine mon-
itoring for diverse features, such as memory management,
security and temporal properties, in a reliable way.

6. CONCLUSIONS AND FUTURE WORK
We have presented assume-guarantee testing, an approach
that improves traditional testing of component-based sys-
tems by predicting violations of system-level requirements
both during testing of individual components and during
system-level testing. During unit testing, our approach uses
design-level assumptions as environments for individual com-
ponents and checks generated traces against premises of an
assume-guarantee proof rule; the assumptions restrict the
context in which the components operate, making it more
likely that failed checks correspond to system-level errors.
During testing of component assemblies, the technique uses
assume-guarantee reasoning on component projections of a
system trace, providing results on alternative system traces.
We have experimented with our approach in the verification
of a non-trivial NASA system and report promising results.

Although we have strong reasons to expect that this tech-
nique can significantly improve the state of the art in test-
ing, quantifying its benefits is a difficult task. One reason
is the lack of appropriate coverage criteria for concurrent
and component-based systems. Our plans for future work

include coming up with “component-based” testing cover-
age criteria, i.e. criteria which, given the decomposition of
global system properties into component properties, deter-
mine when individual components have been tested enough
to guarantee correctness of their assembly. One interest-
ing avenue for future research in this area is the use of the
models as a coverage metric.
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ABSTRACT
The most challenging issue of component-based software is
about component composition. Current component specifi-
cation, in addition to the syntactic level, is very limited in
dealing with semantic constraints. Even so, only static as-
pects of components are specified. This paper gives a formal
approach to make component specification more comprehen-
sive by including component semantic. Fundamentally, the
component semantic is expressed via the powerful tempo-
ral logic CTL. There are two semantic aspects in the paper,
component dynamic behavior and consistency - namely a
component does not violate some property in another when
composed. Based on the proposed semantic, components
can be efficiently cross-checked for their consistency by an
incremental verification method - OIMC, even for many fu-
ture component extensions.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—formal methods, model checking

1. INTRODUCTION
As an unanimity within the software engineering commu-

nity, high quality software are structured from lowly coupled
components. Within the component-based approach, com-
posing components properly is very essential. Component-
based software idealizes the plug-and-play concept. The cur-
rent component technology generally supports component
matching at the syntactic level. Components can be syn-
tactically checked and hence plugged. However, they do not
play as expected. A major issue of concern is the mismatches
of the components in the context of an assembled system.
A main source of this phenomenon is because a component
violates some property inherent to another. In our opin-
ion, the problem is two-fold: the underlying logic is not
powerful enough to express component properties; and even
if formally specified, it is difficult to verify the properties
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not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
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Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

in an open way - future components are not known in ad-
vance. For instance, temporal inter-component constraints
are difficult to formally specify, much harder to check among
components with the current specification methods. In this
paper, the introduction of the temporal logic CTL [4] into
component semantic is exactly towards that goal. This pa-
per addresses two points: how to explicitly specify such a
component semantic; and given that kind of information in
the component interface, how to efficiently analyze compo-
nents and to decide whether they are safe to be composed
together.

Most current approaches for component interface defini-
tion deal with primarily syntactic issues among static inter-
face elements such as operations and attributes, like those of
the CORBA Interface Definition Language (IDL) [9]. Re-
garding a component’s exact capability, essential semantic
aspects of the component should also be described. In this
paper, the dynamic behavior and component consistency are
introduced, while the encapsulation principle is enforced.
The dynamic behavior of a component is represented by a
state transition model. Besides, associated with a compo-
nent’s behavior is a certain set of inherent properties. Cer-
tainly, another component, when interacting with that com-
ponent, must preserve constraints at the interface of the
former so that those inherent properties continue to hold.
This characteristic is called component consistency. More-
over, as written in CTL, many complex semantic constraints
of component consistency can be formally specified. The
paper then presents an efficient algorithm to analyze consis-
tency between components. Further, the algorithm is also
scalable, not only the direct component extension but also
many future compositions, as long as the consistency con-
straints at the interfaces are preserved.

In this paper, Section 3 introduces the formal dynamic
behavior model of components. Section 4 is about compo-
nent consistency and how to verify it. Later, Section 5 is
concerned with specification of components and their com-
position.

2. BACKGROUND
The most common form of component deployment in prac-

tice, namely Commercial-Off-The-Shelf (COTS), is on very
independent components. The computation paths of these
components rarely interleave with each other. The rela-
tionship between COTS can be named functional addition.
Besides COTS, there is another aspect of components in-
volving in-house component development and integration.
Components evolve through functional refinement. These
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components are relatively coupled thus COTS is not a rec-
ommended option in this situation. There is a strong depen-
dency from the refining component to the base component.
Even though the discussion in this paper focuses on com-
ponent refinement, the results can be well applied to COTS
because analyzing COTS is obviously simpler. In practice,
there is a trade-off between the simplicity of component
specification and proper use of components. For COTS,
component specification at the syntactical level may prove
to be sufficient for component deployment in most of the
cases. However, for component refinement where compo-
nents are fairly coupled, semantic specification is vital.

Unlike the current component technology using UML (Uni-
fied Modeling Language) and OCL (Object Constraint Lan-
guage) [16] to express semantic constraints, constraints in
this paper are related to the temporal logic CTL. CTL∗

logic is formally expressed via two quantifiers A (“for all
paths”) and E (“for some path”) together with five tempo-
ral operators X (“next”), F (“eventually”), G (“always”),
U (“until”) and R (“release”) [4]. CTL (Computation Tree
Logic) is a restricted subset of CTL∗ in which each tempo-
ral operator must be preceded by a quantifier. An incre-
mental verification technique for CTL properties has been
attempted by [6, 13]. It is named open incremental model
checking (OIMC) for the open and incremental character-
istics of the algorithm. Suppose that a base component is
refined by another component. The approach consists of the
following activities:

1. Deriving a set of preservation constraints at the inter-
face states of the base such that if those constraints
are preserved, the property inherent to the base under
consideration is guaranteed.

2. The refining component does not violate the above
property of the base if, during its execution, the above
constraints are preserved.

3. DYNAMIC BEHAVIOR SPECIFICATION
There are two types of semantic mentioned in this paper:

component dynamic behavior (this section) and component
consistency (Section 4).

In the typical case of component refinement, there are two
interacting components: base and extension (or refinement).
Between the base and its extension, on the base side, is an
interface consisting of exit and reentry states [6, 13]. An exit
state is the state where control is passed to the extension.
A reentry state is the point at which the base regains con-
trol. Correspondingly, the extension interface contains in-
and out-states at which the refinement component receives
and returns system control. Let AP be a set of atomic
propositions. The dynamic behavior of a component is in-
dependently represented by a state transition model.

Definition 1. A state transition model M is represented
by a tuple 〈S, Σ, s0, R, L〉 where S is a set of states, Σ is
the set of input events, s0 ∈ S is the initial state, R ⊆
S × PL(Σ) → S is the transition function (where PL(Σ)
denotes the set of guarded events in Σ whose conditions are
propositional logic expressions), and L : S → 2AP labels each
state with the set of atomic propositions true in that state.

A base is expressed by a transition model B = 〈SB, ΣB ,
soB , RB , LB〉 and an interface I . The interface is a tuple

of two state sets I = 〈exit, reentry〉, where exit, reentry ⊆
SB . An extension is similarly represented by a model E =
〈SE , ΣE ,⊥, RE, LE〉. ⊥ denotes no-care value. Its interface
is J = 〈in, out〉.

E can be semantically plugged with B via compatible in-
terface states. Logically, along the computation flow, when
the system is in an exit state ex ∈ I.exit of B matched
with an in-state i ∈ J.in of E, denoted as ex ↔ i, it can
enter E if the conditions to accept extension events, namely
the set of atomic propositions at i, are satisfied. That
is,

V
LB(ex) ⇒ V

LE(i), where
V

is the inter-junction of
atomic propositions. Similar arguments are made for the
matching of a reentry state re ∈ I.reentry and an out-
state o ∈ J.out. The conditions resemble to pre- and post-
conditions in design by contract [12].

Definition 2. Within interfaces I and J of B and E, the
pairs 〈ex, i〉 and 〈re, o〉 can be respectively mapped according
to the following conditions.

• ex ↔ i if
V

LB(ex) ⇒ V
LE(i).

• re ↔ o if
V

LE(o) ⇒ V
LB(re).

The actual mapping configuration is decided by the modeler
at composition time. Subsequently, ex and re will be used
in place of i and o respectively in this paper.

Definition 3. Composing the base B with the extension
E, through the interface I produces a composition model C =
〈SC , ΣC , s0C , RC , LC〉 as follows:

• SC = SB ∪ SE; ΣC = ΣB ∪ ΣE ; s0C = s0B ;

• RC is defined from RB and RE in which RE takes
precedent, namely any transition in B is overridden by
another transition in E if they share the same starting
state and input event;

• ∀s ∈ SB , s �∈ I.exit ∪ I.reentry : LC(s) = LB(s);

• ∀s ∈ SE , s �∈ J.in ∪ J.out : LC(s) = LE(s);

• ∀s ∈ I.exit ∪ I.reentry : LC(s) = LB(s).

In this formal specification, the behavior of B can be par-
tially overridden by E because E takes precedent during
composition.

Definition 4. The closure of a property p, cl(p), is the
set of all sub-formulae of p including itself.

• p ∈ AP : cl(p) = {p}
• p is one of AX f, EX f,AF f, EF f,AG f,EG f :

cl(p) = {p} ∪ cl(f)

• p is one of A [f U g],E [f U g],A [f R g],E [f R g] :
cl(p) = {p} ∪ cl(f) ∪ cl(g)

• p = ¬f : cl(p) = cl(f)

• p = f ∨ g or p = f ∧ g : cl(p) = cl(f) ∪ cl(g)

Definition 5. The truth values of a state s with respect
to a set of CTL properties ps within a model M = 〈S, Σ, s0, R,
L〉, denoted as VM (s, ps), is a function: S × 2CTL → 2CTL.

• VM (s, ∅) = ∅
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• VM (s, {p} ∪ ps) = VM (s, {p}) ∪ VM (s, ps)

• VM (s, {p}) =

j {p} if M, s |= p
{¬p} otherwise

Hereafter, VM (s, {p}) = {p} (or {¬p}) is written in the
shorthand form as VM (s, p) = p (or ¬p) for individual prop-
erty p.

OIMC is rooted at assumption model checking [11]. This
method is particularly useful for open systems - future exten-
sions are not known in advance. Hence, OIMC is applicable
to component-based software. The idea to the component
refinement context is explained in the following. The com-
posite model C can be treated as the combination of two
sequential components B and E. In addition to existing ex-
ecution paths defined in B, a typical execution path in C
consists of three parts: initially in B, next in E and then
back to B. Associated with each reentry state re of E is a
computation tree rooted at the state and lying completely in
B. This tree possesses a set of temporal properties. If these
properties at re are known, without loss of correctness, we
can efficiently derive the properties at the upstream states
in E by ignoring model checking in B to find the properties
at re. Instead, we start from these reentry states with the
associated properties; check the upstream of the extension
component, and then the base component if needed 1. The
properties associated with a reentry state re are assumed
with truth values from B, As(re) = VB(re, cl(p)). As is the
assumption function of this assumption model checking. Of
course, this method relies on whether As(re) is proper.

The assumption As at a reentry state re is proper if the
seeding values are exactly the properties associated with the
tree at re in C, i.e. VB(re, cl(p)) = VC(re, cl(p)). The as-
sumption As is definitely proper if re is not affected by E.
The problem arises if ex is reachable from re in B. On
the other hand, re is reachable from ex in E. This situa-
tion creates a circular dependency between interface states
ex and re. Dealing with such a circular structure is in-
deed very important to the verification result of assumption
model checking. In fact, this is the weak point of assump-
tion model checking. In this paper, that topic is out of the
scope. Subsequent discussions consider As is proper.

4. INTER-COMPONENT CONSISTENCY
Given a structure B = 〈SB, ΣB , s0B , RB, LB〉 as in Defini-

tion 1, a property p holding in B is denoted by B, s0B |= p.
C is formed by composing B and E, C = B + E. B and E
are consistent with respect to p if C, s0B |= p.

4.1 A Theorem on Component Consistency
Due to the inherently inside-out characteristic of model

checking, after checking p in B, at each state s, VB(s, cl(p))
are recorded.

Definition 6. B and E are in conformance at an exit
state ex (with respect to cl(p)) if VB(ex, cl(p)) = VE(ex, cl(p)).

In this definition, VE(ex, cl(p)) are derived from the assump-
tion model checking within E, and the seeded values at any
reentry state re are As(re) = VB(re, cl(p)).

1There is no need to model check the base again if the con-
sistency constraints associated with the exit states of B are
preserved at the respective in-states of E.

Theorem 7. Given a base B and a property p holding on
B, an extension E is attached to B at some interface states.
E does not violate property p if B and E conform with each
other at all exit states.

The proof details are in [13]. Even though this paper fo-
cuses on component refinement, with regards to COTS, the
above theorem also holds. A COTS component can be in-
deed regarded as a special case of refinement in which there
is only a single exit state and no reentry state with the base.
The computation tree of the COTS deviates from the base
and never joins the base again. After being composed with
a COTS, instead of an assumption model checking within
the COTS, a standard model checking procedure can be ex-
ecuted entirely within the COTS to find the properties at the
exit state. The conformance condition to ensure the consis-
tency between the two components can be applied as usual.
The only difference in Definition 6 lies in VE(ex, cl(p)) for
each exit state ex. In component refinement, these truth val-
ues are derived from the assumption model checking within
E with the assumption values VB(re, cl(p)) at any reentry
state re. On the contrary, in COTS, there is no assumption
at all. Hence, the model checking procedure in E is then
exactly standard CTL model checking.

Figure 1 depicts the composition preserving the property
p = A [f U g] when B and E are in conformance. The com-
position is done via a single exit state ex. The reentry state
re is not shown but it does not affect the subsequent argu-
ments 2. E overrides the transition ex-s3 in B. B′ is the
remainder of B after removing the overridden transition. In
the figure, within B, p = A [f U g] holds at s1, s2 and ex.
The figure only shows VE(ex, p) = VB(ex, p) = A [f U g].
In fact, B and E conform at ex with regards to cl(p). Af-
ter removing the edge ex-s3, the new paths in E together
with the remaining computation tree in B′ still preserve p
at ex directly; and consequently s2 and s1 indirectly. As p
is preserved at the initial state s1, B and E are consistent.

By Theorem 7, component semantic specification requires
VB(s, cl(p)) for tuples of any potential interface state s and
any CTL property p inherent to B. They serve as constraints
for component consistency (Section 5.2).

4.2 Open Incremental Model Checking
Components can be verified to be consistent via OIMC.

Initially, a CTL property p is known to hold in B. We
need to check that E does not violate p. From Theorem 7,
the incremental verification method only needs to verify the
conformance at all exit states between B and E. Corre-
sponding to each exit state ex, within E, the algorithm to
verify preservation constraints VB(ex, cl(p)) can be briefly
described as follows:

1. Seeding VB(re, cl(p)) at any reentry state re. The as-
sumption function As is: As(re) = VB(re, cl(p)).

2. Executing a CTL assumption model checking proce-
dure in E to check φ, ∀φ ∈ cl(p). In case of COTS,
a standard CTL model checking is executed within E
instead.

3. Checking if VE(ex, cl(p)) = VB(ex, cl(p)).

2In fact, this figure is intended to represent both component
refinement and COTS.
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Figure 1: An illustration of conformance VE(ex, cl(p)) = VB(ex, cl(p)) where E overrides B. The property
p = A [f U g] is preserved in B due to the conformance.

At the end of the algorithm, if at all exit states, the truth
values with respect to cl(p) are matched respectively, B and
E are consistent with respect to p.

4.3 Scalability of OIMC
This section addresses the scalability of the algorithm in

Section 4.2. We consider the general case of the n-th ver-
sion of the component (Cn) during software evolution as a
structure of components B, E1, E2, ..., En where Ei is the
refining component to the (i−1)-th evolved version (C(i−1)),

i = 1, n. The initial version is C0 = B and Ci = Ci−1 + Ei.
We check for any potential conflict between B and Ei regard-
ing p via OIMC. Theorem 8 claims that OIMC is scalable.
The detailed proof is in [13].

Theorem 8. If all respective pairs of base (C(i−1)) and
refining (Ei) components conform, the complexity of OIMC
to verify the consistency between En and B is independent
from the n-th version Cn, i.e. it only executes within En.

5. COMPONENT SPECIFICATION
This paper advocates the inclusion of two additional se-

mantic aspects of component specification to facilitate proper
component composition. Given a base component B =
〈SB , ΣB , soB , RB , LB〉, the semantic aspects are: dynamic
behavior (via state transition model in which only poten-
tial future interface states are visible to other components -
Section 3) and their associated consistency constraints (via
the truth values of VB(s, cl(p)) at such an interface state s,
where p is a CTL property holding in the base component -
Section 4).

5.1 Interface Signature
Component signatures are the fundamental aspect to the

component interface. As commonly recognized, the tradi-
tional interface signature of a component contains attributes
and operations. First, through attributes 3, the current state
of a software component may be externally observable. The
component’s clients can observe and even change the values

3Attribute is termed as property in [9] which is essentially
the entities expressing states of components. To distinguish
them from temporal properties inherent to components in
Section 5.2, those entities are named as attributes.

of those attributes. Second, the environment interacts with
the component through operations. The operations repre-
sent services or functions the component provides.

Unlike above two static aspects, the introduction of dy-
namic behavior of a component to the interface is recom-
mended in this paper. Components in reality resemble classes
in the object-oriented (OO) approach. This specification
style hence follows the encapsulation principle of OO tech-
nology so that only essential information is exposed. Only
the partial dynamic model of the component consisting of
potential future interface states is visible to clients. The
rest of the model can be hidden. Associated with a visible
interface state s is the set of atomic propositions L(s) (Def-
inition 1). These propositions are often expressed via logic
expressions among attributes above.

5.2 Interface Constraints
The interface signature only shows the individual elements

of the component for interaction with clients in syntactic
terms. In addition to the constraints imposed by their asso-
ciated types, the attributes and operations of a component
interface may be subject to a number of further semantic
constraints regarding their use. In general, there are two
types of such constraints: internal to individual components
and inter-component relationships. The first type is simple
and has been thoroughly mentioned in many component-
related works [9, 16]. The notable examples are the oper-
ation semantics according to pre-/post-conditions of opera-
tions; and range constraints on attributes. For the second
type, current component technology such as CORBA IDL
(Interface Definition Language), UML and OCL [16] etc. is
limited to a very weak logic in terms of expressiveness. For
example, different attributes in components may be inter-
related by their value settings; or an operation of a compo-
nent can only be invoked when a specific attribute value of
another is in a given range etc [9]. The underlying logic only
expresses the constraint at the moment an interface element
is invoked, i.e. static view, regardless of execution history.

The paper introduces two inter-component semantic con-
straints. The first constraint is based on the plugging com-
patibility for a refining component to be plugged at a special
state of the base. This situation resembles the extension of
use-case scenarios. The base gives the basic interacting sce-
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Figure 2: The dynamic behavior model of the
“black” component.

narios of the component with clients. The refining compo-
nent refines some of those scenarios further at a certain point
from which the component deviates from the pre-defined
course to enter new traces in the extension component. Such
a point corresponds to an exit state in Definition 2.

On the other hand, the second semantic constraint em-
phasizes on how to make components play once they are
plugged. Importantly, this constraint type is expressed in
terms of CTL so its scope of expressiveness is enormous. In
contrast to the logic above, CTL can describe whole execu-
tion paths of a component, i.e. dynamic view. Via OIMC in
Section 4.2, a refining client E to a base component B can
be efficiently verified on whether it preserves the property p
of B.

Once composed, the new component C = B + E exposes
its new interface signatures and constraints. Static aspects
like attributes and operations are simply the sum of those in
B and E. The dynamic behavior of C is exposed according
to the composition of corresponding visible parts of B and
E. In terms of constraints, any potential interface state s
is exposed with the set of propositions LC(s) = LB(s) ac-
cording to Definition 3. On the other hand, the consistency
constraint at s is derived either from VB(s, cl(p)) (for any
s ∈ SB) or VE(s, cl(p)) which is resulted from the above
execution of OIMC within E (if s ∈ SE). Subsequent re-
finements to C follow the same manner as the case of E to
B because of Theorem 8.

5.3 Component Specification and Composition
Component specification can be represented via interface

signatures and constraints written in an illustrative speci-
fication language below. The major goal of this language
is to minimize the “conceptual distance” between architec-
tural abstractions and their implementation [1]. Encoding
state diagrams directly into the interface; and refining ex-
isting component specifications in pure programming lan-
guages are difficult. Instead, a language similar to that of [1]
for declaring and refining state machines in layering manner
is used. Based on the exemplary specification, components
are implemented as classes in typical object-oriented lan-
guages. Component composition is then done via class ag-
gregation/merging. Component attributes and operations
are declared in the object-oriented style like C++. The
virtual keyword is used to only name an element without
actual memory allocation. The element will be subsequently
mapped to the actual declaration in another component.
This mechanism resembles mergeByName in Hyper/J [15] in
which component entities sharing the same label are merged
into a single entity during component composition.

Figure 2 shows the dynamic model of a simple compo-

nent, while below is the corresponding specification of the
component. The interface signatures should declare: edges
with name, start state, end state, transition guard and input
event; as well as transition action. At the end are the se-
mantic constraints of the component written in both types
shown in Section 5.2, namely plugging compatible condi-
tions and inherent temporal properties at potential interface
states. For illustration purpose and due to space limitation,
this producer-consumer example is very much simplified so
that only some key transitions and states are shown. Be-
cause of this over-simplified model, the whole dynamic be-
havior of the component is visible to clients. In practice,
regarding the encapsulation principle, only essential part of
the model for future extension is visible. The rest of the
model is hidden from clients. There are three components:
“black” (the base B of Figure 3a with solid transitions -
item-producing function); “brick” (the first refinement E of
Figure 3b expressed via dashed transitions - variable-size
buffer and item-consuming function); and “white” (the sec-
ond refinement E′ of Figure 3c depicted in dotted transitions
- optimizing data buffer).
Component B {
Signature:

states 1 black, 2 black, 3 black;

/* edge declarations */

edge t1: 1 black -> 2 black

condition test // OK if adding k items to buffer

input event e1 // producing k items

do { produce(k)... }; /* t1 action */

edge t2: 1 black -> 3 black;

... /* similarly defined */

// operations and attributes declaration

boolean test;

int cons, prod;// consumed, produced items

int buffer[];// a bag of data items

...

init(){ state = 1 black; ...};
produce(n){ prod = prod + n;...};

Constraint:

/* compatible plugging conditions - CC */

1 black cc: cons = prod;// empty buffer

2 black cc: test = true, cons < prod;

3 black cc: test = false, cons ≤ prod;

/* Inherent properties - IP */

1 black ip: AG (cons ≤ prod), cons ≤ prod;

2 black ip: AG (cons ≤ prod), cons ≤ prod;

3 black ip: AG (cons ≤ prod), cons ≤ prod;

}

As components are composed with each other, they can
be progressively refined/extended in layering manner. The
process adds states, actions, edges to an existing component.
The original component and each refinement are expressed
as separate specifications that are encapsulated in distinct
layers. Figure 3 shows this hierarchy: the root component is
generated by the specification from Figure 2 or Figure 3a; its
immediate refinements are in turn generated from compo-
nent specifications according to the order in the Figures 3b
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Figure 3: Component refinements and component composition via class aggregation.

and 3c.
Component E {/* for refining black */

Signature:

states 1 brick, i1 brick, i2 brick, i3 brick;

/* edges declaration */

edge t3: i2 brick -> i3 brick

condition ... // ready to consume

input event ... // consuming k items

do { consume(k)... }; /* t3 action */

edge t4: i1 brick -> 1 brick

condition ... // ready to change buffer size

input event ... // change the size

do { changesize();... }; /* t4 action */

edge t5: 1 brick -> i3 brick;

edge t6: i2 brick -> i2 brick;

// buffer inquiry only, consuming zero item

... /* similarly defined */

// operations and attributes declaration

virtual int cons;// mapped with cons in B
virtual int prod;// mapped with prod in B
virtual int buffer[];// mapped with buffer in B
consume(n){ cons = cons + n;...};
changesize(){ buffer = malloc();...};

Constraint:

1 brick cc: cons ≤ prod;

i1 brick cc: cons ≤ prod;

i2 brick cc: test = true, cons < prod;

i3 brick cc: test = false, cons < prod;

}

Component E′ {/* for refining black + brick */

Signature:

states 1 white, i2 white, i3 white;

/* edges declaration */

edge t7: i2 white -> 1 white

condition ... // ready to compact buffer

input event ...// compact the data buffer

do { resetbuffer();... }; /* t7 action */

edge t8: 1 white -> i3 white;

... /* similarly defined */

// operations and attributes declaration

virtual int cons;// mapped with cons in B
virtual int prod;// mapped with prod in B
virtual int buffer[];// mapped with buffer in B
resetbuffer(){ prod = prod - cons; cons = 0;...};

Constraint:

1 white cc: cons ≤ prod, cons = 0;

i2 white cc: test = true, cons ≤ prod;

i3 white cc: test = false, cons ≤ prod;

}

Aggregation then plays a central role in this component
implementation style. All the states and edges in Figure 3a
are aggregated with the refinement of Figure 3b; and this
figure is in turn united with the refinement of Figure 3c.
The component to be executed is created by instantiating
the bottom-most class of the refinement chain of Figure 3d.

The following explains the preservation of the constraint
in B by all subsequent two component refinements E and
E′. Informally, the property means that under any circum-
stance, the number of produced items by the component is
always greater or equal to that of consumed items. In terms
of CTL notation, p = AG (cons ≤ prod). The closure set of
p is hence cl(p) = {p, a}, where a = (cons ≤ prod).

Initially, B is composed with E. Interface plugging con-
ditions are used to map compatible interface states among
components. The base exposes three interface states 1 black,
2 black and 3 black. On the other hand, the refinement
component exposes four interface states, namely 1 brick,
i1 brick, i2 brick and i3 brick. Based on the respective
atomic proposition sets at those states, corresponding in-
terface states are mapped accordingly.

For instance, first
V

LB(1 black) = (cons = prod) ⇒V
LE(i1 brick) = (cons ≤ prod). According to Defini-

tion 2, i1 brick ↔ 1 black. On the other hand, becauseV
LE(i2 brick) =

V
LB(2 black), i2 brick ↔ 2 black. Simi-

larly,
V

LE(i3 brick) ⇒ V
LB(3 black), i3 brick ↔ 3 black.

Here, i1 brick and i2 brick perform exit states of the base
component, while i2 brick and i3 brick are reentry states.

The composite model of the two components C1 = B +E
is shown in Figure 3b. After the designer decides on the
mapping configuration between interface states, and prop-
erly resolves any mismatches at the syntactic level between
B and E, the semantic constraint of consistency between the
two due to p is in focus. The OIMC algorithm in Section 4.2
is applied as follows:

1. Copying VB(s, cl(p)) to the respectively mapped out-
states i2 brick and i3 brick in E for any reentry state
s such as 2 black and 3 black.

2. Executing assumption model checking within E to find
VE(i1 brick, cl(p)) and VE(i2 brick, cl(p)). Note that,
the model checking procedure is executed within the
dashed part in Figure 3b. The solid transitions belong
to the base component B and are hence ignored.

3. Checking if VE(i1 brick, cl(p)) = VB(1 black, cl(p)) and
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VE(i2 brick, cl(p)) = VB(2 black, cl(p)). If so, B and
E conform.

The model checking is very simple and hence its details
are skipped. At the end, B and E components conform at
all exit states. According to Theorem 7, p is preserved by
the second component after evolving to C1 = B + E.

C1 is then extended with E′. Notably, the interface of the
new component C1 is derived from B and E as below:
Component C1 {
Signature:

states 1 black, 2 black, 3 black, 1 brick;

/* edge declarations */

edge t1: 1 black -> 2 black;

edge t2: 1 black -> 3 black;

edge t3: 2 black -> 3 black;

edge t4: 1 black -> 1 brick;

edge t5: 1 brick -> 3 black;

edge t6: 2 black -> 2 black;

/* identical to each component’s declaration */

// operations and attributes declaration

boolean test;

int cons, prod;// consumed, produced items

int buffer[];

init(){ state = 1 black; ...}
consume(n){ cons = cons + n;...};
produce(n){ prod = prod + n;...};
changesize(){ buffer = malloc();...};

Constraint:

/* compatible plugging conditions - CC */

1 black cc: cons = prod;

2 black cc: test = true, cons < prod;

3 black cc: test = false, cons ≤ prod;

1 brick cc: cons ≤ prod;

/* Inherent properties - IP */

1 black ip: AG (cons ≤ prod), cons ≤ prod;

2 black ip: AG (cons ≤ prod), cons ≤ prod;

3 black ip: AG (cons ≤ prod), cons ≤ prod;

1 brick ip: AG (cons ≤ prod), cons ≤ prod;

}

The approach in composing E′ with C1 is similar to the
above, we have the following mapping configuration between
interface states: i2 white ↔ 2 black, i3 white ↔ 3 black.
The same result is achieved, p is preserved by E′. More
importantly, the verification method is executed within E′

only, i.e. the dotted part in Figure 3c. After composing E′,
the component becomes C2 = C1 + E′ shown below:
Component C2 {
Signature:

states 1 black, 2 black, 3 black, 1 brick, 1 white;

/* edge declarations */

edge t1: 1 black -> 2 black;

edge t2: 1 black -> 3 black;

edge t3: 2 black -> 3 black;

edge t4: 1 black -> 1 brick;

edge t5: 1 brick -> 3 black;

edge t6: 2 black -> 2 black;

edge t7: 2 black -> 1 white;

edge t8: 1 white -> 3 black;

/* identical to each component’s declaration */

// operations and attributes declaration

boolean test;

int cons, prod;// consumed, produced items

int buffer[];

init(){ state = 1 black; ...}
consume(n){ cons = cons + n;...};
produce(n){ prod = prod + n;...};
changesize(){ buffer = malloc();... };
resetbuffer(){ prod = prod - cons; cons = 0;...};

Constraint:

/* compatible plugging conditions - CC */

1 black cc: cons = prod;

2 black cc: test = true, cons < prod;

3 black cc: test = false, cons ≤ prod;

1 brick cc: cons ≤ prod;

1 white cc: cons ≤ prod, cons = 0;

/* Inherent properties - IP */

1 black ip: AG (cons ≤ prod), cons ≤ prod;

2 black ip: AG (cons ≤ prod), cons ≤ prod;

3 black ip: AG (cons ≤ prod); cons ≤ prod;

1 brick ip: AG (cons ≤ prod); cons ≤ prod;

1 white ip: AG (cons ≤ prod); cons ≤ prod;

}

In brief, p is preserved by both extensions E and E′. In
this example, the scalability of incremental model checking
is maintained as it only runs on the refinements, indepen-
dently from the bases B and C1 respectively.

6. RELATED WORK
Modular model checking is rooted at assume-guarantee

model checking [10, 14]. However, unlike the counterpart
in hardware verification [8, 10] focusing on parallel com-
position of modules, software modular verification [11] is
restricted by its sequential execution nature. Incremen-
tal model checking inspires verification techniques further.
There is a fundamental difference between those conven-
tional modular verification works [8, 10, 14] and the pro-
posed approach including this paper and [6]. Modular ver-
ification in the former works is rather closed. Even though
it is based on component-based modular model checking,
it is not prepared for change. If a component is added to
the system, the whole system of many existing components
and the new component are re-checked altogether. On the
contrary, the OIMC approach in this paper and [6] is incre-
mentally modular and hence more open. It only checks the
new system’s consistency within the new component. Cer-
tainly, this merit comes at the cost of “fixed” preservation
constraints at exit states. These constraints can deliver a
false negative for some cases of component conformance.

Regarding the assumption aspect in component verifica-
tion, [7] presents a framework for generating assumption on
environments in which the component satisfies its required
property. This work differs OIMC in some key points. First,
the constraints in OIMC are explicitly fixed at VB(ex, cl(p))
for any exit state ex, whereas based on a fully specified
component model including error states, [7] generates as-
sumption about operation calls by which the environment
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does not lead the component to any error state. Second, the
approach in [7] is viewed from a static perspective, i.e. the
component and the external environment do not evolve. If
the component changes after adapting some refinements, the
assumption-generating approach is re-run on the whole com-
ponent, i.e. the component model has to be re-constructed;
and the assumption about the environment is then gener-
ated from that model.

The OIMC technique introduced in this paper is similar to
[6]. However, our work proposes more precisely and explic-
itly the conformance condition between components. Fur-
ther, to enable the plug-and-play idea in component-based
software, the corresponding component specification are sep-
arately specified. Their composition is based on plugging
condition among compatible interface states. In addition,
the scalability of component consistency is not mentioned
in [6]. Without Theorem 8, the approach is not applicable
for future component composition.

Finally, like the proposal in Section 5 about encapsulat-
ing dynamic behavior model into component interface, i.e.
state-full interface, two closely related works [3, 5] also ad-
vocate the use of light-weight formalism to capture temporal
aspects of software component interfaces. More specifically,
this paper simply relies on state transition model in the most
general sense, while the approach in [3, 5] presents a finer re-
alization of state-full model in which states are represented
by control points in operations of components; and edges
are actually operation calls. That approach focuses on the
order of operation calls in a component 4. By formalizing a
component through a set of input, output and internal oper-
ations, the compatibility between component interfaces with
regards to the structure of component operations is defined
and checked. In addition, the two approaches target dif-
ferent aspects of consistency. This paper is concerned with
component consistency in terms of CTL properties, whereas
the approach in [3, 5] is involved with the correctness and
completeness of operation declarations within components.

7. CONCLUSION
This paper focuses on the refinement aspect of compo-

nents in which components are relatively coupled. However,
the results of this paper can be equally applied to COTS.
This paper advocates the inclusion of dynamic behavior and
component consistency written in CTL to the component
interface to better deal with component matching. Besides
the traditional static elements such as operations and at-
tributes, component interface should include potential inter-
face states together with the associated plugging conditions
and consistency constraints at those states. Next, based on
the proposed specification structure, an efficient and scal-
able model checking method (OIMC) is utilized to verify
whether components are consistent.

Current well-known model checkers do not support as-
sumption model checking. A future work is to encapsulate
the assumption feature into an open-source model checker
such as NuSMV [2].
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ABSTRACT
The paper presents a specification language of autonomous objects
supervised by a coordinating process. The coordination is defined
by means of an interaction wrapper. The coordination semantics
is described in the terms of bisimulation relations. The properties
of the coordinated objects are expressed as temporal formulas, and
verified by specific model-checking algorithms. We use the alter-
nating bit protocol to exemplify our specification language and its
semantics.
This approach allows a clear separation of concerns: the same coor-
dinating process can be used with different concurrent objects, and
the same objects can be used with a different coordinator. Thus our
specification language allows easy modifications and customiza-
tion. The method is effective in assembling increasingly complex
systems from components. Moreover, composing different coor-
dinating processes can be done without changing the code of the
coordinated objects. In this way, the difficult task of implementing
the mechanism of coordination becomes substantially easier.

Keywords
coordination, process algebra, classes, objects, bisimulation, tem-
poral logic.

1. INTRODUCTION
Coordination of concurrent activities is an important goal of object-
oriented concurrent programming languages, as well for component-
based software community. As far as there was no support for com-
ponents abstraction and high-level coordination, it is difficult to ig-
nore the mismatch between conceptual designs and the implemen-
tation. Object-oriented languages offer little support for synchro-
nization of concurrent objects. While in theory the set of provided
constructs is sufficient to solve the coordination problems, in prac-
tice only good programmers are able to handle non trivial tasks.
Another difficulty was given by the fact that a low-level approach
does not allow the composition of different coordination policies
without changing the implementation of the coordinated entities.
The main problems are represented by no separation of concerns
(expressing coordination abstraction is difficult because the code

of coordination is strongly tied to the implementation of the coor-
dinated objects), the absence of abstraction (no declarative means
to specify coordination), the lack of compositionality and flexibil-
ity, and the difficulties for a programmer to implement the desired
coordination.

As a possible solution, this paper introduces and studies a speci-
fication language where the components are described as objects,
coordination is defined as a process, and their integration is given
by a wrapper. Semantic integration of the coordinating process and
coordinated entities is based on bisimulation. Coordinating process
and coordinated components are rather independent. The explicit
description of collaboration between components defines interac-
tion policies and rely on the methods of the objects they coordinate.
We use a wrapper which, together with the processes associated to
objects provides an interface of the underlying component. The
three languages corresponding to objects, coordinating process and
wrapper reflect the intuitions and practices of software engineers.
In order to support formal manipulation and reasoning, our imple-
mentation provides a semantics based on the models of class spec-
ification in hidden algebra, labelled transition systems represented
as coalgebras, and some theoretical results expressing the coordi-
nation in terms of bisimulations and coalgebra homomorphisms.
These formal aspects are not visible to the user; the implementa-
tion hides them, but ensures both a good matching between intu-
itions and practices of users, and a sound executable system.

2. CLASSES AND OBJECTS
In this section we present the specification of classes and their ob-
jects. We propose a specification language with syntax closer to
that of object-oriented programming language and with semantics
described in hidden algebra [9]. A class specification consists of
specification of attributes and specification of operations. An op-
eration specification includes the signature of the operation and its
behavioural specification expressed in the terms of its parameters
and attributes values before and after its execution. The grammar
supplying the syntax for class specification is given in Figure 1.
The decoration of the attributes names with the prime symbol ’ in
a method specification is similar to that used in Z, and a decorated
attribute name refers the value of the attribute after the execution
of the method. A given set of primitive data types including Bool,
Int, . . . is assumed.

EXAMPLE 1. Alternating Bit Protocol
The alternating bit protocol (ABP) is a communication protocol
consisting of four components (see fig. 2): a sender, a receiver, and
two communication channels. Here is a brief description of each
component.
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〈class spec〉 ::= 〈header〉 {〈body〉}
〈header〉 ::= class〈class name〉 |

class〈class name〉 extends 〈class list〉
〈class list〉 ::= 〈class name〉 | 〈class name〉, 〈class list〉
〈body〉 ::= 〈att spec list〉opt 〈opn spec list〉opt

〈att spec list〉 ::= 〈att spec〉 | 〈att spec list〉 〈att spec〉
〈att spec〉 ::= 〈type〉 〈att name;〉
〈opn spec list〉 ::= 〈opn spec〉 | 〈opn spec list〉 〈opn spec〉
〈opn spec〉 ::= 〈type〉 〈opn name〉() {〈assert listopt〉} |

〈type〉 〈opn name〉(〈param list〉) {〈assert list〉opt}
〈param list〉 ::= 〈param〉 | 〈param〉,〈param list〉
〈param〉 ::= 〈type〉 〈param name〉
〈assert list〉 ::= 〈assert〉 | 〈assert〉;〈assert list〉
〈assert〉 ::= boolean expression over attributes names,

parameters, and decorated attributes names
〈type〉 ::= 〈class name〉 | Bool | Int | · · ·

Figure 1: Class specification grammar
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Figure 2: Alternate Bit Protocol

Sender. The sender starts by reading a data element at the in-
put port. Then a frame consisting of the read data element and a
control bit (= a boolean value) is transmitted via channel 1 to the
receiver, until a correct acknowledgment has arrived via channel 2.
An acknowledgement is interpreted as being correct if the boolean
value read via channel 2 is the same with the control bit. Each
time a correct acknowledgement is arrived, the control bit change
its value.
Channels. The channel 1 transports frames consisting a data ele-
ment and a boolean value from the sender to the receiver and the
channel 2 transports boolean values from the receiver to the sender.
The problem with the two channels is that they are unreliable, that
is the message could be damaged in transit. We assume that if
something goes wrong with the message, the receiver/sender will
detect this by computing a checksum. The channel are supposed to
be fair in the sense that they will not produce an infinite consecutive
sequence of erroneous outputs.
Receiver. The receiver starts by receiving a frame via channel 1.
If the control bit of the frame is correct (i.e., different from the con-
trol bit of the receiver), then the data element is sent to the output
port. Each time the frame received is not damaged (checksum is
OK) and the control bit is correct, the receiver changes the value
of its control bit.

We specify first an abstract class including only the common at-
tributes of the sender and receiver:

class AbsComp
{

Bool bit;
Data data;
Bool ack;

}

The class corresponding to the sender is derived from this abstract
class, the class corresponding to the receiver being similar:

class Sender extends AbsComp
{

Bool chBit() {
bit’ = not bit;
data’ = data;
ack’ = ack;

}
void read() {

bit’ = bit;
ack’ = ack;

}
void sendFrame() {

bit’ = bit;
data’ = data;
ack’ = ack;

}
void recAck(Bool pack) {

bit’ = bit;
data’ = data;
ack’ = pack;

}
}

An assertion of the form “bit′ = not bit;” in chBit() says that
the value of the attribute bit is changed by the method. For each
method, even if an attribute is not changed by its execution, this is
explicitly specified. For instance, the method read is underspec-
ified because we know nothing about the attribute data after its
execution; it may have any Data value.

Every object is an autonomous unit of execution which is either
executing the sequential code of exactly one method, or passively
maintaining its state. An object instance is a pair (R | state), where
R is an object reference and state is an ordered sequence of pairs
(attribute,value). It is not necessary to have all attributes included
in a particular object instance. We consider that an object instance
is a canonical element of an behavioural equivalence class, where
the behavioural operations are those included in the description of
the instance. The result of an execution of a method R.m(d) over
a state st consists of a new state st ′ whose attributes values are
computed according to the behavioural specification of m; we write
st ′ = R.m(d)(st). For instance, we have

S.chBit()((bit,true),(ack,false),(data,d)) =
((bit,false),(ack,false),(data,d)).

We suppose that an object reference uniquely determines the class
it belongs to. A configuration is a commutative sequence of object
instances such that an object reference occurs at most once in the
sequence. We also consider a special configuration err for signal-
ing the occurrence of an exception.

We consider a simple set of commands:

〈cmd〉 ::= R = new C(d) | delete R | R.m(d) |
R1.m1(d1)‖R2.m2(d2) | 〈cmd〉;〈cmd〉 |
if 〈bexpr〉 then 〈cmd〉 else 〈cmd〉 | throw error()

where R,Ri range over object references, m,mi over methods, d,di
over data value sequences, and C over class names. The metavari-
able 〈bexpr〉 denotes the boolean expressions. We omit here their
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formal definition; intuitively, a boolean expression is a proposi-
tional formula written in the terms of data values, attributes, and
relational operators. A boolean expression e is satisfied by a con-
figuration cnfg, written cnfg |= e, if and only if the evaluation of the
boolean expression e in the configuration cnfg returns true. We also
assume that the sequential composition ; is associative.

The operational semantics is given by the labelled transition system
defined by following rules:

cnfg
R = newC(d1,...,dn)−−−−−−−−−−−→ cnfg,(R|(att1,d1), . . . ,(attn,dn));

cnfg,(R|state) delete R−−−−−−→ cnfg
(we recall that a configuration is a commutative sequence);

cnfg
R.m(d)−−−−→ cnfg′ if and only if cnfg′ is obtained from cnfg

by replacing the object instance (R | state) with (R | state′),
where state′ = R.m(d)(state);

cnfg
R1.m1(d1)‖R2.m2(d2)−−−−−−−−−−−−→ cnfg2 if and only if R1 6= R2, cnfg′

is obtained from cnfg by replacing the object instance (Ri |
statei) with (Ri | state′i), where state′i = Ri.mi(di)(statei),
i = 1,2;

cnfg cmd1;cmd2−−−−−−→ cnfg′′ if and only if there is cnfg′ such that

cnfg cmd1−−−→ cnfg′ and cnfg′ cmd2−−−→ cnfg′′;

if cnfg cmd1−−−→ cnfg′ and cnfg |= e, then

cnfg if e then cmd1 else cmd2−−−−−−−−−−−−−−−−→ cnfg′;

if cnfg cmd2−−−→ cnfg′ and cnfg 6|= e, then

cnfg if e then cmd1 else cmd2−−−−−−−−−−−−−−−−→ cnfg′;

cnfg
throw error()−−−−−−−−−→ err.

3. COORDINATION
We introduce a coordinating process providing a high-level de-
scription of the interaction between objects. Its syntax is inspired
by process algebras as CCS and π-calculus [14]. Interaction with
the environment is given by some global actions, and interaction
between components is given by a nondeterministic matching be-
tween complementary local actions. Each process is described by a
set of equations. In some sense, we can think such a description as
an abstract system interface. The computational world of our coor-
dinator contains processes and messages. Local actions represents
interaction channels. In this way, the coordinating process models
a network in which messages are sent from one object to another.
This formalism is not suitable to describe state changes (the state
changes are described by objects).

The process expressions E are defined by guarded processes, non-
deterministic choice E1 +E2, and parallel composition E1 | E2. We
have also an empty process 0. Guarded processes are presented by
either a global action followed by a process expression, an object
guard followed by a process expression, or by a local action fol-
lowed by a process expression. The first case describes a global
action involving a state change execution of an object. The sec-
ond case describes a link between the actions of an object over
a certain guard, followed or not by a process expression depend-
ing on the truth evaluation of the guard. Finally, each local action

act involves automatically the existence of its complementary lo-
cal action denoted by ˜act; these two complementary local actions
establish a synchronization and a communication between objects.

A process is described as a sequence of declarations (global actions,
local actions, processes and guards) followed by a set of equations.
The syntax grammar for processes is:

proc 〈proc spec name〉
{
global actions : 〈lact list〉;
local actions : 〈gact list〉;
processes : 〈proc id list〉;
guards : 〈guard id list〉;
equations :
〈eqn list〉

}

where

〈lact list〉 ::= 〈label list〉
〈gact list〉 ::= 〈label list〉
〈label list〉 ::= 〈label〉 | 〈label〉, 〈label list〉
〈label〉 ::= 〈identi f ier〉 | ˜〈identi f ier〉
〈proc id list〉 ::= 〈id list〉
〈guard id list〉 ::= 〈id list〉
〈id list〉 ::= 〈identi f ier〉 | 〈identi f ier〉, 〈id list〉
〈eqn list〉 ::= 〈eqn〉 | 〈eqn〉; 〈eqn list〉
〈eqn〉 ::= 〈proc id〉= 〈pexpr〉;
〈pexpr〉 ::= 0 | 〈label〉.〈pexpr〉 | [〈guard id〉]〈pexpr〉 |

[not 〈guard id〉]〈pexpr〉 | 〈pexpr〉+ 〈pexpr〉 |
〈pexpr〉|〈pexpr〉

The metavariable 〈proc id〉 denotes the identifiers occurring in pro-
cesses list, and 〈guard id〉 denotes the identifiers occurring in guards
list.

A coordinating process specification is finally given by equations of
parametric process expressions. For example, the specification of
ABP communication protocol as a coordination between a Sender
and a Receiver can be described in the following way:

proc ABP
{

global actions: in, out, alterS, alterR;
local actions: ch1, ch2;
processes: A, A’, V, B, B’, T;
guards: sok, rok;
equations:

A = in.A’;
A’ = ˜ch1.ch2.V;
V = [sok]alterS.A + [not sok]A’;
B = ch1.T;
T = [rok]B’ + [not rok]out.alterR.B;
B’ = ˜ch2.B;

}

The structural operational semantics of a coordinating process spec-
ification is given by a labelled transition system. The semantic rules
are presented in Figure 3. In these rules, γ is a function mapping
each guard id into a boolean value, gact ranges over the labels oc-
curring in the global actions list, lact ranges over the labels oc-
curring in the local actions list, and act can be both gact or τ(lact).
Based on these rules, the operational dynamics of the previous ABP
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gact.E
gact−−→ E

E act−−→ E ′

E +F act−−→ E ′

E act−−→ E ′

E|F act−−→ E ′|F
EA

act−−→ E ′, A = EA

A act−−→ E ′

E act−−→ E ′, γ(guard id) = true

[guard id]E act−−→ E ′

˜lact.E | lact.E ′
τ(lact)−−−−→ E|E ′

Figure 3: The coordinating process operational rules

process with reliable communication, modelled by γ(sok) = true
and γ(rok) = f alse:

A | B in−→ A′ | B τ(ch1)−−−→ ch2.V | T out−−→

ch2.V | alterR.B′ alterR−−−→ ch2.V | B′ τ(ch2)−−−→
V | B alterS−−−→ A | B.

We use the notation τ(lact) for the interaction between two pro-
cesses prefixed by local actions lact and ˜lact, respectively. In-
teraction is therefore provided by pairs of actions lact and ˜lact
corresponding to some methods by means of an interaction wrap-
per.

4. INTERACTION WRAPPER
If we consider the coordinating process as an abstract interface of
the system, then an interaction wrapper describes an implemen-
tation of this interface by means of a collection of objects. The
coordinating process gives some directives, and the coordinated
objects interpret these directives by using an interaction wrapper
providing the appropriate link between the high level coordinat-
ing process and the lower level executing objects. This is the way
we get a desirable separation of concerns, ensuring a suitable ab-
stract level for designing large component-based systems without
losing the details of low-level implementation of components. In
some sense, our specification language has similarities with a sym-
phonic orchestra, where independent players are synchronized by a
conductor. The concert sheet followed by the conductor represent a
high-level approach of the concert, and the instrumental sheet of the
orchestra players are usually larger, containing more details. The
link between the players and the coordinating conductor is given by
certain entry moments and orchestral scores. The wrapper provides
the players, and the entry scores implementing the desired result-
ing music at a certain moment. Therefore the wrapper provides the
objects, and the necessary information for their executions in order
to realize a coordinated interaction.

The syntax for the interaction wrappers is given by the grammar
presented in Figure 4.

EXAMPLE 2. The wrapper for previous described protocol ABP
instruct a Sender S and a Receiver R in order to correctly follow the
directives of the protocol:

〈wrap spec〉 ::= 〈wrap name〉(〈wparam list〉)
implementing 〈proc spec name〉
{〈amap list〉 〈gmap list〉}

〈wparam list〉 ::= 〈wparam〉 | 〈wparam list〉; 〈wparam〉
〈wparam〉 ::= 〈class name〉 〈ob ject re f 〉
〈amap list〉 ::= 〈amap〉 | 〈amap list〉 〈amap〉
〈amap〉 ::= 〈action name〉 -> 〈cmd〉;
〈gmap list〉 ::= 〈gmap〉 | 〈gmap list〉 〈gmap〉
〈gmap〉 ::= 〈guard name〉 -> 〈bexpr〉;

Figure 4: Wrapper syntax grammar

wrapper w(Sender S, Receiver R) implementing ABP
{

in -> S.read();
alterS -> S.chBit();
alterR -> R.chAck();
tau(ch1) ->

R.recFrame(S.data, S.bit) ||
S.sendFrame();

tau(ch2) ->
S.recAck(R.ack()) || R.sendAck();

out -> R.write();
sok -> S.bit == S.ack;
rok -> R.bit =/= R.ack;

}

A directive in received from the coordinating process is translated
into an execution of method read by S. The directives alterS

and alterR are translated into executions of methods chBit and
chAck by S and R, respectively. Whenever a τ(ch1) directive is pos-
sible at the level of the coordinating process, it is translated into a
synchronization of the methods sendFrame of S and recFrame of
R. This synchronization of the autonomous objects is accompanied
by a communication between them; this is given by the fact that the
arguments of the receiver method recFrame are attributes of the
sender. A similar translation is done for τ(ch2). Finally, the last
two lines of the interaction wrapper for ABP emphasize a nice fea-
ture related to the concerns separation. Instead of using a matching
or a mismatching process algebra to compare the sending bit and
the received acknowledge, we clearly separate the computational
and coordinating aspects by moving the comparisons at the object
level, followed by a true/false result to the coordination process.

If act is an action name, and R a sequence of object references, then
w(R)(act) denotes the command associated to act by the particular
wrapper w(R). The operational semantics of such a wrapper w(R)
is given by the labelled transition system of the objects configura-
tions, namely

cnfg act−−→ cnfg′ iff cnfg
w(R)(act)−−−−−−→ cnfg′,

where cnfg and cnfg′ are configurations including the instances of
the objects referred by R and related by the command correspond-
ing to the action name act via the interaction wrapper w.

The definition of the interaction wrapper (and its strong relation-
ship to the dynamics of the involved objects) allows us to define an
integrated semantics in a nice and advanced way. Taking in con-
sideration that each configuration is supervised by a coordinating
process, the whole coordination activity is described as follows:
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from the current configuration cn f g supervised by the

process P, the transition cnfg
w(R)(act)−−−−−−→ cnfg′ is valid

if and only if there is a process P′ such that P act−−→ P′
and P′ supervises cnfg′.

In other words, the supervision relation is a bisimulation between
the labelled transition system defined by the wrapper, and the la-
belled transition system defined by the coordinating process speci-
fication. This is formally defined in Section 6.

5. IMPLEMENTATION
We use hidden algebra [8] and Maude [5] for obtaining executable
specifications for classes and their objects. In hidden algebra, an
object is specified by:

1. a set V of visible sorts with a standard interpretation; the
meaning of a visible sort v is a given set Dv of data values;

2. a hidden sort St called state sort;
3. a set Σ of operations including:

(a) constants init ∈ St, or generalized constants
init : v1 · · ·vn→ St indicating initial states,

(b) methods g : Stv1 · · ·vn→ St with v1, · · · ,vn ∈V ,

(c) attributes q : Stv1 · · ·vn→ v with v,v1, · · · ,vn ∈V .

The properties of methods and attributes are described by equa-
tions. The main feature of hidden algebra is given by behavioural
equivalence which abstractly characterizes an object state. Two
states are behavioural equivalent if and only if they cannot be dis-
tinguished by experiments. An experiment is represented by a Γ-
term with the result sort visible and with a place-holder for the
state, where Γ is a subsignature of Σ including the behavioural op-
erations. In other words, the result of an experiment is given by an
attribute value after the execution of a sequence of methods over
the current configuration; all the methods and attributes are in Γ. If
the behavioural equivalence can be decided using only attributes,
then an abstract state is characterized by its attributes values.

Each class is implemented in Maude by a module defining a hidden
sort for the state of the objects, together with attributes and methods
of the class. Here is the module for the sender:

fmod SENDER is
sort Sender .
inc ABP-DATA .
op bit : Sender -> Bit .
op data : Sender -> Data .
op ack : Sender -> Bit .
op send : Sender -> Sender .
op chBit : Sender -> Sender .
op read : Sender -> Sender .
op recAck : Sender Bit -> Sender .
*** equations defining properties
*** of the methods

endfm

The sort Sender is hidden and it is used to describe the instances of the
class. The sorts Bit and Data are visible and they models the data values.

A configuration of objects is a set of pairs (object reference, object state).
We use the sort ObjectReference for object references, and the sort
ObjectState for object states. For each class we add a distinguished sub-
sort of ObjectReference and a distinguished subsort of ObjectState.

fmod CONFIG is
sorts ObjectReference ObjectState EmptyConfig Config .

subsort EmptyConfig < Config .
op empty : -> EmptyConfig .
op ‘(_|_‘) : ObjectRef ObjectState -> Config .
op _‘,_ : Config Config -> Config

[assoc comm id: empty] .
op _.read$‘(‘)_ : ObjectRef Config -> ObjectState .
op _.update$‘(_‘)_ :

ObjectRef ObjectState Config -> Config .
*** equations defining properties of read$()_
*** and update$(_)_

endfm

The composition _,_ of two configurations is specified as being commuta-
tive, associative, and having the identity empty.

For ABP we have a configuration containing objects of classes Sender, Re-
ceiver and Channel. The hidden sorts defined in SENDER, RECEIVER, and
CHANNEL are the state sorts and we make them subsorts of the ObjectState
sort. We also add three distinguished sorts for the references to these ob-
jects. The ABP configurations expose the methods and attributes of three
classes using attributes and methods with similar names and arguments. We
show here only the bit attribute and the recFrame method.

fmod ABP-CONFIG is
inc CONFIG + SENDER + RECEIVER + CHANNEL .
subsort Sender < ObjectState .
subsort Receiver < ObjectState .
subsort Channel < ObjectState .
sort ObjectRef<SENDER> .
subsort ObjectRef<SENDER> < ObjectRef .
sort ObjectRef<RECEIVER> .
subsort ObjectRef<RECEIVER> < ObjectRef .
sort ObjectRef<CHANNEL> .
subsort ObjectRef<CHANNEL> < ObjectRef .

op _.bit‘(‘)_ : ObjectRef<SENDER> Config -> Bool .
eq S .bit() C = bit(S .read$() C) .

op _.recFrame‘(_‘,_‘)_ :
ObjectRef<RECEIVER> Data Bit Config -> Config .

eq S .recFrame(D, B) C = recFrame(S .read$() C, D, B) .

*** other methods and attributes,
*** and their equations

endfm

The initial ABP configuration contains a Sender object referred by the ref-
erence S, a Receiver object referred by the reference R, a data channel
referred by the reference CHD, and an acknowledge channel referred by the
reference CHA. We have the constants initS, initR, initCHD and initCHA
as the initial states for each object, and init as the initial configuration.

fmod ABP is
inc CONFIG<SENDER+RECEIVER> .
op S : -> ObjectRef<SENDER> .
op R : -> ObjectRef<RECEIVER> .
ops CHD CHA : -> ObjectRef<CHANNEL> .
op initS : -> Sender .
op initR : -> Receiver .
ops initCHD initCHA : -> Channel .

eq bit(initS) = b1 .
eq ack(initS) = b0 .
eq data(initS) = d1 .
*** other equations for initR, initCHD, initCHA

op init : -> Config .

eq init = < S | initS >, < R | initR >,
< CHD | initCHD >, < CHA | initCHA > .

endfm

Since Maude implements rewriting logic, it is capable to specify a process
algebra [18]. The following Maude module defines the syntax of our pro-
cess algebra:
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mod PROC is
sorts Action Process Guard

ActionProcess ActionProcessSeq .
subsort ActionProcess < ActionProcessSeq .
op ˜_ : Action -> Action .
op tau_ : Action -> Action .
op _._ : Action Process -> Process [strat(0) frozen] .
op _|_ : Process Process -> Process [frozen assoc comm] .
op _+_ : Process Process -> Process [frozen assoc comm] .
op [_]_ : Guard Process -> Process [frozen] .
op _\_ : Process Action -> Process [frozen] .
op next : Process Config -> ActionProcessSeq .
*** equations

endm

The operations are declared as being “frozen”, i.e., we forbid the use of the
rewriting rules in the evaluation of the arguments. An action is represented
by a constant of sort Action, or by a term of sort Action as it is ∼a which
identifies the complemented action of a. We denote by tau(a) the special
action τ generated by a pair (a, ∼a). The distinction between local and
global actions is given by the restriction operator P \ L, where L is (a subset
of) the set of local actions. This syntax is closer to that used for CCS [18].

Given a process, we want to have the list of actions which can be executed.
For this we introduce next operation; next builds a list of pairs (action,
process) for a specific process and configuration. For concurrent processes,
the list of pairs (action, process) contains the possible interleavings of ac-
tions which can be executed by each process, together with the possible
communications between each pair of processes.

mod ABP-PROC is
inc PROC .
ops ABP S S1 V CHD CHA R T R1 : -> Process .
ops in alterS alterR out schd

scha rchd rcha chdt chat : -> Action .
ops rOK sOK : -> Guard .

rl S => in . S1 .
rl S1 => ˜ schd . scha . V .
rl V => ([sOK](alterS . S)) + ([not sOK]S1) .
rl CHD => schd . chdt . ˜ rchd . CHD .
rl CHA => rcha . chat . ˜ scha . CHA .
rl R => rchd . T .
rl T => ([not rOK]R1) + ([rOK](˜ out . alterR . R1)) .
rl R1 => ˜ rcha . R .
rl ABP => ( S | CHD | CHA | R )

\ scha \ schd \ rcha \ rchd .
endm

The interaction wrapper is described by the following module:

mod ABP-COORDINATED is
inc ABP + ABP-PROC .
op w : Action Config -> Config .
var C : Config .
eq w(in, C) = S .read() C .
eq w(tau schd, C) =

CHD .read( S .bit() C,
S .data() C ) S .send() C .

eq w(chdt, C) = CHD .transfer() C .
eq w(tau rchd, C) =

R .recFrame( CHD .data() C,
CHD .bit() C ) CHD .send() C .

eq w(˜ out, C) = R .write() C .
eq w(alterR, C) = R .chAck() C .
eq w(tau rcha, C) =

CHA .read( R .ack() C , null ) R .sendAck() C .
eq w(chat, C) = CHA .transfer() C .
eq w(tau scha, C) =

S .recAck( CHA .bit() C ) CHA .send() C .
eq w(alterS, C) = S .chBit() C .

eq eval(sOK, C) = (S .bit() C == S .ack() C) and

(CHA .error() C == b0) .
eq eval(rOK, C) = (CHD .error() C == b0) and

(R .bit() C =/= R .ack() C) .
endm

6. FORMAL SEMANTICS OF THE IMPLE-
MENTATION

When designing a software system it is important to clarify its intended pur-
pose. In [17], it is expressed that if the main purpose is to support reasoning
and formal approach, then the system should strive for minimality; on the
other hand if the main purpose is to be intuitive for the practitioners, then
it should reflect the expected intuitions and practices. We want to put these
purposes together, offering both intuitive languages for components, coor-
dinator and wrapper, and supporting formal approaches and reasoning. We
achieve this goal by using the formal models of object specification in hid-
den algebra, and a coalgebraic treatment of the labelled transition systems
for the coordinator and wrapper.

A model for a class specification in hidden algebra is a Σ-algebra M such
that Mv = Dv for each visible sort v∈V . The M-interpretation of a Γ-context
c is a function which maps a variable assignment ϑ : X → D and a state st
to the value [[c]]M(ϑ)(st) obtained by replacing the occurrences of in c
by st, the occurrences of x ∈ X by ϑ(x), and evaluating the operations in c
according to their interpretation in M. The behavioural equivalence relation
≡ over the set of states MSt is defined as follows: st ≡ st ′ iff [[c]]M(ϑ)(st) =
[[c]]M(ϑ)(st ′) for each Γ-experiment c.

If B is a specification of concurrent objects, then a B-model consists of
a model for each class together with a model for their instances and con-
figurations. This can be expressed in the terms of models for structured
specifications [6].

The operational semantics of a process algebra is given by a labelled tran-
sition system. We prefer to represent a labelled transition system as a coal-
gebra. We denote by Set the category of sets. Let A be a given set of action
names. Let TLTS : Set→ Set the functor given by

TLTS(X) = {Y ⊆ A×X | Y finite}
for each set X , and TLTS( f ) is the function TLTS( f ) : TLTS(X)→TLTS(X ′)
given by

TLTS( f )(Y ) = {(a, f (x)) ∈ A×X ′ | (a,x) ∈ Y}
for each function f : X → X ′. A labelled transition system associated to a
process algebra is a coalgebra π : P→ TLTS(P), where P is a set of pro-
cesses. We have p act−→ q iff (act,q) ∈ π(p).

Considering a wrapper w(R), we define a coalgebra w(R)M : MConfig →
TLTS(MConfig) by (act,cnfg′) ∈ w(R)M(cnfg) iff one of the following two
conditions holds:

1. if the result sort of w(R)(act) is Config,
then cnfg′ = [[w(R)(act)]]M(cnfg), and

2. if w(R)(act) = O.q(X1, . . . ,Xn)(Y ) with q an attribute,
then cnfg′ = [[Y ]]M(cnfg).

Moreover, we suppose that there is a coalgebra

w(R)M/≡ : MConfig/≡→ TLTS(MConfig/≡)

which commutes the following diagram:

MConfig
can−−−−−→ MConfig/≡

w(R)M

y
yw(R)M/≡

TLTS(MConfig) −−−−−−→
TLTS(can)

TLTS(MConfig/≡)

where can denotes the canonical onto morphism. The behavioural equiva-
lence must be preserved by the transitions defined by w(R)M . Therefore the
action terms include only behavioural congruent operations, the transitions
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are extended to the quotient model, and we require the commutativity of
the above diagram. The coalgebra w(R)M represents the labelled transition
system cnfg act−→ cnfg′ defined in Section 4.

A (π,w(R))-coordinated B-model is a triple (M,γ,proc), where M is a B-
model, proc : MConfig/≡ → P is a partial colouring operation (supervising
operation), and γ : dom(proc)→ TLTS(MConfig) is a coalgebra commuting
the following diagram:

MConfig/≡
id←−−−−− dom(proc)

proc−−−−−→ P

w(R)M

y
yγ

yπ

TLTS(MConfig/≡) ←−−−−−
TLTS(id)

TLTS(dom(proc)) −−−−−−→
TLTS(proc)

TLTS(P)

The rectangle from the right-hand side of the diagram says that proc is a
homomorphism of coalgebras. We take the advantage of using hidden alge-
bra, and we define the configuration supervisor as an attribute. By defining
proc as a partial function, we restrict the coordinator to be aware of the
coordinated configurations, and nothing more.

Each (π,w(R))-coordinated B-model defines a bisimulation:

PROPOSITION 1. Let γ∼ : graph(proc) → TLTS(graph(proc)) be the
coalgebra given by (a,〈cnfg′, p′〉) ∈ γ∼(〈cnfg, p〉) iff proc(cnfg) = p,
proc(cnfg′) = p′, and (act,cnfg′) ∈ γ(cnfg). Then γ∼ is a bisimulation be-
tween w(R)M and π.

A homomorphism of (π,w(R))-coordinated B-models from (M,γ,proc) to
(M′,γ′,proc′) consists of a Σ-homomorphism h : M→M′ such that
proc′(hConfig(cnfg)) = proc(cnfg) for all cnfg ∈ dom(proc).
Let Mod(B,π,w(R)) denote the category of the (π,w(R))-coordinated B-
models. The following result shows that a homomorphism preserves the
coalgebraic structure:

PROPOSITION 2. Let h : M → M′ be a homomorphism of (π,w(R))-
coordinated B-models defined as above.
Then hConfig : dom(proc) → dom(proc′) is a coalgebra homomorphism
from γ to γ′.

7. TEMPORAL PROPERTIES OF THE CO-
ORDINATED OBJECTS

Since the semantics of the coordinated objects is given by labelled tran-
sitional systems, we are able to use the temporal formulas for describing
their properties. We use Computational Tree Logic (CTL) [4]. CTL is a
branching time logic, meaning that its model of time is a tree-like structure
in which the future is not determined; there are different paths in the fu-
ture, any one of which might be the “actual” path that is desired. The CTL
formulas are inductively defined as follows:

p ::= R.att()( ) = d | R.att(d1, . . . ,dn)( ) = d

φ ::=tt | ff | p | (¬φ) | (φ1 ∧φ2) | EXφ | EGφ | E [φ1 Uφ2].

The intuitive meaning of an atomic proposition of the form R.att()( ) = d
is “the value of the attribute att for the object R in the current configura-
tion is d”. The meaning for each propositional connective is the usual one.
The set of propositional connectives is extended in the standard way. The
temporal connectives are pairs of symbols. The first is E, meaning “there
Exists one path”. The second one is X, G, or U, meaning “neXt state”, “all
future state (Globally)”, and “Until”, respectively. We can express other
five operators, where A means “for All paths”:

EFφ = E[ttUφ] AXφ = ¬EX(¬φ)
AGφ = ¬EF(¬φ) AFφ = ¬EG(¬φ)
A[φ1 Uφ2] = ¬E[¬φ2 U(¬φ1 ∧¬φ2)]∧¬EG¬φ2

The satisfaction relation cnfg |= p, expressing that a configuration cnfg sat-
isfies a CTL atomic proposition p, is defined as follows:

1. cnfg |= R.att()( ) = d if and only if cnfg = cnfg1,(R|state) and
R.att()(state) = d.

2. cnfg |= R.att(d1, . . . ,dn)( ) = d if and only if
cnfg = cnfg1,(R|state) and R.att(d1, . . . ,dn)(state) = d.

Then the satisfaction relation cnfg |= φ is extended to arbitrary CTL formu-
las φ in the standard way [4].

For the ABP example, the following CTL formula:

AG((S.bit()( ) = true ∧R.ack()( ) = false ∧S.data()( ) = d)→
AF(S.bit()( ) = false ∧R.ack()( ) = true ∧R.data()( ) = d))

expresses the fact that if in the current configuration the sender S has the
bit equal to true and the sending data equal to d, the receiver R has the
ack equal to false, then always there is in the future a configuration where
S has the bit equal to falsa, R has the ack equal to false and the received
data equal to d.

The temporal formulas are verified using a model-checking algorithm [4].
Our approach consists in extracting an SMV description [13] of the labelled
transition system in a similar way to that described in [11]. The advantage
of this method is that it allows the use of underspecified methods and of
CTL formulas.

The algorithm building the Kripke structure is implemented by a Maude
“built-in” operation called writeSmv. This operation yields a SMV module
describing the Kripke structure [13]. The signature of this operation is given
as follows:

mod SMV-WRITER is
inc CTL .

op writeSmv : Config Process FormulaSeq FormulaSeq
String -> Nat [special (...)] .

endm

The first two arguments are the starting configuration and process needed
to build the Kripke structure. The third argument is a sequence of CTL
formula that represents the fairness constraints. The fourth argument is
a sequence of CTL formula that represents the temporal properties to be
verified. The last argument is the name of the output file. The result of this
operation is the number of states generated.

The use of the writeSmv operation for the ABP correctness formula is as
follows:

red writeSmv(
init, ABP, none,
(AG(

AP(S .bit() C == b1)
& AP(R .ack() C == b0)
& AP(S .data() C == d1)
->

AP(S .bit() C == b0)
& AP(R .ack() C == b1)
& AP(R .data() C == d1))

)
),
"abp.smv") .

It is worth to note that we use a simplified form of the correctness formula.
The execution of the SMV model checker over the input file “abp.smv”
provides the following result:

-- specification
!E(1 U (S_bit__ = b1 & R_ack__ = b0 & ... is false

SMV says that the correctness property does not hold, and provides a coun-
terexample. The counterexample shows an infinite path where a channel
always generates errors. We recall that ABP works properly under the as-
sumption that the channels are fair, i.e., they do not produce such infinite
sequences of errors. This assumption can be easily specified by adding a
fairness constraint for each channel.
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red writeSmv(
init, ABP,
(AP(CHD .error() C == b0)

& AP(CHD .procName() C == transfer>),
AP(CHA .error() C == b0)

& AP(CHA .procName() C == transfer>)),
(AG(

AP(S .bit() C == b1)
& AP(R .ack() C == b0)
& AP(S .data() C == d1)
->

AF(AP(S .bit() C == b0)
& AP(R .ack() C == b1)
& AP(R .data() C == d1))

)
),
"abp.smv") .

The two fairness constraints are specified by the lines 3-6. Using these con-
straints, SMV succeeds to prove the correctness of ABP under the fairness
assumption:

-- specification
!E(1 U (S_bit__ = b1 & R_ack__ = b0 & ... is true

resources used:
processor time: 0.062 s,
BDD nodes allocated: 10057
Bytes allocated: 1695620
BDD nodes representing transition relation: 1191 + 1

8. CONCLUSION
Modelling complex systems out of components and building correspond-
ing applications is currently a challenge for software community. This
task assumes the description of the whole system from different points
of view: data, concurrency, synchronization, communication, coordina-
tion. Since each specific aspect related to data, concurrency, and coordi-
nated component-based systems can be described using a specific formal-
ism, the final description of the system could be a multiformalism specifi-
cation. HiddenCCS formalism introduced in [2, 3] is a formal specification
framework based on hidden algebra and CCS. This specification extends the
object specification with synchronization and communication elements as-
sociated with methods and attributes of the objects, and use a CCS descrip-
tion of the interaction patterns. The operational semantics of hiddenCCS
specifications is based on labelled transition systems. Another related mul-
tiformalism can also be found in [16]. Frølund and Agha [7] introduce in-
dependent support constructs for coordination of concurrent objects using
synchronizers. We extend their synchronizers in providing a more general
and elegant approach based on process algebra and related notions.

In [1] the authors focus on a formal basis for one aspect of software archi-
tecture design, namely the interactions between components. They define
architectural connectors as explicit semantic entities characterizing the par-
ticipants roles in an interaction. A system is described by its components
and connectors. A variant of CSP is used to define the roles, ports, and
glue specifications. An important motivation for the authors is represented
by the potential for automating the analysis of architectural description by
using tools to determine whether connectors are well formed, and ports are
compatible with their roles. In [12], the authors describe a distributed a
software architecture in terms of its components and their interactions, as-
sociating behavioural specifications with the components and then check-
ing whether the system satisfies certain properties. The approach is based
on labelled transition systems to specify the behaviour, and compositional
reachability analysis to check composite system models. Our approach add
an important feature to these architecture description languages, namely a
useful separation of concerns. Moreover, we use an efficient model checker
for verifying temporal properties of a component-based system.

More precisely, in this paper we design a specification language for coor-
dinated objects with a syntax closer to OOP languages, and a semantics of
coordination given by an integrating bisimulation. The interaction between
the coordinating process and autonomous objects is given via interaction
wrapper. Operational semantics of the coordinated objects is given by la-
belled transition systems, and we express their temporal properties in CTL.

These temporal properties can be verified automatically by using adapted
algorithms and new specific tools.
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[9] Gh. Grigoraş and D. Lucanu. On Hidden Algebra Semantics of
Object Oriented Languages. Sci. Ann. of the “A.I.Cuza” Univ. of Iaşi,
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ABSTRACT
In the paper, we present a new approach to component in-
teraction specification and verification process which com-
bines the advantages of both architecture description lan-
guages (ADLs) at the beginning of the process, and a general
formal verification-oriented model connected to verification
tools at the end. After examining current general formal
models with respect to their suitability for description of
component-based systems, we propose a new verification-
oriented model, Component-Interaction automata, and dis-
cuss its features. The model is designed to preserve all the
interaction properties to provide a rich base for further veri-
fication, and allows the system behaviour to be configurable
according to the architecture description (bindings among
components) and other specifics (type of communication
used in the synchronization of components).
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1. INTRODUCTION
Verification of interaction properties in component-based
software systems is highly dependent on the chosen specifica-
tion language. There are many possibilities how to specify
component behaviour and interaction in component-based
software systems. The specification languages typically fall
into two classes with diverse pros and cons.

The first set of specification languages is called Architecture
Description Languages (ADLs). Architecture description
languages, like Wright [3], Darwin/Tracta [15, 16], Rapide
[11], and SOFA [17, 2], are very suitable for specification of
hierarchical component architecture with defined intercon-
nection among components and behaviour constraints put
on component communication and interaction. Moreover
they are very comprehensible for software engineers and of-
ten provide a tool support. The essential drawback of the
ADLs is that their specification power is limited by the un-
derlying model which is often not general enough to preserve
all the interaction properties which might arise through
the component composition. Additionally, the verification
within an ADL framework usually supports a verification
of only a small fixed set of properties often unique for the
language.

The second set consists of general formal models usually
based on the automata theory (I/O automata [14, 12], In-
terface automata [8], Team automata [5]). These automata-
based models (as opposite to ADLs) are highly formal and
general, and usually supported by automated verification
tools (model-checkers in particular). However, these models
are designed for modelling of component interaction only
and therefore are unable to describe the interconnection
structure of hierarchical component architecture which also
influences the behaviour. That is one of the reasons why
these models are often considered to be unusable in soft-
ware engineering practice.

The point we want to address in our research is to com-
bine these two approaches to gain the benefits of both of
them. In particular, we would like to develop a general
automata-based formalism which allows for the specification
of component interactions according to the interconnection
structure described in particular ADL. The transition set of
the model should be therefore configurable according to the
architecture description (bindings among components) and
other specifics (type of communication used in the synchro-
nization of components). In addition, the formalism should
allow for an easy application of available automated verifica-

31



tion techniques. The idea is to support the specification and
verification process automatically or semi-automatically so
that it is accessible also for users with no special theoretical
knowledge of the underlying model. The specification and
verification process will constitute of the following phases.

1. The user selects an appropriate ADL and specifies the
system architecture and component behaviour using
an ADL tool.

2. Component behaviour description is transformed into
the general formal model automatically using the
model framework.

3. The hierarchical component composition is build
within the framework with respect to the architecture
description and synchronization type.

4. The result is verified directly within the model frame-
work or transformed to a format accepted by verifica-
tion tools.

In this paper we want to address the first step towards
this goal. We propose an appropriate general verification-
oriented specification formalism which covers all important
features of component interaction in component-based sys-
tems, including hierarchical interconnection interaction, and
enables its adjustment to the ADL specification. At the
same time, the model is defined in such a way that a direct
application of model checking techniques is possible.

The paper is organised as follows. After discussing related
work in Section 2, Section 3 focuses on the automata-based
models appropriate for component interaction specification,
and gives the reasons for introduction of a new model in
Section 4. Section 5 concludes by discussion the most im-
portant features of the proposed model, and presents the
plans for future work.

2. RELATED WORK
Our approach to support the specification and verification
process by combining ADL specification and a general for-
mal model verification has not been considered yet. The
reason is that the architecture description languages usually
support some kind of verification of the interaction proper-
ties and therefore there is no visible need for use of a new
general verification-oriented model.

Some of the architecture description languages addressing
the issue of formal verification of behaviour properties of
the system composed from components are Wright [3], Dar-
win/Tracta [15, 16], Rapide [11] and SOFA [17, 2]. Wright
uses consistency and completeness checks defined in terms
of its underlying model in CSP. Verification of component
behaviour in Darwin is supported by the Tracta approach
which defines component interactions using labelled transi-
tion systems (LTS) and employs model checking [10] to ver-
ify some of its properties (reachability analysis, safety and
liveness properties). Rapide generates a system execution in
a form of partially ordered set of events and allows its check
against properties. SOFA uses behavior protocols to spec-
ify behaviour of a component frame (black-box specification
view) and architecture (grey-box implementation view) and
employs a compliance checking to verify their conformance.

As we emphasised in the introduction, these languages typi-
cally support verification of a limited set of interaction prop-
erties. Even if some ADLs attempt to support an exhaus-

tive verification [10], they are limited by the underlying be-
haviour model which is usually designed for one particular
type of communication and notion of erroneous behaviour
and thus does not cover some important interaction proper-
ties. For example the parallel composition operator ‖ used
in Tracta does not assure, that we will be later able to detect
all states where one of the (sub)components is ready to syn-
chronize on a shared action but the others are not because
in Tracta’s notion of communication it is not an interesting
behaviour to capture.

Another approach is a support of the specification and veri-
fication process using the formal general language only (I/O
automata [14], Interface automata [8], Team automata [5]).
The essential drawback of this approach is that the mod-
els specify just the interaction behaviour without describing
the underlying architectural framework. That is restrictive
especially when the interconnection structure of a system
differs from the complete interconnection space determined
by the actions shared among components.

3. AUTOMATA-BASED LANGUAGES
As already mentioned in the introduction, automata-based
models are typically supported by automated verification
tools. In this section we primarily concentrate on their ap-
plicability for capturing of behaviours of component-based
systems, especially the interaction among components of the
system. The best known models used in this context are I/O
automata, Interface automata, and Team automata. For
each of the models we give a brief definition and review its
main features interesting in a light of modelling component-
based systems.

Notation: Let I ⊆ N be a finite set with cardinality k, and
let for each i ∈ I, Si be a set. Then Πi∈ISi denotes the
set {(xi1 , xi2 , . . . , xik ) | (∀j ∈ {1, . . . , k} : xij ∈ Sij ) ∧
{i1, i2, . . . , ik} = I ∧ (∀j1, j2 ∈ {1, . . . , k} : j1 < j2 ⇒ ij1 <
ij2)}. If I = ∅ then Πi∈ISi = ∅. For j ∈ I, projj denotes the
function projj : Πi∈ISi → Sj for which projj((qi)i∈I) = qj .

3.1 I/O automata
The Input/Output automata model (I/O automata for
short) was defined by Nancy A. Lynch and Mark R. Tut-
tle in [18, 13] as a labelled transition system model based
on nondeterministic automata. The I/O automata model
is suitable for modelling distributed and concurrent systems
with different input, output and internal actions. I/O au-
tomata can be composed to form a higher-level I/O automa-
ton and thus form a hierarchy of components of the system.

Definition: A (safe) I/O automaton is a tuple A =
(Q, Σinp, Σout, Σint, δ, I), where

• Q is a set of states.

• Σinp, Σout, Σint are pairwise disjoint sets of input, out-
put and internal actions, respectively. Let Σ = Σinp ∪
Σout ∪ Σint be called a set of actions.

• δ ⊆ Q × Σ × Q is a set of labelled transitions such
that for each a ∈ Σinp and q ∈ Q there is a transition
(q, a, q′) ∈ δ (input enableness).

• I ⊆ Q is a nonempty set of initial states.

Important feature to mention is that I/O automata are input
enabled in all states, they can never block the input. It
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means that in I/O automata we are unable to directly reason
about properties capturing that a component A is ready to
send output action a to a component B which is not ready
to receive it (e.g. needs to finish some computation first).
Other feature to notice is that the sets of input, output
and internal actions of I/O automaton have to be pairwise
disjoint. It can limit us in modelling some practical systems.
For example when we want to model a system in Figure 1,
consisting of n component instances of the same type that
enable event delegation (the component Ci can delegate the
method call which received from the component Ci−1 to the
component Ci+1), we cannot do it directly. We have to use
appropriate relabelling.

Figure 1: Delegation of a method call, UML 2.0

A set of I/O automata is strongly compatible if the sets of
output actions of component automata are pairwise disjoint
and the set of internal actions of every component automa-
ton is disjoint with the action sets of all other component
automata. Therefore a set of automata where two or more
automata have the same output action is not strongly com-
patible and cannot be composed according to the next de-
finition. At the same time this property is quite often in
practical component-based systems, for example when two
components are using the same service of another compo-
nent. This problem could be solved by relabelling of the
transitions. Note that simple including the identity of the
component in the action name would not suffice because I/O
automata are able to synchronize only on actions with the
same name.

Definition: Let S = {(Qi, Σi,inp, Σi,out, Σi,int, δi, Ii)}i∈I ,
where I ⊆ N is finite, be a strongly compatible set of I/O
automata. An I/O automaton (Πi∈IQi, Σinp, Σout, Σint, δ,
Πi∈IIi) is a composition of S iff

• Σinp =
�S

i∈I Σi,inp

�
\
�S

i∈I Σi,out

�
,

• Σout =
S

i∈I Σi,out,

• Σint =
S

i∈I Σi,int and

• for each q, q′ ∈ Πi∈IQi and a ∈ Σ, (q, a, q′) ∈ δ iff for
all i ∈ I if a ∈ Σi then (proji(q), a, proji(q

′)) ∈ δi and
if a 6∈ Σi then proji(q) = proji(q

′).

In the composition of strongly compatible I/O automata
each input action a, for which an appropriate output action
a exists, is removed to preserve the condition of disjoint
input and output action sets. The input actions then cannot
be delegated out of the composed component to be linked
in a higher level of composition. Another property of I/O
automata to mention is that they do not allow to specify
which outputs and inputs should be bound and which should
stay unbound (according to the architecture description or
type of synchronization).

3.2 Interface automata
The Interface automata model [8] was introduced in [7] by
Luca de Alfaro and Thomas A. Henzinger. The model is
designed for documentation and validation of systems made
of components communicating throw their interfaces. Inter-
face automata, as distinct from I/O automata, are not input
enabled in all states and allow composition of two automata
only. Moreover, composition is based on synchronization of
one output and one input action (with the same name) which
becomes hidden after the composition. That is natural for
practical component-based systems.

An interface automaton is defined in the same way as I/O
automaton with the only difference that interface automaton
need not to be input enabled. The sets of input, output, and
internal (called hidden in this case) actions again have to be
pairwise disjoint.

Definition: Let Ai = (Qi, Σi,inp, Σi,out, Σi,int, δi, Ii),
i = 1, 2, be interface automata. Then the set Σ1 ∩ Σ2 is
called shared(A1,A2). Automata A1,A2 are composable iff

shared(A1,A2) = (Σ1,inp ∩ Σ2,out) ∪ (Σ2,inp ∩ Σ1,out).

It means that, except of actions which are input of the first
and output of the second automaton or vice versa, the sets
of actions of two composable automata have to be disjoint.

Definition: Let Ai = (Qi, Σi,inp, Σi,out, Σi,int, δi, Ii),
i = 1, 2, be composable interface automata. Then (Q1 ×
Q2, Σinp, Σout, Σint, δ, I1 × I2) is a product of A1 and A2 iff

• Σinp = (Σ1,inp ∪ Σ2,inp) \ shared(A1,A2),

• Σout = (Σ1,out ∪ Σ2,out) \ shared(A1,A2),

• Σint = (Σ1,int ∪ Σ2,int) ∪ shared(A1,A2) and

• ((q1, q2), a, (q′1, q
′
2)) ∈ δ iff

a 6∈ shared(A1,A2) ∧ (q1, a, q′1) ∈ δ1 ∧ q2 = q′2
a 6∈ shared(A1,A2) ∧ q1 = q′1 ∧ (q2, a, q′2) ∈ δ2

a ∈ shared(A1,A2) ∧ (q1, a, q′1) ∈ δ1 ∧ (q2, a, q′2) ∈ δ2.

The definition implies that the linking of input and output
action, from the set of shared actions, is compulsory as in
the I/O model. Additionally, the model does not permit
multiple binding on the interfaces directly without renaming
(e.g. two components using the same service provided by
other component). Each input (output) action after linking
to an appropriate output (input) action becomes internal
action and therefore is not allowable for other linking.

The transition set of the product of two interface automata
contains all syntactically correct transitions. Composition
of two interface automata is a restriction of the product au-
tomaton. The restriction is defined with the help of error
and compatible states, and compatibility of two automata
(for formal definitions see [8]). The product state (q1, q2)
of two composable interface automata is an error state if it
corresponds to a state where one of the automata is able to
send an output action a and the other one is not able to
receive the action a (a is a shared action). A state q is com-
patible if no error state is reachable from q performing only
output and internal actions. Two interface automata with
initial states q1, q2 are compatible, if they are composable
and the initial state (q1, q2) of their product is a compatible
state.
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Definition: Let A1 and A2 be compatible interface au-
tomata and (Q, Σinp, Σout, Σint, δ, I) be their product. In-
terface automaton (Q, Σinp, Σout, Σint, δ

′, I) is a composition
of A1 and A2 iff δ′ = δ\{(q, a, q′) | q is compatible, a ∈ Σinp,
and q′ is not compatible}.

The composition of interface automata is defined in two
steps. In the first step the product automaton is built and
the set of error and compatible states are formed. In the sec-
ond step the transition function of the product automaton
is restricted to disable transitions to incompatible states. It
follows the optimistic assumption that two automata can be
composed if there exists some environment that can make
them work together properly. Then the composition of the
automata consists of the transitions available in such envi-
ronment.

The shortcoming of this approach is the explicit indication
of erroneous behaviour (error states) that limits this ap-
proach to modelling solely the component-based systems
with equivalent notion of what is and is not considered as
an error (respecting one type of synchronization).

3.3 Team automata
The Team automata model [5] was first introduced in [9] by
Clarence A. Ellis. This complex model is primary designed
for modelling groupware systems with communicating teams
but can be also used for modelling component-based sys-
tems. It is inspired by I/O automata. Team automata, as
a main distinct from the previous models, allow freedom of
choosing the transition set of the automaton obtained when
composing a set of automata, and thus are not limited to
one synchronization only.

A team automaton is defined in the same way as I/O au-
tomaton with the only difference that team automaton need
not to be input enabled. A set of component automata is
composable if the set of internal actions of every component
automaton is disjoint with the action sets of all other com-
ponent automata. The composition of team automata is
defined over a complete transition space.

Definition: Let S = {(Qi, Σi,inp, Σi,out, Σi,int, δi, Ii)}i∈I ,
where I ⊆ N is finite, be a composable system of component
automata and a ∈

S
i∈I Σi. Then a complete transition

space of a in S is denoted ∆a(S) and defined as

∆a(S) = {(q, a, q′) | q, q′ ∈ Πi∈IQi ∧
∃j ∈ I : (projj(q), a, projj(q

′)) ∈ δj ∧
∀i ∈ I : ((proji(q), a, proji(q

′)) ∈ δi ∨ proji(q) =
proji(q

′))}.

T = (Πi∈IQi, Σinp, Σout, Σint, δ, Πi∈IIi) is a team automa-
ton over S iff

• Σinp =
�S

i∈I Σi,inp

�
\
�S

i∈I Σi,out

�
,

• Σout =
S

i∈I Σi,out,

• Σint =
S

i∈I Σi,int and

• δ ⊆ Πi∈IQi×Σ×Πi∈IQi, such that for all a ∈ (Σinp∪
Σout), δ restricted to a is a subset of ∆a(S), and for
all a ∈ Σint, δ restricted to a is equal to ∆a(S).

The important fact to mention is that the composition hides
every input action which is an output action of some other

automaton in the composition. Therefore the input action
cannot be used on a higher level of compositional hierarchy
later on. Another important feature is that, when com-
posing automata, we can loose some information about the
behaviour of the system. For example, let us consider the
component automata A1, A2 and A3 from Figure 2 where
A1 has one transition over output action a and both A2 and
A3 have one transition over input action a. After composing
these three automata to the automaton A over {A1,A2,A3}
(with one transition over output action a), we cannot differ-
entiate between synchronization of the input of A2 with the
output of A1 and synchronization of A3 with A1. This can
be quite restrictive for verification of properties capturing
which components participated in the computation. More-
over, if we would need to express that an automaton A1 in
a state q0 can synchronize with A2 only, we cannot include
this information in the composition withou renaming.

A1 : A2 : A3 :

q076540123 a // q176540123 q076540123
BCED aGF��

q076540123
BCED aGF��

A : p76540123 a // q76540123

Figure 2: Composition of automata (p states for
(q0, q0, q0), q states for (q1, q0, q0))

3.4 Summary
The characteristics of the current models described in this
section make their applicability for the full description of
interactions in component-based systems difficult. It is
natural because studied models were often designed for a
slightly different purpose (I/O automata, Team automata)
and usually are limited to one strict type of synchronization
(I/O automata, Interface automata) which we do not want
to limit to. In some cases, relabelling and transformation
of the component automata before each composition would
be sufficient to express desired properties. But the price we
would have to pay for it is in considerable state expand-
ing, untransparency and uncomfortable use of the model.
Moreover there are features (like strict synchronization at
Interface automata or input enableness at I/O automata)
which would be nontrivial to overcome.

4. COMPONENT-INTERACTION
AUTOMATA

The issues mentioned in the previous section has motivated
us to evolve a new verification-oriented automata-based for-
mal model, Component-Interaction automata, designed for
specification of interacting components in component-based
systems with respect to several aspects of the systems (ADL
interconnection structure, way of communication among
components). The Component-Interaction automata make
it possible to model all interesting aspects of component in-
teraction in hierarchical component-based software systems
without loosing any behaviours, and verify interaction be-
haviour of the systems as well. The model respects current
ADLs to enable direct transformation of the ADL descrip-
tion to Component-Interaction automata, and current ver-
ification tools as Component-Interaction automata can be
translated into their specification languages.
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The Component-Interaction automata model is inspired by
the Team automata model, mainly in freedom of choosing
the transition set of the composed automaton what enables
it to be architecture and synchronization configurable. How-
ever, Component-Interaction automata differ from Team au-
tomata in many aspects to be more comfortable in use for
component-based systems, and to preserve important infor-
mation about the interaction among synchronized compo-
nents and hierarchical structure of the composed system.

Component-interaction automaton over a set of components
S is a nondeterministic automaton where every transition is
labelled as an input, output, or internal. Sets of input, out-
put and internal actions need not to be pairwise disjoint.
Input (output) action is associated with the name of a com-
ponent which receives (sends) the action. Internal action
is associated with a tuple of components which synchronize
on the action. In composition of component-interaction au-
tomata, only two components can synchronize and the infor-
mation about their communication is preserved. If a com-
ponent has an input (output) action a, the composition also
can have a as its input (output) action even after the linking
of the action.

Notation: Let I ⊆ N be a finite nonempty set with cardini-
nality k, and let {Si}i∈I be a set. Then (Si)i∈I denotes the
tuple (Si1 , Si2 , . . . , Sik ), where {i1, i2, . . . , ik} = I and for
all j1, j2 ∈ {1, 2, . . . , k} if j1 < j2 then ij1 < ij2 .

4.1 Definition
Definition: A component-interaction automaton is a tuple
C = (Q, Act, δ, I, S) where

• Q is a finite set of states,

• Act is a finite set of actions,
Σ = ((X∪{−})×Act×(X∪{−}))\({−}×Act×{−})
where X = {n | n ∈ N, n occurs in S}, is a set of
symbols called an alphabet,

• δ ⊆ Q× Σ×Q is a finite set of labelled transitions,

• I ⊆ Q is a nonempty set of initial states and

• S is a tuple corresponding to a hierarchy of component
names (from N) whose composition C represents.

Symbols (−, a, B), (A, a,−), (A, a, B) ∈ Σ are called input,
output and internal symbols of the alphabet Σ, respectively.
Accordingly, transitions are called input, output, and inter-
nal.

• The input symbol (−, a, B) represents that the com-
ponent B receives an action a as an input.

• The output symbol (A, a,−) represents that the com-
ponent A sends an action a as an output.

• The internal symbol (A, a, B) represents that the com-
ponent A sends an action a as an output, and synchro-
nously the component B receives the action a as an
input.

Remark, that component-interaction automaton need not
have disjoint sets of input actions (those involved in input
transitions), output actions (involved in output transitions),
and internal actions (involved in internal transitions).

As it can be seen from the structure of symbols, only two
components can synchronize on the same action. It is a
natural way of component communication according to a
client–server principle. If we would like to address multi-way
synchronization, the model could be naturally extended to
Multi Component-Interaction automata, where the symbols
would be represented as tuples (A, a, B) where A stands for
a set of sending components and B for a set of receiving
components.

Example 4.1.: Let us consider the system from Figure 3
(modelled in UML 2.0). The component C1 sends an action
a through the interface I2 and sends an action b through
the interface I1. The component C2 receives an action a
through the interface I3. C3 sends a through I6, C4 receives
a through I4 and sends b through I5. Finally, C5 sends b
through I7.

Figure 3: Component model of a simple system

Component-interaction automata A1, A2, and A3, mod-
elling components C1, C2, and C3 from Figure 3, respec-
tively, follows (their graphical representation is in Figure 4).

A1 = ({q0, q1}, {a, b}, {(q0, (1, a,−), q1),
(q1, (1, b,−), q1)}, {q0}, (1))

A2 = ({q0}, {a}, {(q0, (−, a, 2), q0)}, {q0}, (2))

A3 = ({q0}, {a}, {(q0, (3, a,−), q0)}, {q0}, (3))

A1 : // q076540123 (1,a,−) // q176540123
BCED (1,b,−)GF��

A2 : // q076540123
BCED (−,a,2)GF��

A3 : // q076540123
BCED (3,a,−)GF��

Figure 4: Automata A1, A2, and A3 modelling com-
ponents C1, C2, and C3.
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Component-interaction automata can be composed and
form a hierarchical structure which is preserved as visible
from the next definition.

Definition: Let S = {(Qi, Acti, δi, Ii, Si)}i∈I , where I ⊆ N
is finite, be a system of component-interaction automata
such that sets of components represented by the automata
are pairwise disjoint. Then C = (Πi∈IQi,∪i∈IActi, δ,
Πi∈IIi, (Si)i∈I) is a component-interaction automaton over
S iff
δ = ∆OldInternal ∪ δNewInternal ∪ δInput ∪ δOutput where

∆OldInternal = {(q, (A, a, B), q′) | ∃i ∈ I :
(proji(q), (A, a, B), proji(q

′)) ∈ δi, ∀j ∈ I, j 6= i :
(projj(q)) = projj(q

′)}

∆NewInternal = {(q, (A, a, B), q′) | ∃i1, i2 ∈ I, i1 6= i2 :
(proji1(q), (A, a,−), proji1(q

′)) ∈ δi1 ∧
∧ (proji2(q), (−, a, B), proji2(q

′)) ∈ δi2 ∧
∧ ∀j ∈ I : i1 6= j 6= i2 projj(q) = projj(q

′)}

δNewInternal ⊆ ∆NewInternal

∆Input = {(q, (−, a, B), q′) | ∃i1 ∈ I :
(proji1(q), (−, a, B), proji1(q

′)) ∈ δi1 ∧ ∀j ∈ I : i1 6= j :
(projj(q) = projj(q

′))}

δInput ⊆ ∆Input

∆Output = {(q, (A, a,−), q′) | ∃i2 ∈ I :
(proji2(q), (A, a,−), proji2(q

′)) ∈ δi2 ∧ ∀j ∈ I : j 6= i2 :
(projj(q) = projj(q

′))}

δOutput ⊆ ∆Output

Transitions in ∆OldInternal are internal transitions of the
component automata. Transitions in δNewInternal arise from
synchronization of two components. δInput and δOutput are
input and output transitions of the composed automaton
provided by components of the composed automaton.

In the definition, we use auxiliary sets ∆s, s ∈
{NewInternal, Input, Output}. Each of these sets repre-
sents all possible transitions (complete transition space) over
a specific set of symbols determined by the index s. The
architecture of the modelled component-based system and
other advanced characteristics determine which transitions
from the complete transition space are included in the com-
posed automaton. The idea is that the final transition set
δ is formed automatically according to the rules specifying
the complete transition space, interconnection rules gener-
ated from the ADL description and other specified charac-
teristics.

Example 4.2.: Let us illustrate the composition on automata
from Example 4.1. Automaton A4 (modelling the compo-
nent C4 from Figure 3) is a component-interaction automa-
ton over A1 and A2. Automaton A5 (modelling the compo-
nent C5 from Figure 3) is a component-interaction automa-
ton over A3 and A4. The architecture of the composition
is determined by the UML 2.0 description of the system in
Figure 3.

A4 = ({s0, s1}, {a, b}, {(s0, (−, a, 2), s0), (s0, (1, a, 2)s1),
(s1, (1, b,−), s1), (s1, (−, a, 2), s1)}, {s0}, ((1), (2)))
∆OldInternal = ∅
∆NewInternal = {(s0, (1, a, 2), s1)}

δNewInternal = {(s0, (1, a, 2), s1)}
∆Input = {(s0, (−, a, 2), s0), (s1, (−, a, 2), s1)}
δInput = {(s0, (−, a, 2), s0), (s1, (−, a, 2), s1)}
∆Output = {(s0, (1, a,−), s1), (s1, (1, b,−), s1)}
δOutput = {(s1, (1, b,−), s1)}
Here s0 and s1 represent the states (q0, q0) and (q1, q0), re-
spectively. For the graphical representation of A4 see Fig-
ure 5.

// s076540123
BCED (−,a,2)GF��

(1,a,2)
// s176540123 EDBC (1,b,−)@AOO
BCED (−,a,2)GF��

Figure 5: Automaton A4 modelling component C4

A5 = ({p0, p1}, {a, b}, {(p0, (3, a, 2), p0), (p0, (1, a, 2), p1),
(p1, (3, a, 2), p1), (p1, (1, b,−), p1)}, {p0}, (((1), (2)), (3)))
∆OldInternal = {(p0, (1, a, 2), p1)}
∆NewInternal = {(p0, (3, a, 2), p0), (p1, (3, a, 2), p1)}
δNewInternal = {(p0, (3, a, 2), p0), (p1, (3, a, 2), p1)}
∆Input = {(p0, (−, a, 2), p0), (p1, (−, a, 2), p1)}
δInput = ∅
∆Output = {(p0, (3, a,−), p0), (p1, (1, b,−), p1), (p1, (3, a,−), p1)}
δOutput = {(p1, (1, b,−), p1)}
Here p0 and p1 represent the states ((q0, q0), q0) and
((q1, q0), q0), respectively. For the graphical representation
of A5 see Figure 6.

// p076540123
BCED (3,a,2)GF��

(1,a,2)
// p176540123
BCED (3,a,2)GF��
EDBC (1,b,−)@AOO

Figure 6: Automaton A5 modelling component C5

The operation of composition let us model the hierarchi-
cal structure of component-based systems. The base of the
composition are primitive component-interaction automata.
A component-interaction automaton is primitive if it repre-
sents one individual component only. AutomataA1,A2, and
A3 from Example 4.1 are primitive. In the modelling and
verification process we often need to consider only input and
output transitions of a component-interaction automaton,
which corresponds to the notion of primitiveness. Therefore
we define a relation primitive to which enables us to trans-
form any component-interaction automaton to a primitive
one if we want to make the system less complex for further
verification.

Definition: Let C = (Q, Act, δ, I, S) be a component-
interaction automaton. Then component-interaction au-
tomaton C′ = (Q, Act, δ′, I, (n)) is primitive to the
component-interaction automaton C iff

• n ∈ N does not occur in S,

• (q, (n, a, n), q′) ∈ δ′ iff ∃n1, n2 ∈ N : (q, (n1, a, n2), q
′)

∈ δ,

• (q, (−, a, n), q′) ∈ δ′ iff ∃n2 ∈ N : (q, (−, a, n2), q
′) ∈ δ,

• (q, (n, a,−), q′) ∈ δ′ iff ∃n1 ∈ N : (q, (n1, a,−), q′) ∈ δ.

Example 4.3.: Automaton B4 (see Figure 7) is primitive to
the automaton A4 from Example 4.2. (s0 and s1 represent
the states (q0, q0) and (q1, q0), respectively).
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// s076540123
BCED (−,a,4)GF��

(4,a,4)
// s176540123
BCED (−,a,4)GF��
EDBC (4,b,−)@AOO

Figure 7: Automaton B4

4.2 Verification
For a given component-interaction automaton its behaviour
can be defined through its executions and traces.

Definition: An execution fragment of a component-
interaction automaton C = (Q, Act, δ, I, S) is an infinite al-
ternating sequence q0, x0, q1, x1, . . . of states and symbols of
the alphabet Σ such that (qi, xi, qi+1) ∈ δ for all 0 ≤ i.
An execution of C is an execution fragment q0, x0, q1, x1, . . .
such that q0 ∈ I. An execution fragment is closed if all its
symbols are internal. A trace of C is a sequence x0, x1, . . .
of symbols for which there is an execution q0, x0, q1, x1, . . ..

In real component-based systems one needs to verify various
properties of system behaviour. If the system is modelled
as a component-interaction automaton the behaviour cap-
turing the interaction among components and architectural
levels are the traces. Both linear and branching time tempo-
ral logics have proved to be useful for specifying properties of
traces. There are several formal methods for checking that
a model of the design satisfies a given specification. Among
them those based on automata [6] are especially convenient
for our model of Component-Interaction automata.

We have experimentally verified several specifications of
a component-based systems modelled as a component-
interaction automata with the help of DiVinE [1, 4]. DiVinE
(Distributed Verification Environment) is a model checking
tool that supports distributed verification of systems. The
DiVinE native input language si based on finite automata
and the component-interaction automata can be translated
into the DiVinE language. The tool supports verification of
LTL properties.

5. CONCLUSIONS AND FUTURE WORK
The paper presents a new formal verification-oriented
component-based specification language named Component-
Interaction automata. This model is defined with the aim to
support specification and verification of component interac-
tions according to the interconnection architecture and other
aspects of modelled system. On the one hand, Component-
Interaction automata are close to architecture description
languages which can be (semi)automatically transformed
into Component-Interaction automata without loosing im-
portant behavioural characteristics. On the other hand, the
proposed model is close to Büchi automata model and this
admits automata-based verification of temporal properties
of component interactions.

The Component-Interaction automata model aims to pro-
vide a direct and desirable way of modelling component-
based systems which is meant to be more transparent and
understandable thanks to the primary purpose oriented to
component-based systems and their specifics. The model
is inspired by some features of previously discussed models
and differs in many others. It allows the freedom of choosing
the transition set what allows its configurability according
to the architecture description (inspired by Team automata)
and is based on synchronization on one input and one out-

put action with the same name which becomes internal later
on (inspired by Interface automata). The model is designed
to preserve all important interaction properties to provide
a rich base for further verification. As a distinct from the
models discussed in Section 3, it naturally preserves infor-
mation about the components which participated in the syn-
chronization and about the hierarchical structure, directly
without renaming that would make the model less readable
and understandable. Even if some component-based sys-
tems could be modeled by previously discussed models (I/O
automata, Interface automata, Team automata) with ap-
propriate relabelling, it would be for a price of considerable
state expanding, untransparency and uncomfortable use of
the model.

Nowadays we are developing an automatic transformation
from SOFA ADL specification to Component-Interaction
automata and from Component-Interaction automata to
DiVinE model checking tool native input language. In
the future, we intent to study Component-Interaction au-
tomata model in a more detailed way, considering mathe-
matical (expressiveness), verification (properties and algo-
rithms) and software engineering (reusability and composi-
tionality) point of view.
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Abstract 
Component technologies, such as Enterprise Java Beans (EJB) 

and .NET, are used in enterprise servers with requirements for 

high performance and scalability. This work considers 

performance prediction from the design of an EJB system, based 

on the modular structure of an application server and the 

application components. It uses layered queueing models, which 

are naturally structured around the software components. This 

paper describes a framework for constructing such models, based 

on layered queue templates for EJBs, and for their inclusion in the 

server. The resulting model is calibrated and validated by 

comparison with an actual system. 
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1. Introduction and motivation 
The approach to designing application servers based on 

component technologies such as Enterprise Java Beans and the 

J2EE standards [1] [5] [6] provides rapid development and the 

promise of scalability and good performance. J2EE and other 

approaches such as .NET do this by providing many services 

which applications require (such as support for concurrency, 

security, and transaction control) within the platform. As a result 

however the server platforms also have substantial overhead costs, 

and performance is a significant concern. Predictive models of a 

design can provide insight into potential problems and guidance 

for solutions. The use of predictive modeling to analyze software 

designs has been described extensively by Smith and Williams 

(e.g. [10]) and others (see for example [2][17]). 

To build predictive models efficiently, the description of the 

platform should be separated from the components that implement 

the business logic of the application, the web interface, and the 

database. The infrastructure parts such as a J2EE platform can be 

modeled in advance and reused, with embedded parameters to 

describe possible deployments. When a specific application is 

designed, its elements are modeled and plugged into the platform 

sub-model. This provides a rapid model-building capability, in 

parallel with the rapid development process. 

The process of defining component-based performance 

models, and of building models from components, was described 

in [4][16]. 

This work is based on a layered queueing network (LQN) 

formalism, which is defined in [9][13][14], and the introductory 

tutorial [15]. Layered queueing is a strategic choice. Compared to 

other formalisms surveyed in [2], it extends queueing networks to 

include software resources, and it avoids the state explosion of 

Markov models based on Petri Nets. Each software component is 

a distinct model entity, and contention for logical resources such 

as threads (which define the concurrency in the server platform) is 

captured. 

The central contribution of this work is to demonstrate a sound 

procedure for modeling EJB applications using a template-based 

framework, calibrating the model using profiling data and 

validating it against measurement. Key issues include the 

relationship between the EJB application components and the 

platform (which are captured in submodel templates), the 

feasibility of measuring the model parameters from execution 

traces, and the accuracy with which the model predicts 

performance of an implementation under load. The paper [18] 

describes the design and use of the templates in greater detail. 

 

2. LQN Evaluation 
To demonstrate that the LQN model can be applied to this 

class of system with reasonable accuracy, a simulation model of a 

system with entity beans due to Llado and Harrison [7] was 

compared to its LQN equivalent. Figure 1 shows this LQN 

equivalent model.  

The LQN notation is taken from [13][14][15]. Software 

entities are modeled as tasks, offering services called entries. In 

the Figure a task is a rectangle with a rectangular field at the right-

hand end for the task name and parameters, and a field for each 

entry. The entries have parameters in the form “[demand]” for the 

host (CPU) demand in ms, and have blocking requests to other 

entries indicated by arrows with labels for the number of requests. 

The parameters for the tasks are multiplicities, which limit the 

number of concurrent instances. There are $N clients, $M bean 

threads, 1 thread for each of $I identical bean instances, and no 

limit (shown as inf) for the Container.  

The part of the model within the large rectangle represents one 

bean Container with its services and beans, and forms a 

component that can be generated for each bean. The component 

has input and output interfaces consistent with a component-based 

model-building framework called CBML [16], which allows 

complex interacting systems to be built up from modules like this.  

The solid arrowheads on the request arcs indicate that the 

requesting task is blocked (and its task-related resource is held) 

while the serving task executes. The model captures resource 

holding patterns, such as (1) the Container operation 

“invokeMethod” requires a bean instance, and (2) startup 

operations by the prepareBean entry of the critical section 
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psuedo-task ConServ (Container Services, with multiplicity 1), 

represent mutual exclusion. 

The bean instances (both active and passive) are represented 

by a set of $I replicas of the task Instance (the shaded boxes in the 

Figure). Each replica is a single threaded task, showing that 

requests to the same instance must wait. They are shown as being 

requested with equal probability (1/$I for each instance). 

The probability that a requested entity bean instance must be 

activated is represented by the probability (1-$p) on calls from the 

prepareBean entry to the call back functions (activate, passivate, 

load and store) on the active bean.   

 

 

 

Client ($N) request 
[$thinkTime] ClientCPU 

 
invokeMethod 

[$s_checkAccess] 
Container  

(inf) 

AppServerCPU 

instanceMethod 
[0] 

Instance 
(1) 

}$I replicas 

(1/$I) 

1 

busiMethod 
[$s_method] 

Bean Thread Pool 
($M) 

1 

ContServ  
(1) 

prepareBean 
[$s_prepareBn] 

(1-$p) 

1 

CallBack  
(1) 

PassivateStore/ActivateLoad 
[$s_callback] 

 
Figure 1 LQN model for the system with Entity Beans in [8] 

  

 With the same parameter values as were used in [8], the LQN 

model was solved with 20 instances ($I=20), pool size of 6 

($M=6), negligible execution demand for invokeMethod, and 

prepareBean ($s_checkAccess = 0.001, $s_prepareBn = 0.001) 

and business method (busiMethod) time of 4.1 ($s_method = 4.1). 

All the call back functions were aggregated to a single entry with a 

total demand of 0.4 (i.e. $s_callback = 0.4). 

Figure 2 compares the simulation results from [8] with the 

LQN model. The results show approximately 6% differences 

between the two models with the LQN being a little pessimistic.  

Llado and Harrison describe an extended queueing model for 

this system in [7], using decomposition and a custom-built 

solution strategy, which provides an even closer match to the 

simulation results. However the effort of creating such a model 

must be repeated for every configuration, and becomes more 

complex with multiple interacting beans. The current approach 

tries to overcome this by the use of a standardized model 

framework and a systematic model-building process based on 

LQN templates for the different kinds of beans. 
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Figure 2 LQN model predictions compared with Simulation 

Results [8]  

 

 Figure 3 shows another set of results, which compares the 

throughput for different numbers of bean instances $I, with the 

same pool size $M = 6. It can be noted that the number of bean 

instances makes little difference since the system is saturated at 

the small sized thread pool. This behavior corresponds to the 

results obtained from [8]. 
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3. LQN sub-model templates  
This section describes a LQN model template for each type of 

EJB. These templates follow the LQN component concept 

described in [16]. They can be instantiated according to specific 

function requirement in each scenario for system usage, and then 

be assembled into a complete LQN model for the whole scenario. 

An example on how to use these templates to build a complete 

LQN model for a business scenario will be shown in section 4. 

 

3.1 LQN template for an Entity Bean 
Figure 4 shows a LQN template for an Entity Bean. The entry 

busiMethod of the activebean is a placeholder for one or more 

methods of the Bean, and the entries InvokeMethod, 
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InstanceMethod and getThread are placeholders for resource 

requests on the calling path. All of these entries must be 

instantiated for each business method of the Bean, with calls 

between them as shown, connected to the interfaces. 

 

 

 

 

Container  
(inf) 

invokeMethod 
[$s_checkAccess] 

Instance 
(1) 

instanceMethod 
[0] }$I replicas 

Bean Thread Pool 
($M) 

(1-$p) 

prepareBean 
[$s_prepareBn] 

ContServ  
(1) 

1 

(1/$I) 

getThread 
[$s_getThread] 

1 

busiMethod 
[$s_method] 

activebean  
(inf) 

passivate 
[$s_passiv] 

activate 
[$s_activ] 

load 
[$s_load] 

store 
[$s_store] 

(1-$p) 

homeFinder 
[$s_cfind] 

homeCreate 
[$s_ccreate] 

homeRemove 
[$s_cremove] 

instanceRemove 
[0] 

getThreadForR 
[$s_getThreadR] 

getThreadForC 
[$s_getThreadC] 

1/$I 

1 

1 

1 1 

(1-$p) 

remove 
[$s_remove] 

create 
[$s_create] 

1 1 1 

store 

serviceRequest 

methodInvoke remove create find 

updateDB 

readDB 

storeEntity 
[$s_cstore] 

1 1 

 
Figure 4 Template for an Entity Bean 

 

 

The upper interfaces define provided services, with the 

placeholder methodInvoke for the Bean business methods. Store, 

find, create and remove represent the Container Home Interfaces 

of the Bean. The store interface is used when a request to update 

the Entity state into the database is issued by another EJB 

component, for instance during a transaction-committing step of a 

Session Bean.  

The lower interfaces define required services. ServiceRequest 

is a placeholder for function requests issued by the entity bean 

during its operation. The readDB and updateDB interfaces 

represent database operations during service and bean-instance 

context swapping. 

When the template is instantiated, placeholders are instantiated 

as required for different services.  

 

3.2 LQN template for a Stateless Session Bean 
Figure 5 shows a LQN template for Stateless Session Bean. As 

it does not retain any state for a given client, each request can be 

directed to any available bean thread. After a service is finished, 

the bean thread is put back to the bean thread pool and ready for 

serving next request immediately. There can be outgoing requests. 

For Stateless Session Beans the creation and removing of bean 

threads are controlled by the container. Clients do not create or 

remove bean threads. 

 

3.3 LQN Template for a Stateful Session Bean 
Figure 6 shows the LQN template for a Stateful Session Bean, 

which resembles that for an Entity Bean. However the passivation 

and activation operations use local storage rather than a database. 

The passivation and activation operations are aggregated and 

shown as callback functions from container to bean, represented 

by a pseudo-task CallBack whose workload is actually performed 

by the bean instance that is executing in the ContServ critical 

section. They inform the bean that the container is about to 

passivate or activate the bean instance, so that the bean instance 

can release or acquire corresponding resources such as sockets, 

database connection, etc.  

 

 

Container  
(inf) 

prepareBean 
[$s_prepareBn] 

Bean Thread Pool  
($M) 

1

getThread 
[$s_getThread] 

ContServ 
(1) 

invokeMethod 
[$s_checkAccess] 

1 

activebean  
(inf) 

busiMethod 
[$s_method] 

1 

methodInvoke 

transactionService serviceRequest 

1 

 

Figure 5 Template for a Stateless Session Bean 

 

Assuming that each client has its own session bean there is no 

contention for a single bean instance, so the replica tasks for the 

instances are not modeled here. The thread pool is modeled as 
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executing the bean methods directly, with instances activated as 

necessary.  

 

 

Passivate/Activate 
[$s_callback] 

1 

(1-$p) 

prepareBean 
[$s_prepareBn] 

ContServ 
 (1) 

CallBack 
 (1) 

1 1 

Container  
(i) 

homeRemove 
[$s_cremove] 

busiMethod 
[$s_method] 

create 
[$s_create] 

remove 
[$s_remove] 

homeCreate 
[$s_ccreate] 

invokeMethod 
[$s_checkAccess] 

1 1 1 

   

Bean Thread Pool  
($M) 

Figure 6 Template for a Stateful Session Bean 

 

 

3.4 LQN Template for a Message Driven Bean 

A message driven bean is similar to a stateless session bean, 

but its incoming calls are asynchronous messages (denoted by an 

arc with open arrowhead as shown in Figure 7).  

 

 

Container  
(inf) 

prepareBean 
[$s_prepareBn] 

Bean Thread Pool  
($M) 

1 

getThread 
[$s_getThread] 

ContServ 
(1) 

invokeMethod 
[$s_checkAccess] 

1 

 

activebean  
(inf) 

busiMethod 
[$s_method] 

1 

methodInvoke 

transactionService serviceRequest 

1 

 

Figure 7 Template for a Message Driven Bean 

 

 

4. Model Construction 
A system is modeled by first modeling the beans as tasks with 

estimated parameters, then instantiating the template to wrap each 

class of beans in a container, and finally adding the execution 

environment including the database. Calls between beans, and 

calls to the database, are part of the final assembly. The model 

may be calibrated from running data, or by combining 

• knowledge of the operations of each bean 

• pre-calibrated workload parameters for container and 

database operations. 

To illustrate this procedure, a simple system with a stateless 

session bean class and an entity bean class is used; this model was 

calibrated in the tests described in the next section. 

The system chosen was based on the well-known Duke’s Bank 

Application which is shipped with the J2EE documentation 

provided by Sun Microsystems [3].  The “Update Customer 

Information” Use Case was specialized to update e-mail 

information for customers. Figure 8 shows the scenario. It follows 

the EJB session façade pattern in which a Stateless Session Bean 

CustomerControllerBean delegates service requests from clients 

to an Entity Bean CustomerBean. The Session Bean first finds the 

required Entity Bean instance by Primary Key (PK) and then 

updates its email information. 

 

 

Client 
<<Stateless Session Bean>> 

CustomerController 
<<Entity Bean>> 

Customer 

setEmail(…) 

findByPrimaryKey() 

setEmail() 

Figure 8 Update Customer Information Scenario 
 

Figure 9 shows the completed LQN model for this scenario. 

The CustomerControllerBean sub-model instantiates the Stateless 

Session Bean template shown in Figure 5. The CustomerBean 

sub-model instantiates the Entity Bean template shown in Figure 

4. The entries related to business methods are instantiated by the 

entries named InvokeSetEmail, InstanceSetEmail and SetEmail, 

with their parameters such as execution demands. The 

CustomerControllerBean requires two external services during the 

SetEmail operation, to find the customer by its primary key and 

update the email of the customer, giving two instances of the 

serviceRequest outgoing interface which are connected to the 

incoming interfaces of the CustomerBean.  

This application uses Container Managed Persistence (CMP) 

strategy in which transactions are managed by containers. A 

transaction is started at the beginning of an invocation on the 

session bean CustomerController and is committed and ended 

right before the operation on session bean is completed. Any 

change on entity data is updated into database during the 

transaction committing stage. Therefore, the entity store operation 

is actually invoked by the session bean during its critical section 

for bean context swapping (represented by prepareBean in the 

model).  

Underlying services from execution environment including 

DataBase and processing resource ApplicationCPU (AppCPU) 

are finally added to complete the model structure. Unused services 

such as bean creation/removal entries are omitted in the model.  

The size for Bean Thread Pool $M can be obtained from 

container configuration during system deployment. The replica 

parameter $I represents the number of data records in the 
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database. Assuming that bean instances are accessed with equal 

probability, the hit rate $p = $M/$I. Alternatively, $p can be 

observed by measurement or benchmark. The experimental data 

shows that the hit rate quickly approaches its limit even at initial 

warmup phases when the number of replica tasks in the model is 

substantially greater than $M. Therefore, its value was limited to  

$I’ =  3*$M for simplicity of the model. 
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[$s_prepareBn] 

Bean Thread Pool  
($M) 

1

getThread 
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findByPK 
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Instance 
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storeEntity 
[$s_cstore] 

activate 
[$s_activate] 
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Database read 
[$read] 

DBCPU 

load 
[$s_load] 

store 
[$s_store] 

read 
[$update] 

AppCPU 

 
 

Figure 9 Completed LQN model for Update Customer 

Information Scenario 

 

 

5. Application Profiling and Measurement 
The Duke’s Bank application [3] was modified in two ways: 

the Entity Beans were modified to use Container-Managed 

Persistence (CMP), and support for multiple concurrent clients 

was added. 

 

5.1 Hardware platform 
The testing environment includes three x86 machines 

described in Table 1: one for the EJB server, one for the database 

server, and one for client request generation. All the machines are 

connected to a dedicated switched 100 Mbps network. The client 

machine is more powerful than the servers to make sure that it 

does not become a bottleneck when generating the test load. 

Due to a limited number of database entries in the application, 

the database server is lightly loaded. 

 

Table 1. Testing Environment Specification 

Machine 

Type 

Processor Memory HDD I/O 

System 

OS 

App Server PIII-866 

Mhz 

512 Mb 20 Gb 

IDE 

Debian 

Gnu/Linux 

3.1 (Sarge) 

Database 

Server 

PIII-800 

Mhz 

512 Mb 20 Gb 

IDE 

Debian 

Gnu/Linux 

3.1 (Sarge) 

Client PIV-2.2 Ghz 512 Mb 80 Gb 

IDE 

Debian 

Gnu/Linux 

3.1 (Sarge) 

 

5.2 The software environment 
The following software was used for testing purposes: 

• operating system: Debian GNU/Linux 3.1 “sarge”, kernel v 

2.6.8-2  

• database server: MySQL v. 4.0.23-7 

• application server: JBoss v. 4.01sp1, connected to the 

database with Mysql Connector/J v 3.0.16.  

• JVM: Java2SDK 1.4.2_03 for the application server, 

Java2SDK v5.0 for the client.  

• client: a multithreaded testing suite developed in-house, that 

calls EJBs in the application server via RMI.  

 

The newer version of SDK introduced some problems to the 

testbed, so SDK 5.0 was not used for the server setup.  

Measurements on the container and program execution were 

obtained by running JProbe 5.2.1 Freeware profiler for Linux. 

Additional data, such as pool instance numbers and cache instance 

numbers were obtained using XMBean examples from the JBoss 

advanced tutorials. The UNIX sar utility was used to obtain 

various data available on the performance of the operating 

systems, including CPU, disk, and network usage. 

The following options were used for JVM startup: 

• the initial Java heap size was 384 MB to prevent performance 

loss in variations of the java heap size, with option -

Xms384m, 

• parameter -XX:+PrintCompilation was set to monitor the 

runtime behavior of the JVM. Generally, compilation 

messages suggest JVM is still adapting to certain type of 

workload. 
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• parameter -XX:CompileThreshhold was used to monitor the 

system’s behavior with no JVM runtime optimizations 

 

5.3 Testing Scenarios 
The following changes were made to the application to 

emphasize contention for resources and to determine their 

overhead costs: 

• container-managed persistence (CMP) entity beans are used 

instead of bean-managed persistence (BMP); 

• multiple users are supported. The original Duke’s bank only 

supports a single user; 

• stateful session beans were converted to stateless session 

beans; 

• the deployment descriptors were modified to limit the size of 

caches and pools for the beans to 10 to enforce 

activation/passivation, and artificial congestion at the 

pool/cache level. 

• timeouts for bean passivation and removal was also 

significantly decreased to 5 seconds to allow shorter waiting 

time before next batch of client requests. 

Two patterns of access to the data were followed by the 

simulated users. In sequential access all the beans are accessed in 

ascending order. In random access, the bean IDs are selected 

randomly. For profiler measurements a single request was entered 

and followed, once for each pattern. 

For overall performance measurements the load was gradually 

increased from 1 to 20 users, with step size 1. 20 users for 10 

entity beans were necessary to create an artificial situation of 

activation/passivation for a limited workload. To ensure that the 

bottleneck remains at the application server, the number of 

records in the database was kept to a low number of 300.  

Every client performed the following loggable sequence in 

between warm-up and cool-down periods: 

1. Update each customer record in ascending order (300 records 

in total); 

2. Wait for other clients to finish. 

3. Update a random customer record 300 times; 

4. Wait for other clients to finish. 

Average response time for each client thread was logged 

separately for random and sequential calls. Each set of 

measurements was carried out at least ten times after the warmup 

to check the results consistency. The thread pool and the cache of 

the entity beans were also monitored to ensure JBoss’s 

compliance with imposed configuration restrictions.  The database 

host has been ‘warmed up’ to achieve a constant response time to 

queries. The application server’s operating system was warmed up 

to minimize its effect on the measurements. JBoss was restarted 

before the system, so JVM runtime adaptations could be observed. 

 

 

6. Model Calibration and Comparison with 

Measurement Results 
The measurement results are shown in Figures 10 and 11. 

Figure 10 shows an average throughput of the system. It can be 

seen that with 4 clients the system reaches the saturation point. 

The results produced are very consistent, with standard deviation 

(stdev) of 1.25 and 95% confidence intervals (CI95) of ±0.77. 

Average response time is shown in Figure 11. Both random and 

sequential access patterns are represented. For the random pattern, 

CI95 = ±1.94, and for the sequential pattern CI95 = ±2.01. 

Clearly the test system is bottlenecked for as few as two 

customers, because the synthetic clients had zero “think time” 

between requests. Thus the throughput levels out and the response 

time becomes steadily greater as clients are added, due to waiting 

for the saturated processor. 

There is a slight decrease in response time in the neighborhood 

of 4 users. This is due to the JVM adaptation (such as real-time 

compilation) that takes place during the initial part of the test. By 

the time the responses are recorded for 5 - 7 users the system has 

stabilized and thereafter the response time grows linearly with the 

number of users. 

 

 Figure 10 Observed Throughput vs Number of Clients 
 

In Figure 11 the random access times are lower, probably 

because in sequential access every bean request requires an 

activation, while for random access there is a probability that the 

bean is already active. 

 

 
Figure 11 Comparison of LQN results with measurement 

results 

 

 

6.1 Model Calibration 

The model constructed in section 4 was calibrated from the 

profiling data under a single-client workload. Two factors are used 

to adjust the parameter values when doing the calibration. 

First, because the JProbe profiling tool itself introduced 

significant overhead on the execution, the execution demand 

values extracted from profiling data are adjusted to remove the 

contribution of overhead. This was done by using a Profiling 

Ratio Factor (PFC) based on the assumption that the profiling 
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overhead is proportionally distributed across the operations within 

some section of the scenario. The factor was obtained for each 

section by measuring the service time with and without profiling 

and taking the ratio. For Session Bean container services, PFC 

was 2.18. For Entity Bean container services, two PFC values 

were found. For finder operations, PFC was 3.78; for business 

method related operations, PFC was 7.81. The reason for the 

difference is that many more of the underlying methods are 

profiled than business methods. For general container services, 

such as security check operations, PFC was 2.98. For low-level 

operations, in which no underlying services are profiled, PFC=1. 

Second, during the measurements, the system warm up was 

observed when the same operations are repeated a number of 

times. JVM runtime optimizations are described in [11],[12]. For 

the server type JVM used here these include, but are not limited 

to, dead code elimination, loop invariant hoisting, common sub-

expression elimination, constant propagation, null and range 

check eliminations, as well as full inlining and native code 

compilation.  

 The effect of JVM optimizations on the response time for the 

customer information update scenario used in this study is shown 

in Figure 12a. After initial volatility the response time stabilizes as 

shown in Figure 12b. The sporadic delays of about 150 ms are due 

to Garbage Collection. Setting the “CompileThreshold” parameter 

of JVM sufficiently high effectively turns the optimizations off. 
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Figure 12a Response time Variation 
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Figure 12b Response time with an optimized JVM 

 

 An unoptimized JVM becomes stable after just a couple dozen 

calls with a mean of 15 ms and sporadic Garbage Collection 

delays of approximately 220 ms. This initial delay is mainly 

caused by lazy loading of classes at JVM. Additional possible 

factors include OS processes, such as Virtual Memory Manager 

(VMM) moving swapped out pages back to RAM, the process and 

IO scheduler optimizing for the load, and connection 

establishment to the machine that runs the MySQL database. 

Since the performance results were obtained by repeatedly 

invoking the same scenario, they are mostly warm system results. 

However, the profiling was done for a “cold” state with a single 

client in the system. A Warm System Factor (WSF) was 

introduced to adjust the service time values extracted from the 

profiling results, defined as the ratio of cold system state times 

over warm system state times. Based on the way performance 

measurements varied as the system warmed up, a factor of 3 is 

used for WSF. 

After applying these factors, the following parameters were 

used in the model calibration: 

• For CustomerControllerBean: 

 $M = 10 $c_CheckAccess = 0.817ms 

 $s_getThread = 0.002ms $s_prepareBn = 0.280ms 

 $s_setEmail = 0.010ms 

 

• For CustomerBean: 

$M = 10 $I’ = 30 replicas 

$s_cstore = 0.303 $s_cfind = 1.740ms 

$s_checkAccess = 0.513ms $s_getThread = 0.003ms 

$s_prepareBn = 0.257ms $s_store = 0.003ms 

$s_load = 0.003ms $s_setEmail = 0.120ms 

$s_passivate = 0.001ms $s_activate = 0.001ms 

 

• For Database 

 $update = 2ms $read = 0.4ms 

 

For sequential access, the hit rate $p should be 0 since the 

required bean instance is always in passive mode and needs 

context swapping every time. For random access, $p should 0.033, 

which is $M / $I = 10/300. 

 

6.2 Model Predictions and Accuracy 

Response time prediction results obtained from solving the 

model calibrated with above parameters are also shown in Figure 

11. LQN predictions are low for small $N and high for large $N, 

which is due to progressive adaptation of the JVM during the 

experiment. For large $N the differences are between 6.2% to 

23.9% for the sequential access case and 2.1% to 24.5% for the 

random access case.  

The constant WSF for the impact of system warm-up is a 

compromise between the colder states at the left and the warmer 

states at the right. The greatest WSF that was observed in 

measurement is about 5, but it was not stable.  

Software running in JVM continuously goes through 

optimizations by the VM. It is therefore proposed to use a range 

of values for CPU demand prediction, corresponding to warm 

system factor (WSF) values between 1 and 5. The value of 3 was 

used as a compromise in the middle of the range. 

The LQN model also predicts resource utilizations which can 

be used to diagnose bottleneck. Model results show that with 

parameters taken in a cold state, the application processor is the 

bottleneck with 80%-95% utilization. With parameters that 

adjusted by WSF = 3, the bottleneck moves to the Bean Thread 

Pool of the Session Bean. Both these predictions are verified by 

measurement results. For a few clients the thread pool is not 
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saturated, but for many clients it is. The saturated thread pool does 

not slow down the system (or reduce the processor utilization) 

since the database was artificially configured to be very fast 

through a decrease of records in corresponding tables. This thread 

pool just limits the number of beans which are actively being 

processed at one time.  However with a slower database, it could 

limit performance severely. 

 

7. Conclusions 
A template-based framework has been described for rapidly 

building predictive models of applications based on J2EE 

middleware. Most of the model, representing the J2EE platform, 

can be pre-calibrated, and the application description (in terms of 

its use of services) can be dropped in. The paper shows a complete 

procedure of constructing, calibrating, solving and analysis of the 

model for a real system. 

The approach here has been customized to Enterprise Java 

Beans in a J2EE application server, but a similar approach can be 

applied to other technologies such as .NET. The framework uses 

Layered Queueing Network models, which can represent the 

various types of resources.  

The LQN correctly predicts resource saturation of processor 

and thread resources. Predictions are affected by JVM adaptation, 

which must be taken into account when calibrating a model. CPU 

demand parameters measured on a cold system are up to 5 times 

of those on a warm system. 
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ABSTRACT
The development of flexible and reusable abstractions for
software composition has suffered from the inherent prob-
lem that reusability and extensibility are hampered by the
dependence on position and arity of parameters. In order
to address this issue, we have defined λF , a substitution-
free variant of the λ-calculus where names are replaced with
first-class namespaces and parameter passing is modeled us-
ing explicit contexts. We have used λF to define a model for
classboxes, a dynamically typed module system for object-
oriented languages that provides support for controlling both
the visibility and composition of class extensions. This model
not only illustrates the expressive power and flexibility of λF
as a suitable formal foundation for compositional abstrac-
tions, but also assists us in validating and extending the
concept of classboxes in a language-neutral way.

1. INTRODUCTION
In recent years, component-oriented software technology has
become increasingly popular to develop modern, large-scale
software systems [17]. The primary objective of component-
based software is to take elements from a collection of re-
usable software components (i.e., components-off-the-shelf ),
apply some required domain-specific incremental modifica-
tions, and build applications by simply plugging them to-
gether. Moreover, with each reuse, it is expected that a
component’s quality improves, as potential defects are dis-
covered and eliminated [15].

However, in order to be successful, the component-based
software development approach needs to provide abstrac-
tions to represent different component models and compo-
sition techniques [1]. Furthermore, we need a canonical set
of preferably language-neutral composition mechanisms that
allows for building applications as compositions of reusable

software components [14]. However, precise semantics is es-
sential if we are to deal with multiple component models
within such a common, unifying framework. As a conse-
quence, we argue, any abstractions suitable for component-
based software development need to be based on an appro-
priate formal foundation [8].

We have previously been studying a substitution-free vari-
ant of the λ-calculus, called λF , where names are replaced
by forms and parameter passing is modeled using explicit
contexts [8]. Forms are first-class namespaces that, in com-
bination with a small set of purely asymmetric operators,
provide a core language to define extensible, flexible, and
robust software abstractions [9]. Explicit contexts, on the
other hand, mimic λ-calculus substitutions, which are used
to record named parameter bindings. For example, the λF-
term a[b] denotes an expression a, the meaning of which is
refined by the context [b]. That is, all occurrences of free
variables in a are resolved using form b. Thus, the context
[b] expresses the requirements posed by the free variables
of a on its environment [13].

But is the λF-calculus a suitable formal foundation for defin-
ing compositional abstractions? As a proof of concept, we
have used the λF-calculus to define a model for class exten-
sions based on classboxes [2, 3]. Classboxes constitute a kind
of module system for object-oriented languages that defines
a packaging and scoping mechanism for controlling the vis-
ibility of isolated extensions to portions of complex, class-
based systems. More precisely, classboxes define explicitly
named scopes within which classes, methods, and variables
are defined. In addition, besides the “traditional” operation
of subclassing, classboxes support also the local refinement
of imported classes by adding or modifying their features
without affecting the originating classbox. Thus, classboxes
allow one to import a class and apply some extensions to it
without breaking the protocol defined between clients of that
class in other classboxes. Consequently, classboxes and their
associated operations provide a better control over changes,
as they strictly limit the impact of changes to clients of the
extending classbox.

The rest of this paper is organized as follows: in Section 2,
we give a brief introduction into the λF-calculus, followed
by a summary of the main characteristics of classboxes in
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Section 3. In Section 4, we use λF to define a general model
of classes and classboxes. In Section 5, we present our λF
encodings of classbox operations. We conclude this paper
in Section 6 with a summary of the main observations from
our classbox modelings and outline future work in this area.

2. THE λF CALCULUS
The design of the λF-calculus is motivated by our previ-
ous observations that the definition of general purpose com-
positional abstractions is hampered by the dependence on
position and arity of parameters [7, 16]. Requiring parame-
ters to occur in a specific order, to have a specific arity, or
both, imposes a specification format in which programming
abstractions are characterized not by the parameters they
effectively use, but by the parameters they declare. This,
however, limits our ability to combine them seamlessly with
other, possibly unknown or weakly specified programming
abstractions, because any form a parameter mismatch has
to be resolved explicitly and, in general, manually.

To address this issue, we champion the concept of dynamic
binding that allows for a software development approach in
which new functionality can be added to an existing piece
of code without affecting its previous behaviour [5]. Con-
sequently, the λF-calculus is an attempt to combine the
expressive power of the λ-calculus with the flexibility of
position-independent data communication as well as late
binding in expressions. In the following, we will briefly il-
lustrate the main abstractions of λF ; the interested reader
is referred to [8] for further details.

The syntax of the λF-calculus is given in Figure 1. We pre-
suppose a countably infinite set, L, of labels, and let l, m, n
range over labels. We also presuppose a countably infinite
set, V, of abstract values, and let a, b, c range over abstract
values. We think of an abstract value as a representation
of any programming value like integers, objects, types, and
even forms themselves. However, we do not require any
particular property except that equality and inequality be
defined for elements of V. We use F, G, H to range over the
set of forms and M, N to range over the set of λF-terms.

Every form is derived from the empty form 〈〉, a form that
does not define any bindings. A form F can be extended
by adding a binding for a label l with a value V , written
F 〈l = V 〉. With projections we recover variable references
of the λ-calculus. We require, however, that the subject of a
projection denote a form. For example, the meaning of F.l
is the value bound by label l in form F. A projection a.l,
where a is not a form yields E , which means “no value.”

The expressive power of forms is achieved by the two asym-
metric operators form extension and form restriction, writ-
ten F⊕ G and F\G, respectively. Form extension allows one
to add or redefine a set of bindings simultaneously, whereas
form restriction can be seen as a dual operation that denotes
a form, which is restricted to all bindings of F that do not
occur in G. In combination, these operators provide the main
building block in a fundamental concept for defining adapt-
able, extensible, and more robust software abstractions [10].

Forms can also occur as values in binding extensions, de-
noted as nested forms. As in the case of binding extensions,

F, G, H ::= 〈〉 empty form
| X form variable
| F 〈l = V 〉 binding extension
| F ⊕G form extension
| F\G form restriction
| F → l form dereference
| F [G] form context

V ::= E empty value
| a abstract value
| M λF − value

M, N ::= F form
| M.l projection
| λ(X) M abstraction
| M N application
| M [F ] λF − context

Figure 1: Syntax of the λF-Calculus.

nested forms are bound by labels. However, rather than us-
ing a projection F.l to extract the nested form bound by
label l, we use F→ l, called form dereference. The reason
for this is that we want to explicitly distinguish between
components, which are encoded as forms, and plain compo-
nent services, which are denoted by some values other than
forms. If the binding involving label l does not actually map
a nested form, then the result of F→ l is 〈〉.

A form context F[G] denotes a closed form expression that
is derived from F by using G as an environment to look up
what would otherwise be free variables in F. We use form
dereference to perform the lookup operation and a free vari-
able is reinterpreted as a label. For example, if X is a free
variable in F and [G] is a context, then the meaning of X in
F is determined by the result of evaluating G→ X. In the
case that G does not define a binding for X, the result is 〈〉,
which effectively removes the set of bindings associated with
X from F. This allows for an approach in which a sender and
a receiver can communicate open form expressions. The re-
ceiver of an open form expression can use its local context to
close (or configure) the received form expression according
to a site-specific protocol.

Forms and projections replace variables in λF . A form can
be viewed as an explicit namespace, which can comprise an
arbitrary number of bindings. The form itself can contain
free variables, which will be resolved in the deployment envi-
ronment or evaluation context, allowing for a computational
model with late binding.

Both abstraction and application correspond to the notions
used in the λ-calculus, that is, X in λ(X) a stands for the
parameter in an abstraction. But unlike the λ-calculus, we
do not use substitution to replace free occurrences of this
name in the body of an abstraction – parameter passing is
modeled by explicit contexts.

A λF-context is the counterpart of a form-context. A λF-
context denotes a lookup environment for free variables in
a λF-term. Moreover, λF-contexts provide a convenient
mechanism to retain the bindings of free variables in the
body of a function. For example, let λ(X) a be a function
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and [F] be a creation context for it. Then we can use [F]

to build a closure of λ(X) a. A closure is a package mech-
anism to record the bindings of free variables of a function
at the time it was created. That is, the closure of λ(X) a is
λ(X) (a[F]).

Denotational semantics is used to formalize the interpreta-
tion of forms and λF-terms. The underlying semantic model
of forms is that of interacting systems [11]. Informally, the
interpretation of forms (i.e., their observable behavior) is de-

fined by an evaluation function [[]]F , which guarantees that
feature access is performed from right-to-left [8]. In contrast
to standard records, however, a given binding may not be
observable in a form and, therefore, may not be used to re-
define or hide an existing one. A binding is not observable
if it cannot be distinguished from E or 〈〉. For example, the
forms 〈〉〈m = E〉, 〈〉〈m = 〈〉〉, and 〈〉 are all considered to be
equivalent. Furthermore, the meaning of a λF-term depends
on its deployment context. We write [[a]]LF [H] to evaluate
the λF-expression a in a deployment context H. Consider,
for example, the following deployment context B that pro-
vides a Church encoding of Booleans. This context defines
three bindings: True, False, and Not:

B =〈〉〈True = λ(X) X.true〉
〈False = λ(X) X.false〉
〈Not = λ(B) λ(V) B V〈true = V.false〉〈false = V.true〉〉

Now, assume we want to determine the value denoted by
the λF-expression (Not True). We can use B as a lookup
environment for the free occurrences of the names Not and
True, respectively. Thus, we have to evaluate

[[(Not True)]]LF [B]
= (λ(B) λ(V) B V〈true = V.false〉〈false = V.true〉) λ(X) X.true
= λ(V) B V〈true = V.false〉〈false = V.true〉 [〈〉〈B = λ(X) X.true〉]
= λ(V) (λ(X) X.true) V〈true = V.false〉〈false = V.true〉

which is a function that is equivalent to False. Due to lack
of space, we omit the details of the definition of [[]]F ; the
interested reader is referred to [8].

3. CLASSBOXES IN A NUTSHELL
In order to address some of the problems of object-oriented
programming languages with regard to incrementally chang-
ing the behaviour of existing classes, Bergel et al. have pro-
posed the concept of classboxes [2, 3]. In their approach,
a classbox can be considered as a kind of module that de-
fines a controllable context in which incremental changes are
visible. Besides the “traditional” operation of subclassing,
classboxes support the operations of class import and class
extension, respectively. In essence, a classbox exhibits the
following main characteristics [3]:

1. It is a unit of scoping where classes (and their asso-
ciated methods) are defined. A class belongs to the
classbox it is first defined, but it can be made visible
to other classboxes by either importing or extending it.
When a classbox imports a class from another class-
box (i.e., the originating classbox), the class behaves
as if it was directly defined in this classbox. In order
to resolve any dependencies, all ancestors of this class
are implicitly imported also. A class extension can be
viewed as an encapsulated import (i.e., self calls are

bound early), combined with adding and/or overrid-
ing any of the original methods or instance variables.

2. Any extensions to a class are only visible to the class-
box in which they are defined and any classboxes that
either explicitly or implicitly import the extended class.
Hence, overriding a particular method of a class in a
given classbox will have no effect in the originating
classbox.

3. Although class extensions are only locally visible, their
effect extends to all collaborating classes within a given
classbox, in particular to any subclasses that are either
explicitly imported, extended, or implicitly imported.

In order to illustrate the concept of classboxes, consider the
three classboxes OriginalCB, LinearCB, and ColorCB, re-
spectively, given in Figure 2. The class Point defined in Orig-
inalCB contains two protected instance variables x and y, a
method move which moves a point by a given offset (dx,dy),
and a method double that doubles the values of the x and y
coordinates. The reader should note that the method move
is invoked by double (using a self call). The class Bounded-
Point is a direct specialization of Point. It ensures that the y
coordinate of an instance never exceeds a given upper bound
by. This bound is a constant in BoundedPoint, although this
behaviour can be altered (as shown below).

The classbox LinearCB imports the class BoundedPoint from
OriginalCB. As a consequence, Point is also implicitly im-
ported, making it visible as the direct superclass of Bound-
edPoint. In order to define a non-constant bound, the class
LinearBoundedPoint specializes BoundedPoint in LinearCB
by overriding the method bound in an appropriate way (i.e.,
move checks if the y coordinate is smaller than the x coor-
dinate).

The classbox ColorCB extends the class Point from Origi-
nalCB by adding a protected instance variable c and a cor-
responding accessor method getColor. As a consequence, all
instances of Point in ColorCB as well as the instances of any
of its subclasses posses this additional behaviour. Therefore,
the class LinearBoundedPoint imported from LinearCB also
possesses the color property.

ColorCB also contains a new class BoundedPoint as a spe-
cialization of the extended class Point (restricting the x co-
ordinate of its instances). Although it has the same name
as BoundedPoint defined in OriginalCB, the two classes are
not related. Hence, BoundedPoint defined in ColorCB is
not the direct superclass of LinearBoundedPoint – the di-
rect superclass of LinearBoundedPoint in ColorCB remains
BoundedPoint defined in OriginalCB. This class is implicitly
imported by LinearBoundedPoint and co-exists with Bound-
edPoint defined in ColorCB.

The semantics of extension operator deserves some further
analysis. In [3, p. 118], it is stated that importing a class
into a classbox is the same as extending this class with an
empty set of methods. Furthermore, to guarantee the lo-
cality of changes, class extensions are purely local to the
classbox within which they occur. Hence, it should be pos-
sible to use the operator extend to add a tracing mechanism
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self.move (x, y)

x=x+dy; y=y+dy

return x

super.move (dx, dy)
if (x + dx) < bound() then

return bx

LinearBoundedPoint

OriginalCB LinearCB

+ bound () : Integer

LinearBoundedPoint

Point

# bx : Integer

Point

+ move (dx, dy: Integer)
+ double ()

# y : Integer

super.move (dx, dy)

return by

if (y + dy) < bound() then

+ move (dx, dy: Integer)
+ bound () : Integer

+ move (dx, dy: Integer)
+ bound () : Integer

ColorCB

BoundedPointBoundedPoint

# x : Integer

# by : Integer

+ getColor ()

# c : Color

CB C

foo ()

BoundedPoint

Import of a classClassbox definition Import of C and extension with method foo

Figure 2: Sample classboxes.

to the class Point that logs all invocations of move in a new
classbox, say TraceCB.

However, considering the way extend is formally defined in
[3], we come to the conclusion that the semantics is slightly
different and that extend should behave like C#’s new speci-
fier [12], which can be used to hide any superclass method
by declaring a new method with the same signature in a sub-
class. The effect is similar to binding self calls in superclass
methods early (i.e., confine self calls occurring within su-
perclass methods to the superclass). As a consequence, any
instance derived from TraceCB’s Point class will not invoke
the most recent definition of method move when required,
but rather the original move defined in OriginalCB.

Therefore, to clarify the semantics of the classbox operators,
we propose a revised notion of extending classes, which in-
corporates two separate extension operations: (i) extension
of classes in which self calls are encapsulated to the context
in which they occur, and (ii) inclusion of new behaviour by
means of late binding of self calls. Such a separation will also
allow us to seamlessly integrate the concept of accessing the
original method (i.e., accessing the original implementation
of method being redefined) presented in [2].

4. THE MODEL
As we have shown in earlier work [14], object- and component-
oriented abstractions can most easily be modeled if classes
are represented as first-class entities. This approach can be
further generalized using a form-based framework (see Fig-
ure 3), which defines a hierarchy of meta-level abstractions
to model meta-classes, classes, and objects [10]. The core of
this meta-level framework is MetaModel, an abstraction that

provides support for the instantiation of an object-oriented
programming infrastructure. The underlying semantics of a
specific programming infrastructure is captured by so-called
model generators, model wrappers, and model composers, de-
noted by Gm, Wm, and Cm, respectively. The model ab-
stractions Gm, Wm, and Cm define the rules by which a
concrete object-oriented programming system (e.g., the Java
programming model) is governed. For example, to construct
a Java-like programming infrastructure, we need to specify
a generator GJava

m , which defines the mechanism required
for dynamic method lookup, and the single inheritance ab-
stractions W Class

m and CClass
m . To instantiate the Java-like

infrastructure, we apply these three abstractions to Meta-
Model. The result is an infrastructure meta-object that can
be used to create classes that adhere to Java semantics.

P ∆

I

incremental
derivation

arguments
constructor

semantic model:

derivation policy
method dispatch,

composition

mixin
application,

mG

Objects

Infrastructure
Metaobjects

Class
Metaobjects

parent behaviour

MetaModel

mW mC

Figure 3: A form-based meta-level framework.

The behaviour of a class, on the other hand, is captured
by an incremental modification, denoted by ∆, and by a
(possibly empty) parent behaviour, denoted by P , that cap-



tures the behaviour of its superclass(es). For example, to
create a new class C, one has to define a new class gener-
ator GC

1 that combines C’s incremental modification ∆C

with C’s parent behaviour P . To instantiate objects of the
class C, one has to apply GC to some suitable constructor
arguments, denoted by I. The result is a prototype instance
that has to be passed to a model-specific wrapper, in order
to establish the desired binding of self references within the
newly created object.

In order to define classboxes in λF , we shall adapt an ap-
proach that is as close as possible to the original definition
of classesboxes defined by Bergel et al. [3] with the ex-
ception that we shall define two separate extension opera-
tors. Furthermore, the reader should note that our classbox
model does not require the composer abstraction which is
mainly used for mixin application and composition [4, 19].
Hence, we shall only use incremental modifications, genera-
tors, and wrappers, respectively, to define a λF representa-
tion of classes and classboxes.

We use the Greek letters α, β, and γ to denote classboxes,
and A, B, C to range over class names. A class C in classbox
α is represented by a named form Cα = 〈G, W 〉, where

• Cα is a so-called decorated class name for class C [3]
in which α identifies the originating classbox;

• G is the generator for class C combining C’s incre-
mental modification ∆C with C’s parent behaviour P ;
and

• W is a wrapper yielding instances of class C when
applied to suitable constructor arguments.

Classboxes are actually open class namespaces. As a conse-
quence, G and W are also open with respect to the environ-
ment being used to invoke them. Therefore, both G and W
are parameterized over an activation classbox. An activa-
tion classbox is the fixed-point of classbox in which the cor-
responding class Cα = 〈G, W 〉 occurs explicitly by means of
either import, subclassing, or extension. Thus, passing the
activation classbox to G and W , respectively, closes both
abstractions and provides them with an appropriate lookup
environment. This technique enables a late binding of G,
which is the key mechanism for extending classes. The gen-
eral structure of a class definition follows a format as shown
below:

Cα =
let

∆C = λ(State) ( MethodsC ) [State]

GC = λ(γ) λ(I ) Pβ ⊕∆C〈 I ⊕ ( StateC ) 〉

WC = λ(γ) µself〈((γ → Cα).G (β ⊕ γ)) [self]〉
in
〈G = GC , W = WC〉

1The reader should note that a class generator GC defines
the protocol between ∆C and P , whereas a model generator
Gm defines the protocol between classes.

A class is characterized by the three abstractions ∆C , GC ,
and WC , respectively, all defined within the scope of Cα.
We use the syntactic form “let v1 = M1 ... vn = Mn in N”
to define a λF-context containing the required private def-
initions of ∆C , GC , and WC , respectively, to capture the
behaviour of Cα.

The incremental modification ∆C captures the behaviour
defined by class C. In order to represent C’s behaviour, we
use an approach based on the way traits are defined in the
language Self [18]. However, to maintain a strict encapsu-
lation of state, we do not blend state and methods. Instead,
we model state as an explicit context, written [State], that
provides an environment for each method to resolve the oc-
currences of private instance variables and the self reference.

The generator GC builds a prototype instance of class C.
GC takes an activation classbox to provide a correct lookup
environment to the parent behaviour Pβ originating from
classbox β. Upon receiving the constructor arguments, de-
noted by I, the generator GC extends Pβ with the result of
applying C’s incremental modification ∆C to the combina-
tion of the constructor arguments and C’s state template.

The wrapper WC yields an object of class C by building
the fixed-point (denoted by µself) of the prototype instance
being created within WC . In order to create a prototype
instance for class C, the wrapper uses the activation classbox
γ to a look up C′s generator. The expression (γ → Cα).G
denotes the fact that we look up the most recent definition
of the named form Cα = 〈G, W 〉 in classbox γ to invoke C’s
generator. We apply this generator to (β ⊕ γ) that combines
the classbox β containing C’s parent behaviour Pβ with the
activation classbox γ. The resulting classbox will contain
not only the most recent definitions that class C depends
upon, but also the ones that have been implicitly imported.
More specifically, (β ⊕ γ) denotes a lookup environment that
is a transitive closure of C’s dependency graph.

A classbox is also represented as a form. The general struc-
ture of a classbox follows a format as shown in the example
below:

ColorCB =
let

Point = 〈GPoint, WPoint〉
BoundedPoint = 〈GBoundedPoint, WBoundedPoint〉
LinearBoundedPoint =

〈GLinearBoundedPoint, WLinearBoundedPoint〉
in
〈PointOriginalCB = Point,
BoundedPointColorCB = BoundedPoint,
LinearBoundedPointLinearCB = LinearBoundedPoint〉

A classbox is a form that contains mappings from decorated
class names to class definitions. Each decorated class name
uniquely identifies the originating classbox of a class, that
is, the classbox in which a class was first defined. For exam-
ple, the classbox ColorCB, as shown in Figure 2, contains
three classes Point, BoundedPoint, and LinearBoundedPoint,
respectively. However, each class has a different originating
classbox. Only class BoundedPoint originates in ColorCB.
The classes Point and LinearBoundedPoint originate in Orig-
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inalCB and LinearCB, respectively. In fact, both Point and
LinearBoundedPoint occur as extended classes in ColorCB.

Decorated class names are the key ingredient in an approach
that provides support for class extensions [3]. However, as
labels are not first-class values in the λF-calculus, we cannot
directly express decorated class names. But, λF provides
another abstraction that can be used instead: it is possible
to denote operations involving decorated class names by so-
called abstract applications. An abstract application (a M)
is an λF-expression in which the function a is abstract, that
is, a is defined outside λF . The intuition here is that a λF-
term (i.e., (a M)) has to be embedded into a concrete target
system that provides an interpretation of the abstract func-
tion. When applied to some argument, an abstract function
has to yield a value that is again in λF .

To handle decorated class names in our λF-based model for
classboxes, we need four abstract functions:

buildDecoratedName〈C, α〉 = Cα

lookupDecoratedName〈C, α〉 =

{
Cβ , if ∃!β, (α → Cβ) 6= 〈〉
⊥, otherwise

lookupClass〈C, α〉 = α → lookupDecoratedName〈C, α〉

buildClass〈C = 〈G, W 〉, α〉 =
〈lookupDecoratedName〈C, α〉 = 〈G, W 〉〉

The function buildDecoratedName takes a class name C and
a classbox name α and returns a decorated class name Cα

that is a valid λF-label. The function lookupDecoratedName
takes a class name C and a classbox name α and returns a
λF-label that denotes a valid decorated class name Cβ , if
such a name exists in the classbox α. The function lookup-
Class takes a class name C and a classbox name α and re-
turns a form that represents class C, as defined in classbox
α. Finally, the function buildClass takes a class C = 〈G, W 〉
and a classbox name α and yields a binding in which the
label denotes a valid decorated class name for C in α.

5. MODELING CLASSBOX OPERATIONS
In this section, we present our λF encodings of classbox
operations. More precisely, we show the encoding of import
of classes, introduction of subclasses, extension of classes,
and inclusion of new behaviour. The latter two operations
are deduced from the original extend operator [3] by the
refining process outlined in Section 3.

5.1 Import of classes
The import of a class C from classbox β into classbox α is
defined as shown below.

Cα =
let
WC = λ(γ) (lookupClass〈C, β〉).W (β ⊕ γ)

in
(lookupClass〈C, β〉)〈W = WC〉

To import class C, we acquire its definition from classbox β
using the expression (lookupClass〈C, β〉). However, the class
C may depend on some behaviour for which an extended
definition is given in classbox α (or the activation classbox

γ containing the extensions specified by classbox α). There-
fore, an imported class requires a new wrapper that com-
bines the definitions of a class’ originating classbox and the
actual activation classbox. The result (i.e., (β⊕γ)) is passed
to the class’ original wrapper that will use it to incorporate
pertinent definitions into the class’ behaviour. Finally, if not
stated otherwise, the decorated class name Cα in this and
all following encodings is the result of applying lookupDeco-
ratedName to the class name C and the originating classbox
name β (i.e., Cα = lookupDecoratedName〈C, β〉).

5.2 Subclassing
We can define a class C as a subclass of class B originating
from classbox β using the following specification:

Cα =
let

∆C = λ(State) ( MethodsC ) [State]

GC = λ(γ) λ(I )
let

P = ((lookupClass〈B, γ〉).G γ) I
in

P ⊕ ∆C〈I ⊕
(

StateC

〈super = P〉

)
〉

WC = λ(γ) µself〈((lookupClass〈C, γ〉).G (β ⊕ γ)) [self]〉
in
〈G = GC , W = WC〉

To construct class C, we acquire its superclass behaviour P
using the expression ((lookupClass〈B, γ〉).G γ) I and com-
bine it with C’s incremental modification ∆C . To acquire C’s
superclass behaviour, we dynamically look up B’s generator
with respect to the activation classbox γ, which guarantees
that any relevant extensions to B’s behaviour are also incor-
porated in class C. Methods in ∆C may override methods
in the superclass B. Overridden methods are accessible by
means of the additional binding 〈super = P〉 passed to ∆C .

Since class B may also depend on some behaviour visible
only to classbox β, we need to provide a reference of β to
C’s wrapper WC . This approach not only guarantees that
references to class B can be resolved, but also that refer-
ences to any superclasses of B can be resolved in classbox
α without adding them to the visible scope of classbox α.
For example, the class LinearBoundedPoint in classbox Lin-
earCB, as shown in Figure 2, implicitly depends on class
Point defined in classbox OriginalCB. This dependency is
resolved by providing the originating classbox of Bounded-
Point to the wrapper of LinearBoundedPoint.

Finally, the classbox model as defined by Bergel et al. [3]
requires that when defining a subclass, its class name must
occur fresh in the defining classbox. Therefore, the deco-
rated class name Cα is not derived from classbox β, but
constructed with respect to the defining classbox α (i.e.,
Cα = buildDecoratedName〈C, α〉).

5.3 Extending imported classes
To specify the semantics of the refined extend operation, we
need to define an information hiding protocol that, when
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applied to a concrete class, renders the features of the ex-
tensions invisible to the class’ behaviour. Hence, the extend
operation yields a membrane for a class that permits super
calls originating from extensions, but prevents the class’ be-
haviour to see the extensions. This protocol is established
by confining self calls to the context within which they occur
(i.e., the original class or the extensions). The extension of
class C with some behaviour B can be defined as follows:

BE
β =
let

∆B = λ(State) ( MethodsB ) [State]

GB = λ(Class)
λ(γ) λ(I )

let
P = µself〈 (Class.G γ) [self] 〉 I

in

P ⊕ ∆B〈 I ⊕
(

StateB

〈super = P〉

)
〉

in
〈G = GC〉

Cα = (lookupClass〈C, α′〉)〈G = BE
β .G (lookupClass〈C, α′〉)〉

The abstraction BE
β captures the behaviour of the extension

B being used to modify class C. The extend operator requires
that we encapsulate C’s behaviour in order to protect it from
any changes defined by B. That is, we have to combine the
fixed-point of C’s prototype instance with the incremental
modification ∆B defined by extension B.

The structure of BE
β is similar to the one required to de-

fine subclassing. However, an extension cannot be instanti-
ated independently. Therefore, no wrapper is needed. When
combined with a concrete class, the class’ wrapper is respon-
sible for providing a suitable environment to create objects
of that class. Moreover, the definition of the revised ex-
tend operator guarantees that the extensions are local to
the classbox in which they occur and that they do not af-
fect the class’ original behaviour, as it is shielded from the
extensions by binding self calls in the class’ methods early.

The purely functional λF-based encoding of the extend op-
erator is, however, a source for a serious problem. Func-
tional update of state yields a new object. The new object
is created by passing the new state values to the wrapper
of the object’s class. However, the wrapper of an extended
class (i.e., µself〈(Class.G γ)[self]〉) does not include the ex-
tensions. Therefore, functional update yields an instance of
the original class, not one of the extended class.

5.4 Include behaviour into imported classes
Inclusion is a new operator that enables down calls to class
extensions. The inclusion operator is like the extension op-
erator, excepted that we do not encapsulate the class’ be-
haviour. This approach roughly corresponds to the concept
of mixin application [19]. That is, if we apply an extension
B to class C, then the class C stands for an abstract subclass,
which is instantiated with the superclass B. The inclusion of
extension B into class C is defined as follows:

BI
β =
let

∆B = λ(State) ( MethodsB ) [State]

GB = λ(Class)
λ(γ) λ(I )

let
P = (Class.G γ) I

in

P ⊕ ∆B〈 I ⊕
(

StateB

〈original = P〉

)
〉

in
〈G = GB〉

Cα =
let
GC = λ(γ) (BI

β .G lookupClass〈C, α′〉) γ

WC = λ(γ) (lookupClass〈C, α′〉).W (β ⊕ γ)
in
〈G = GC , W = WC〉

Inclusion extension is an operation that combines extend
and import. However, unlike extension, we do not build
the fixed-point of the parent behaviour P in BI

β to enable
down calls to the extensions. In addition, methods in ∆B

may override methods in class C. The overridden methods of
C are, however, accessible by means of the additional bind-
ing 〈original = P〉 passed to ∆B . This approach was recently
proposed by Bergel et al. [2] in their Classbox/J model. Fi-
nally, the functions GC and WC define the protocol required
to properly link class C and the inclusion extension B.

6. CONCLUSIONS, FUTURE WORK
In this paper, we have used the λF-calculus to define a
model for classboxes, a dynamically typed module system for
object-oriented languages that provides support for control-
ling both the visibility and composition of class extensions,
and validated our model using a prototype implementation
of the λF-calculus.

This work has shown that λF is a powerful tool to model
compositional abstractions such as classes, classboxes as well
as their associated operations. Replacing λ-calculus names
by first-class namespaces and parameter passing by explicit
contexts, we argue, are the key concepts in obtaining the re-
sulting flexibility and extensibility. Both asymmetric form
extension as well as the late binding of free variables in form
expressions due to explicit form contexts are essential fea-
tures to express the model in such an elegant way. It has also
shown that the meta-level framework we defined in previous
work [10] where object-oriented abstractions were modeled
as compositions of appropriately parameterized generator,
wrapper, and composer abstractions offers enough flexibil-
ity to incorporate classboxes.

As we have discussed in Section 3, the formal definition of
class extension presented in [3] does not fully match its in-
formal description. As a consequence, extend has limited
applicability when hook methods [6] are to be extended by
independent behavioural properties such as, for example,
extending the class Point with a tracing mechanism on the
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method move. Therefore, we have proposed a revised notion
of class extension, incorporating two separate extension op-
erations: (i) extension of classes in which self calls are encap-
sulated to the context in which they occur, and (ii) inclusion
of new behaviour by means of late binding of self calls. Such
a separation has allowed us to clarify the semantics of the
classbox operators and seamlessly integrate the concept of
accessing the original method as defined in the Classbox/J
model [2]. In this context we have also illustrated that the
early binding of self calls is the source of a serious problem
when object-oriented abstractions are modeled in a purely
functional setting such as λF .

However, this work has also shown that not all abstractions
needed to define a model for classboxes can be expressed
within λF , that is, we were forced to use abstract applica-
tions to model the decoration of class names. It is however
not yet fully understood whether this is a limitation of λF
or a result of how classboxes have been formalized both in
[3] and in our model. Therefore, we will investigate whether
the expressiveness of classboxes can also be achieved without
using explicitly decorated classnames, allowing us to model
classboxes entirely in λF .

Furthermore, the concept of classboxes does not allow for
an explicit co-existence of both the original of a class as well
as an extension thereof. For example, it could become nec-
essary for the class Point defined in OriginalCB and its ex-
tension with the color property to co-exist within the class-
box ColorCB. Currently, both classes may implicitly co-exist
within ColorCB and it is possible to create instances of the
extended version of Point, but not of Point defined in Origi-
nalCB. It is, however, not yet clear how to extend classboxes
with this feature and whether this extension is of real prac-
tical value.
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ABSTRACT 
This paper explains how a uniform, specification-based approach 
to reasoning about component-based programs can be used to 
reason about programs that manipulate pointers. No special axi-
oms, language semantics, global heap model, or proof rules for 
pointers are necessary. We show how this is possible by capturing 
pointers and operations that manipulate them in the specification 
of a software component. The proposed approach is mechanizable 
as long as programmers are able to understand mathematical 
specifications and write assertions, such as loop invariants. While 
some of the previous efforts in reasoning do not require such 
mathematical sophistication on the part of programmers, they are 
limited in the kinds of properties they can prove about programs 
that use pointers. We illustrate the idea using a “Splice” operation 
for linked lists, which has been used previously to explain other 
analysis techniques. Not only can the proposed approach be used 
to establish shape properties given lightweight specifications, but 
also it can be used to establish total correctness given more com-
plete specifications. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification –
correctness proofs, formal methods. D.3.3 [Programming Lan-
guages]: Language Constructs and Features – data types and 
structures.  

General Terms 
Languages, Verification. 

Keywords 
Pointer specification, reasoning, heap memory management. 

1. INTRODUCTION 
Reasoning about program code involving pointers or references is 
notoriously difficult [29]. Various logics have been developed for 
object-oriented languages such as Java and C# in which refer-
ences are implicit [1][18]. Reasoning about programs in these 
languages is complicated due to the possibility of aliasing. Vari-
ous static analysis techniques also have been applied to languages 
with and without explicit deallocation (e.g., [6][22][30]). These 
techniques are fast and flexible, but they are also limited in what 
they can prove about a program’s run-time behavior. Both object-
oriented logics and general program analysis techniques tend to 
rely on global reasoning about entire heap abstractions. Frame 
properties [3] make reasoning about heap locations somewhat less 
demanding in object-oriented logics, and a separation logic [20] 

has been suggested as a way to further localize reasoning to por-
tions of the heap structure. Nonetheless, a single heap abstraction 
is still assumed. Building on previous work in shape analysis [30], 
Hackett and Rugina [6] describe an approach that avoids global 
heap abstractions. Instead, it uses local reasoning about individual 
heap locations to find potential errors. 

In this paper, we consider from a language design perspective the 
problem of pointers and reasoning about programs that use them. 
We describe a way to implement and reason about programs in-
volving pointers by using a formally specified generic component 
that encapsulates pointer-like behavior and that is especially well 
suited for the implementation of linked data structures. Further-
more, no global heap abstraction is used in reasoning about point-
ers. Instead, shared conceptual (or specification-only) variables 
whose scope is at the component level are defined in the specifi-
cation. These variables record the state of the pointer structure, 
keeping track of such information as which locations are mapped 
to which objects and how the locations are linked to one another. 
The component permits explicit deallocation and thereby allows 
users to reason about memory errors that do not arise with gar-
bage collection, so it can accommodate situations and languages 
where no automatic garbage collection is assumed. Section 2 
briefly describes the specification of the pointer component ab-
straction and its operations.  

A key contribution of the specification-based approach to reason-
ing about programs with pointers is that programmers can use and 
reason about pointers using the same techniques that they use to 
reason about all other components in a program. This does not 
preclude a language designer from inventing special syntax for 
pointers as long as the meaning of that syntax can be described in 
terms of the operations specified in the component. In particular, 
for the component to exhibit the run-time performance of lan-
guage-supplied pointers, a compiler for a language with compo-
nent-provided pointers need not implement these component op-
erations as typical calls, but may consider them to be built-in 
constructs. For example, even though a programmer using our 
component will reason about the pointer assignment statement “p 
= q” as a call Relocate(p, q)—a procedure call that must conform 
to the contract specified by its precondition and postcondition—
the compiler may implement this statement as a single machine 
instruction that overwrites p’s value with the address stored in q. 

A second contribution of the specification-based approach is that 
it facilitates more powerful reasoning about properties of pointer-
based programs than previous static analyses relying on special 
rules to handle language-supplied pointers. This is the topic of 
Section 3. In that section, we illustrate the issues using an exam-
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ple “Splice” operation for a linked list. The example is taken from 
a recent paper on a general approach to shape analysis [6].  In that 
paper, Hackett and Rugina introduce and use a region-based 
shape analysis algorithm to establish the “shape property” that the 
Splice code does not introduce cycles into lists. They describe a 
non-trivial algorithm that partitions memory into regions, keeping 
track of the relationships between regions using a unification-
based points-to analysis [27] that they augment with context sen-
sitivity. Individual “configurations” are used to track the state of 
individual heap locations. These configurations can be analyzed 
independently of each other, eliminating the need to keep track of 
how an entire heap abstraction changes over the course of a pro-
gram’s execution.  
Shape analysis is fully automatic and, unlike our specification-
based approach, does not require programmer-supplied assertions. 
However, the authors note, for example, that their analysis would 
not apply if the Splice code were written slightly differently. 
More importantly, shape analysis techniques—and other static 
analysis techniques—are limited in the kinds of properties they 
can be used to prove. We illustrate these issues using both light-
weight and heavyweight specifications for the “Splice” operation. 
Whereas the lightweight specification is sufficient to prove the 
assertion that an implementation of Splice does not introduce 
cycles, a more complete specification of the operation shows the 
potential of the pointer specification approach to analyze the full 
behavior of the operation and its implementation. 

2. SPECIFYING POINTER BEHAVIOR 
A formal specification of a component to capture pointer behavior 
is given in the technical report [12], where the design rationale for 
the specification and performance ramifications are discussed. 
The specification is general and it allows reasoning about any 
pointer-based data structures, including lists and trees. A skeleton 
of this specification is discussed in this subsection as a prelude to 
specification-based reasoning about pointers.  

2.1 Mathematical Modeling 
Without loss of generality, the specification in Figure 1 is given in 
the RESOLVE notation [23][25]. The specification defines Loca-
tion as a mathematical set. The exact set of addresses that corre-
spond to locations is an internal implementation detail, and it is 
suppressed in the specification. For the purposes of reasoning, the 
client programmer need only know that Location is a set and Void 
is a specific location element from that set. At any given program 
state, some locations are free, or available for allocation; and 
some locations are taken, or already allocated. A key aspect of the 
specification is to formalize how locations become linked to each 
other following various pointer manipulation operations. Hence 
the name Location_Linking_Template for the concept.  
The concept is parameterized by the type of information associ-
ated with each location and the number of links from each loca-
tion. If the nodes of a list contain GIF pictures, for example, then 
Info is a type representing GIF pictures. Similarly, the number of 
links depends on the application. For example, a singly linked list 
requires one link from each location, whereas a k-ary tree requires 
k links from each location. 
To capture the behavior of a system of linked locations, the con-
cept defines and uses three global, conceptual variables: Con-
tents(q) is the information at a given location q, Target(q, i) is the 
location targeted by the i-th link of q, and Is_Taken(q) is true if 

and only if a given location q is allocated, and therefore, taken. 
These variables are not programming variables; they are used 
solely for specification and reasoning. They are similar to specifi-
cation-only variables used in other formalisms for object-oriented 
programs [4][14]. 

Concept Location_Linking_Template (type Info; 
                                                                evaluates k: Integer);  

Defines Location: Set; 
Defines Void: Location; 

Var Target: Location × [1..k] → Location; 
Var Contents: Location → Info;  
Var Is_Taken: Location → B; 
 

 Initialization ensures ∀q: Location, ¬Is Taken(q); 
 Constraints ¬Is Taken(Void) and (∀q: Location, 
          if ¬Is Taken(q) then Info.Is_Initial(Contents(q)) and 
         ∀j: [1..k], Target(q, j) = Void) and … 

 Type Family Position is modeled by Location; 
  exemplar p; 
  Initialization ensures p = Void; 
 
 Operation Take_New_Location(updates p: Position);  
  … 
 Operation Abandon_Location(clears p: Position);  
  … 
 Operation Relocate(updates p: Position; 
                            preserves q: Position); 
  ensures p = q; 
 
 Operation Follow_Link(updates p: Position; 
                                          evaluates i: Integer);  
  requires Is Taken(p) and 1 ≤ i ≤ k; 
  ensures p = Target(#p, i); 
 
 Operation Redirect_Link(preserves p: Position;  
                                 evaluates i: Integer; preserves q: Position);  
  updates Target; 
  requires 1 ≤ i ≤ k and Is_Taken(p); 
  ensures ∀r: Location, ∀j: [1..k], 

                   Target(r, j) =   ;  
q if r = p and j = i
# Target(r,  j) otherwise

⎧ 
⎨ 
⎩ 

 
 Operation Check_Colocation(preserves p, q: Position; 
                                          replaces are_colocated: Boolean); 

  … 
Operation Swap_Locations(preserves p: Position;  

                   evaluates i: Integer; updates new_target: Position); 
  … 
 Operation Swap_Contents(preserves p: Position; 
                                              updates I: Info);  
  … 
 Operation Is_At_Void(preserves p: Position): Boolean;  
  … 
 Operation Location_Size(): Integer;  
  … 
end Location_Linking_Template; 
 

Figure 1. A Skeleton of Pointer Behavior Specification. 
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The concept is constrained to behave as specified in the invariant 
constraints clause: the Void location can never be taken or allo-
cated, i.e., it is always free; and all locations that are freely avail-
able are in an initialized state, i.e., their contents have default 
information and their links point to Void. Finally, the number of 
locations available is related to the total available memory capac-
ity. Hence, locations are limited, and allocations without corre-
sponding deallocations will eventually deplete the pool. Initially, 
all locations are assumed to be free and, therefore, initialized, as 
specified in the constraints clause. This does not mean that an 
implementation of the pointer component must initialize every 
location at the beginning; of course, it would not. It just means 
that any newly allocated location is guaranteed to be initialized, 
and this objective can be achieved as and when it is needed. 
Given this model, a programming variable of type Position is 
simply viewed mathematically as a location. When a programmer 
declares a new pointer variable, it is initially just the Void loca-
tion. Only after allocation does the variable become a location 
that can contain information.  
A system of linked locations is established when a client instanti-
ates the pointer component with the type of information that each 
location holds and the number of links coming from each loca-
tion. Figure 2 gives an informal view of an example system of 
linked locations where type Info is assumed to be Greek letters 
and the number of links from each location is assumed to be one. 
Here, the circles represent locations that contain information 
(Greek letters) and a fixed number of links (just one in the exam-
ple) to other locations.  

 
Figure 2. A system of linked locations. 

The figure shows that some of the locations are taken and others 
are free. All the pointer variables (a, b, x, y, z) except for b are at 
allocated locations. For example, the information content at the 
location of variable x is β. The pointer variables y and z are colo-
cated, i.e., they are aliased, and the link from that location points 
to the location of x. The pointer variable b resides at the special 
Void location, which is perpetually free. Due to poor program-
ming or possible reliance on a garbage collector, some of the 
allocated locations have become inaccessible, such as the loca-
tions containing information χ and δ. To manipulate pointer vari-
ables to reach a state like the one in Figure 2, a programmer has to 
declare pointer variables and call suitable operations, as explained 
in the next subsection.  

2.2 Discussion of Pointer Operations  
The parameters in the specifications of operations in Figure 1 use 
various modes to help the programmer understand rough effects 
of a call to the arguments before reading the subsequent formal 
specification. The updates mode indicates that the operation 
modifies this argument; the clears mode ensures that the argu-
ment will return from the procedure with an initial value of its 

type; the preserves mode prohibits any changes to the argument’s 
value; the replaces mode indicates that the incoming argument 
value will be ignored but replaced; and the evaluates mode indi-
cates that the operation expects an expression in this position—it 
is typically used with types that are often returned from functions, 
such as integers. 
The Take_New_Location operation allows a programmer to asso-
ciate information with a specified pointer variable. Every call to 
this operation leads to a new location being taken. Internally, this 
operation allocates memory for a new object of type Info and 
makes p point to it. A taken location remains taken until the client 
abandons it, which she can do using the Abandon_Location opera-
tion. When a location is abandoned, memory for the information 
it contained is reclaimed and the pointer variable that is being 
explicitly abandoned is repositioned to the Void location. The 
Location_Size operation helps a programmer determine if there is 
sufficient memory for a new allocation, i.e., if there are any more 
free locations available for taking. A careful programmer may 
need this operation to check availability before calling the 
Take_New_Location operation. 

 
Figure 3. The effects of selected calls on a system. 

Now we consider the formal specification of operation Redi-
rect_Link. This operation redirects the i-th link at position p’s 
location to q’s location. The values of both p and q are preserved, 
since both occupy the same locations they did before the opera-
tion is invoked. The updates clause after the formal parameters 
lists any component-level conceptual variables that are affected 
by the operation. In this case, the Target variable will be modi-
fied, but the Contents and the Is_Taken variables will remain 
unchanged. The RESOLVE specification language adheres to an 
implicit frame property in that operation invocations may only 
affect explicit parameters to the operation or component concep-
tual variables listed in the updates clause. In this case, the opera-
tion specifies that the values of both position parameters are pre-
served and that any integer parameter is treated as an expression, 
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so the only variable that is modified is Target. The postcondition 
describes how the Target variable is modified: the Target function 
does not change except that it now maps the tuple (p, i) to q. Note 
that the hash (#) symbol denotes the incoming value of a variable. 
The specifications for Relocate and Follow_Link are straightfor-
ward. 
The remaining operations allow a client to manipulate links and 
information at occupied locations. They also allow position vari-
ables to be associated with different locations. Figure 3 gives 
before and after views of a system for invocations of selected 
operations. Note that the box in the Swap_Contents operation is 
not a location. It simply indicates the value of Info variable t. In 
this case, t’s value is α before the operation and δ after the opera-
tion. In contrast, p’s value (which is a location) remains the same 
before and after the operation, but the Target variable will have 
been updated. All the operations shown here have formal specifi-
cations associated with them [12]. We have shown only a few of 
these in Figure 1, owing to space constraints. 
Because the pointer component supports explicit deallocation, 
memory errors can arise within the context of a system. A loca-
tion is considered accessible if there is a path to that location from 
a location occupied by some position variable. In Figure 2, for 
example, two taken locations are not accessible: the location con-
taining δ and the location containing χ. The location containing λ 
is accessible even though it is not occupied by a position variable 
because there is a path to it from the location occupied by x. A 
location that is taken but not accessible is a memory leak; a loca-
tion (other than Void) that is free but accessible is a dangling 
reference. The latter situation is not, perforce, a memory error; 
but it becomes one if that pointer variable is then used before 
being updated. 

3. EXAMPLE 
This section illustrates how the pointer component can be used for 
both lightweight and heavyweight specifications and subsequent 
reasoning. The Splice operation takes as input two singly-linked 
lists of locations: one that begins with a location occupied by 
position p and another that begins with a location occupied by 
position q. The length of q’s list must be less than or equal to the 
length of p’s list. The operation modifies the first list so that it is a 
perfect shuffle of the locations in the original lists. A shuffled list 
contains all the elements of both lists with their original orderings 
preserved, similar to what happens when you shuffle a deck of 
cards. If location x appears before location y in one of the original 
lists, then x appears before y in the shuffled list. A perfect shuffle 
interleaves elements from each of the lists. 

3.1 Simple Splice Specification 
Figure 5 gives a lightweight specification and code for Splice (a 
minor syntactic variation of the version in [6]). The specification 
is sufficient to meet the goal of a typical shape analysis for the 
operation, namely to “statically verify that, if the input lists […] 
are disjoint and acyclic, then the [output list] is acyclic” [6] (page 
3). Note that we use a syntactic shortcut throughout this section 
for ease of reading (and writing) the specifications. Since all loca-
tions in these examples have exactly one link, we leave out the 
link number where it is typically required. For example, we use 
Target(p) instead of Target(p, 1). 

The specification defines two mathematical functions used in the 
specification. Is_Reachable_in(n, p, q) is true if and only if loca-
tion q is reachable from location p in n hops. That is, if x is a 
variable at location p, this function is true if and only if x will 
arrive at location q by following his first link n times, but no 
fewer. The term Targetk(p) means k iterations of the function 
Target starting with p. The requirement that “if Targetk(p) = q 
then k ≥ hops” for all k, guarantees, for example, that 
Is_Reachable_in(10, p, q) is false if q links back to itself and it 
only takes 5 hops for p to reach q. Is_Reachable(p, q) is true iff q 
is reachable from p in any number of hops. When the Var key-
word follows Definition, it indicates that the value of the function 
may vary for the same input values in different program states. 
For example, Is_Reachable(p, q) may be true in one state and 
false in the next if one of the links between them was redirected. 
The Distance between p and q is the number of hops it takes to 
get from p to q if q is reachable from p; otherwise, the distance is 
zero. 

Definition Var Is_Reachable_in(hops: N; p, q: Location;): B =  
    Targethops(p) = q and ∀k: N, if Targetk(p) = q then k ≥ hops; 

Definition Var Is_Reachable(p, q: Location): B = 
    ∃k: N ∋ Is_Reachable_in(k, p, q); 
Definition Var Distance(p, q: Location): N 

 =   ; 
k if Is_Reachable_in(k, p,  q)
0 otherwise

⎧ 
⎨ 
⎩ 

Operation Splice(preserves p: Position; clears q: Position); 
    updates Target; 
    requires ( ∃k1, k2: N ∋ Is_Reachable_in(k1, p, Void) and  
        Is_Reachable_in(k2, q, Void) and k2 ≤ k1 ) and  
        ( ∀r: Location, if Is_Reachable(p, r) and 
 Is_Reachable(q, r) then r = Void ); 
    ensures Is_Reachable(p, Void); 
Procedure 
    Var r: Position; 
    Var s: Position; 
    Relocate(r, p); 
    While (not At_Void(q)) 
        decreasing Distance(q, Void); 
        maintaining Is_Reachable(p, Void); 
    do 
        Relocate(s, r); 
        Follow_Link(r); 
        Redirect_Link(s, q); 
        Follow_Link(s); 
        Follow_Link(q); 
        Redirect_Link(s, r); 
    end; 
end Splice; 

Figure 5. A lightweight specification for Splice. 

The Splice operation preserves p and clears q. In other words, p is 
unchanged and q is Void after the operation. The updates clause 
indicates that Target is the only conceptual variable that is modi-
fied.  

The requires clause is fulfilled only if the linked lists beginning 
at p and q are acyclic and disjoint. The only way that a location 
can reach Void is if there are no cycles in the linked structure 
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beginning with that location. The Void location always links to 
itself. Provided that lists are free of cycles, k1 and k2 represent the 
lengths of lists p and q, respectively, and k1 must be greater than 
or equal to k2. Finally, if any location other than Void is reach-
able by both p and q, then the lists are not disjoint. The simple 
ensures clause is true when the output list p is acyclic. 
Figure 6 illustrates the execution of the splice operation when p is 
a linked list with four locations and q is a linked list with two 
locations. Part (a) represents the state of the system at the begin-
ning of the first loop, part (b) represents the system at the begin-
ning of the second loop iteration, and part (c) represents the state 
of the system when the loop terminates. 

 
Figure 6. An animation of the implementation for Splice. 

The correctness of the implementation can be proved using the 
formal proof system detailed in [7][10] and summarized in [25]. 
The proof process takes the programmer-supplied invariant for 
the loop, establishes that it is invariant, and employs it in com-
pleting the proof. For the present example, the loop invariant 
asserts that it is always possible to reach the Void location from 
p. It is obviously true at the beginning of the first iteration, since 
p does not change and we know from the precondition that Void 
is reachable from p. All that is left to prove is that the invariant 
holds from one iteration to the next. This follows from the fact 
that the following lemmas hold in each state in the loop. 

Lemma #1: Is_Reachable(q, Void); 
Lemma #2: Is_Reachable(r, Void); 
Lemma #3: Is_Reachable(p, r) or Is_Reachable(p, q); 
The proof of correctness of Splice follows from the invariant and 
the negation of the loop condition. For proving termination, the 
process uses a progress metric given in the decreasing clause. 
The progress metric states that the “distance” from q to Void 
decreases with each iteration of the loop. This argument estab-
lishes the same result as the intricate shape analysis proposed in 
[6]. A limitation of the Splice operation as specified in this sec-

tion is that it cannot be used as a meaningful guide to anyone 
who implements the operation. In fact, even an implementation 
that does nothing at all will guarantee the postcondition because 
it follows directly from the precondition. The next section pro-
vides a more detailed specification for the Splice operation. 

3.2 Full Splice Specification 
The full specification of the Splice operation is given in Figure 5.  

Definition Var Is_Reachable_in(hops: N; p, q: Location;): B =  
    Targethops(p) = q and ∀k: N, if Targetk(p) = q then k ≥ hops; 

Definition Var Is_Reachable(p, q: Location): B = 
    ∃k: N ∋ Is_Reachable_in(k, p, q); 

Definition Var Distance(p, q: Location): N 

 =   ; 
k if Is_Reachable_in(k, p,  q)
0 otherwise

⎧ 
⎨ 
⎩ 

Definition Var Is_Info_Str(p, q: Location; α: Str(Info)): B = 
    ∃n: N ∋ Is_Reachable_in(n, p, q) and  
    α = 〈Contents(Targetk (p))〉k=1

n∏ ; 
Operation Splice(preserves p: Position; clears q: Position); 
    updates Target; 
    requires ( ∃k1, k2: N ∋ Is_Reachable_in(k1, p, Void) and 
        Is_Reachable_in(k2, q, Void) and k2 ≤ k1 ) and  
        ( ∀r: Location, if Is_Reachable(p, r) and 
 Is_Reachable(q, r)  then r = Void ); 
    ensures ( ∀t: Location, if not Is_Reachable(#p, t) and 
           not Is_Reachable(#q, t) then Target(t) = #Target(t) ) and 
        ( ∀α, β, γ: Str(Info), if Is_Info_Str(p, Void, α) and 
           Is_Info_Str(#p, Void, β) and Is_Info_Str(#q, Void, γ) 
 then α ≤!≥ (β, γ) ); 
Procedure 
    Var r: Position; 
    Var s: Position; 
    Relocate(r, p); 
    While (not At_Void(q)) 
        decreasing Distance(q, Void); 
        maintaining ( ∀t: Location, if not Is_Reachable(#p, t) and 
            not Is_Reachable (#q, t) then Target(t) = #Target(t) ) and 
         ( ∀χ, δ, ε. β, γ, ρ: Str(Info), if Is_Info_Str(p, r, χ) and  
           Is_Info_Str(r, Void, δ) and Is_Info_Str(q, Void, ε) and  
           Is_Info_Str(#p, Void, β) and Is_Info_Str(#q, Void, γ) and 
            ρ ≤!≥ (δ, ε) then χ o ρ ≤!≥ (β, γ) ); 
    do 
        Relocate(s, r); 
        Follow_Link(r); 
        Redirect_Link(s, q); 
        Follow_Link(s); 
        Follow_Link(q); 
        Redirect_Link(s, r); 
    end; 
end Splice; 

Figure 7. A full specification for Splice. 

We assume the definitions given above and introduce another 
one: Is_Info_Str. The function Is_Info_Str(p, q, α) is true if and 
only if q is reachable from p and α is the string of all the objects 
of type Info contained in the locations between p and q. The 
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string includes the object in p but not the object in q. For example, 
for the system of linked locations in Figure 2, Is_Info_Str(x, y, 〈β, 
λ〉) is true. 

The requires clause in this specification has not changed from the 
last one. However, the ensures clause is more detailed. It has two 
main conjuncts. The first conjunct indicates which portions of the 
Target variable do not change. It asserts that the links of locations 
do not change for locations that are not part of either input list. 
Note that we know that the contents and the taken status of all 
locations in the system are not affected by this operation because 
the variables Contents and Is_Taken are not included in the up-
dates clause. The second main conjunct in the ensures clause 
describes how the lists are modified. Essentially it says that α is 
the string of Info objects derived from the output list, β and γ are 
the strings of Info objects derived from the two input lists, and α 
is a perfect shuffle (or “interleaving”) of β and γ, which we denote 
by α ≤!≥ (β, γ). Recall that a perfect shuffle of two strings is a 
shuffle that interleaves the first n elements of each string, where n 
is the length of the shorter string. A perfect shuffle always starts 
with the first element of the first string. For example, 〈a, e, b, f, c, 
d〉 is a perfect shuffle of the strings 〈a, b, c, d〉 and 〈e, f〉.  
Since the postcondition has been strengthened, the loop invariant 
also needs to be stronger. Like the ensures clause, the loop in-
variant is divided into two main conjuncts. The first conjunct 
simply mirrors the first part of the ensures clause. The second 
conjunct asserts that if ρ is a perfect shuffle of the linked lists 
beginning with r and q, then when the string beginning with p and 
ending with r is concatenated with ρ, the resulting list is a perfect 
shuffle of the input lists. For convenience, we have chosen strings 
β and γ to designate the same strings in the invariant as they do in 
the ensures clause. The invariant includes a few extra strings: χ, 
which is the string of Info objects between q and Void; δ, which is 
the string of objects between r and Void; and ε, which is the 
string of objects between q and Void. 

At the beginning of the first iteration of the loop, χ is the empty 
string, while δ = β and ε = γ. So, when ρ ≤!≥ (δ, ε), we also know 
that χ o ρ ≤!≥ (β, γ). When the loop terminates, q = Void, so ε 
represents the empty string and therefore ρ = δ and χ o ρ = χ o δ. 
But χ o δ is the same as α in the ensures clause, so that α ≤!≥ (β, 
γ) follows directly from χ o ρ ≤!≥ (β, γ). 

Finally, the proof of correctness for the Splice operation must 
show that χ o ρ ≤!≥ (β, γ) is maintained in the invariant. If we 
assume that χ o ρ ≤!≥ (β, γ) at the beginning of some arbitrary 
iteration, we must then show that χ′ o ρ′ ≤!≥ (β, γ) at the begin-
ning of the next iteration, where χ′ and ρ′ are the new values of χ 
and ρ. (Note that β and γ are based on #p and #q, so they do not 
change from one iteration to the next.) Since r and q both advance 
exactly one location, we know that δ = 〈x〉 o δ′ and ε = 〈y〉 o ε′ for 
some Info objects x and y. A perfect shuffle of δ′ and ε′ will be 
the same as a perfect shuffle of δ and ε except that it will no 
longer hold x and y. In other words, ρ′ = 〈x〉 o 〈y〉 o ρ. While ρ 
loses these objects, the Info string χ picks them up. In the code, 
position s moves to the location containing x, redirects the link 
there to the location containing y, follows the link, and then redi-
rects the link at that location toward r’s new location. As a result 
of this traversal, χ′ = χ o 〈x〉 o 〈y〉. When χ′ and ρ′ are concate-

nated we get χ′ o ρ′ = χ o ρ, so that χ o ρ ≤!≥ (β, γ) implies χ′ o 
ρ′ ≤!≥ (β, γ). 

Of course, a formal proof of the invariant would be much more 
intricate, but this should give the reader an idea of how to pro-
ceed. 

4.  DISCUSSION 
Using programmer-supplied loop invariants (similar to our ap-
proach for handling loops), Jenson et al. have discussed in [9] 
how to prove heap-related properties and find counterexamples to 
claimed properties. Their implementation has been shown to be 
effective in practice. Their work differs from traditional pointer 
analyses because they can answer more questions that can be 
expressed as properties in first-order logic. While this work fo-
cuses on linear linked lists and tree structures, more recently 
Møller and Schwartzbach have extended the results to all data 
structures that can be expressed as “graph types” [17]. The Alloy 
approach “targets properties of the heap” [28] in a quest to root 
out erroneous implementations of linked data structures and null 
dereferences. The ESC/Java tool [15] has the ability to statically 
detect heap-related errors in Java. Though we have focused only 
on Hackett and Rugina’s work in this paper, there is significant 
other work in shape analysis, including work on parametric shape 
analysis that allows more questions to be answered concerning 
heaps [22]. None of these efforts is based on a general, formal 
specification of pointer behavior.  
The idea of capturing pointer behavior in the form of a component 
is not new. Safe pointers [16] and checked pointers [21] are ge-
neric C++ classes designed to alleviate memory errors in C++ by 
implementing all or part of the memory management code inside 
a pointer-like data structure. In contrast, our pointer specification 
supports manual memory management and the memory errors that 
can occur as the result of it. Though we have focused only on 
proving properties and correctness through reasoning, the results 
can be combined with previous work [26] to identify errors 
through analysis. In addition, these errors are statically predict-
able in the context of a formal specification and verification sys-
tem that does not treat reasoning about pointers different from 
reasoning about any other component.  

Despite the fact that many object-oriented languages avoid most 
memory errors by using automatic garbage collection, implicit 
pointers (references) remain a serious problem for both formalists 
and practitioners. This is due primarily to aliasing [8]. Aliasing—
in the absence of a complete model of pointers and their refer-
ents—breaks encapsulation [19] and hence thwarts modular rea-
soning [5]. When pointers are appropriately modeled, formal 
specification and verification is complicated because the model 
must cope with soundness [29]. Therefore, various proposals have 
been introduced to control object aliasing, such as [5][19]. Rea-
soning about programs that incorporate these techniques is typi-
cally done in the context of object-oriented logics that use a 
global heap abstraction. 
A complete formal specification of the pointer component de-
scribed here was omitted due to space considerations, but it can 
be found in [12]. Future research includes exploring how the 
specification can be adapted for languages with automatic gar-
bage collection, and how we can develop both lightweight and 
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heavyweight performance specifications [11][24] towards analyz-
ing the performance of pointer-based programs. 
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ABSTRACT
We present a type system for the Dream component-based
message-oriented middleware. This type system aims at pre-
venting the erroneous use of messages, such as the access of
missing content. To this end, we adapt to our setting a type
system developed for extensible records.

1. INTRODUCTION
Component-based frameworks have emerged in the past

two decades. They are commonly used to build vari-
ous software systems, including Web applications (EJB [1],
CCM [14]), middleware (dynamicTAO [11], OpenORB [4]),
or even operating systems (OSKit [10], THINK [9]).

A typical example of such frameworks is Dream [12].
Dream allows the construction of message-oriented middle-
ware and builds upon the Fractal component model [5] and
its Java implementation. It provides a library of components
that that can be assembled using the Fractal architecture
description language (ADL) and that can be used to imple-
ment various communication paradigms, such as message
queues, event/reaction, publish/subscribe, etc.

A system built out of Dream components typically com-
prises several components which may exchange messages,
which may modify them (e.g., setting a time stamp), and
which may behave differently according to their contents
(e.g., routing a message). In the current Java implemen-
tation of the Dream framework, every message has type
Message, independently of its contents. As a consequence,
certain assemblages of Dream components type-check and
compile correctly in Java but lead to run-time failures, typ-
ically when a component processes a message that does not
have the proper expected structure.

Catching such configurations errors early on, when writing
the architecture description of a Dream assemblage, would
be of tremendous benefits to programmers using the Dream
framework. In other words, what would be required would
be a type-safe ADL that would allow the typing of com-
ponent structures and reject ill-typed component configura-
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tions.
As a first step towards this goal, we propose in this pa-

per a type system for Dream components, concentrating on
message types that accurately describe the internal struc-
ture of a message. To this end, we adapt existing work on
type systems for extensible records [16, 17] and describe how
components and component assemblages may be typed. The
resulting type system captures a number of errors that can
be made when writing ADL descriptions of Dream configu-
rations.

The paper is structured as follows: Section 2 describes the
Dream framework, and typical configuration errors the type
system is intended to capture. Section 3 introduces types
for messages and for components manipulating messages.
Section 4 describes related work, and Section 5 concludes
the paper.

2. THE DREAM FRAMEWORK

2.1 The Fractal component model
Dream is based on the Fractal component model [5], a

component model for Java. Fractal distinguishes between
two kinds of components: primitive components and com-
posite components. The latter provide a means to deal with
a group of components as a whole.

A component has one or more ports that correspond to ac-
cess points supporting a finite set of methods. Ports can be
of two kinds: server ports, which correspond to access points
accepting incoming method calls, and client ports, which
correspond to access points supporting outgoing method
calls. The signatures of both kinds of ports is described
by a standard Java interface declaration, with an additional
role indication (server or client).

A component is made of two parts: the content part is ei-
ther a standard Java class (in the case of a primitive compo-
nent), or a set of sub-components (in the case of a composite
component); the controller part comprises interceptors and
controllers. Examples of controllers are the binding con-
troller that allows binding and unbinding the component’s
client ports to server ports of other components, and the life-
cycle controller that allows starting/stopping components.

Figure 1 illustrates the different constructs in a typical
Fractal component architecture. Thick gray boxes denote
the controller part of a component, while the interior of
these boxes correspond to the content part of a component.
Arrows correspond to bindings, and tee-like structures pro-
truding from gray boxes are ports.
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sub component

content

port

controller

binding

Figure 1: Architecture of a Fractal component

2.2 The Dream framework
Dream components are standard Fractal components with

one characteristic feature: the presence of input/output in-
terfaces that allow Dream components to exchange mes-
sages. Messages are Java objects that encapsulate named
chunks. Each chunk implements an interface that defines
its type. As an example, messages that need to be causally
ordered have a chunk that implements the Causal interface.
This interface defines methods to set and get a matrix clock.

Messages are always sent from outputs to inputs (Fig-
ure 2 (a)). There are two kinds of output and input inter-
faces, corresponding to the two kinds of connections: push
and pull. The push connection corresponds to message ex-
changes initiated by the output port (Figure 2 (b)). The
pull interaction corresponds to message exchanges initiated
by the input port (Figure 2 (c)).

push(message) ;

void push (Message m){
// Processing of message m

}

(b)
Push connection 

Message m = pull();
// Processing of
// message m

Message pull (){
// Returns a message

}

(c) 
Pull connection

��� ������ ��
(a) 

Principle

Component B

Component A

Figure 2: Input/output interfaces connection

Dream provides a library of components encapsulating
functions and behaviors commonly found in message-oriented
middlewares. These components can be assembled to imple-
ment various asynchronous communication paradigms: mes-
sage passing, publish/subscribe, event/reaction, etc. Here
are a few examples of Dream components:

• message queues are used to store messages. Several
kinds exist, differing by the way messages are sorted:
FIFO, LIFO, causal order, etc.

• transformers have one input to receive messages and
one output to deliver transformed messages. Typical
transformers include stampers.

• routers have one input and several outputs (also called
“routes”), and route messages received on their input
to one or several routes.

• multiplexers have several inputs and one output; for
every message received on an input a multiplexer adds

a chunk that identifies the input on which the message
arrived; the multiplexer then forwards the message to
the output.

• duplicators have one input and several outputs, and
copy messages they receive on their input to all their
outputs.

• channels allow message exchanges between different
address spaces. Channels are distributed composite
components that encapsulate, at least, two compo-
nents: a ChannelOut—whose role is to send messages
to another address space—, and a ChannelIn—which
can receive messages sent by the ChannelOut.

2.3 Configuration errors
The main data structures manipulated by Dream com-

ponents are messages. A message is a finite set of named
chunk. A chunk can be any Java object. Basic operations
over messages allow to read, remove, add, or update a chunk
of a given name. They can potentially lead to three kinds
of run-time errors.

• A chunk is absent when it should be present (e.g., for
a read, remove, or update).

• A chunk is present when it should be absent (e.g., for
an add).

• A chunk does not have the expected type (e.g., for a
read).

Experience with the dream framework has shown that
many such errors are consequences of an erroneous archi-
tecture definition of the system. For instance, in figure 3,
the architecture definition is obviously incorrect: component
readTS expects messages with a TS chunk, whereas compo-
nent addTS expects messages without TS chunk. Since both
components receive exactly the same messages (duplicated
by the duplicate component), one of them will fail.

Message Message

i o

readTS

Message Message

i o

addTS

Message

Message

i

o1

duplicator

o2

Message

Figure 3: Example

One can tell that the architecture definition of 3 is incor-
rect because the behavior of the components is clear from
their name. However, the typing annotations are clearly
insufficient to allow the previous analysis.

In the current component model of Dream, connections
between components are constrained by the host language
(e.g. Java) type system. Ports are associated to Java in-
terface types, and two ports can be connected if and only if
their corresponding Java types coincide. This scheme suffers
from limitations of the Java type system, in particular, the
absence of polymorphism and rich record types.

64



We propose to define a polymorphic type system for the
composition of components in order to overcome those lim-
itations. It allows the specification of the more common be-
haviors of Dream components, seen as messages transform-
ers. It provides the guarantees that, if components conform
individually to their type, the composed system will not fail
with any of the run-time errors identified above.

3. DREAM TYPES

3.1 Presentation
A record is a finite set of associations, called fields, be-

tween labels and values. Many languages, such as Ocaml,
use records as primitive values. In [16, 17] Rémy describes
an extension of ML where all common operations on records
are supported. In particular, the addition or removal of
fields and the concatenation of records. He then defines a
static type system that guarantee that the resulting pro-
grams will not produce run-time errors, such accessing a
missing field.

Dream messages can be seen as records, where each chunk
correspond to a field of the record, and Dream components
can be seen as polymorphic functions. Polymorphism is im-
portant for at least two reasons. First, the same component
can be used in different contexts with different types. Sec-
ond, polymorphism allows to relate the types of the client
and server interfaces, and thus allows to specify more pre-
cisely the behavior of a component. We can almost directly
use the results of [16, 17] in order to type Dream compo-
nents. Note however that we work on a different level of
abstraction: we give types to components and check that
the way we connect them is coherent. In particular, we do
not type-check the code of the components.

In the following, we first give the main ideas behind mes-
sages types and component types, and present the main for-
mal results in the next subsection.

We type messages as extensible records [16]. Informally,
The type of a message consists of a list of pairwise distinct
labels together with the type of the corresponding value, or
a special tag if the message does not contain a given label.
Moreover, a final information specifies the content of the
(infinitely many) remaining labels. In addition, we use a
convenient type constructor ser: if τ is an arbitrary type,
ser(τ ) is the type of values of type τ in a serialized form.

Figure 4 defines several examples of message types.

µ1 = {a : pre(A); b : pre(B); abs}

µ2 = {a : pre(A); b : pre(B); c : abs; abs}

µ3 = {a : pre(X); abs}

µ4 = {a : Y ; abs}

µ5 = {a : pre(A); Z}

µ6 = {a : pre(A); b : Z′; Z′′}

µ7 = {a : pre(A); a : pre(B); abs}

µ8 = {a : X; b : abs;X}

Figure 4: Examples of message types

A message m of type µ1 contains exactly two labels a and
b, associated to values of type A and B respectively (the im-
portance of the pre constructor will be made clear later). It
does not contain any other label, as specified by the abs tag.

We can note that m can equivalently be seen as a value of
type µ2. Indeed, µ1 and µ2 represent the same sets of values,
which we write µ1 = µ2. Richer types can be constructed
using type variables. In type µ3, X represents an arbitrary
type. Informally, a message of type µ3 must contain a label
a, but the type of the associated value is not specified: the
pre constructor allows us to impose the presence of a given
field, even if its type is unspecified. Similarly, in µ4, Y is a
field variable. It can be either abs, pre(A) for any type A,
or pre(X) for any type variable X. Finally, in µ5, Z is a row
variable that represent either abs or any list of fields. Note
that we have µ5 = µ6. Remark also that some syntactically
correct types, such as µ7 and µ8, can be meaningless: in
particular labels must not occur twice, and a variable can-
not have two different sorts (here X is used both as a field
variable with label a, and as a row variable).

A component has a set of server ports and client ports.
Each port is characterized by its name, and the type of the
values it can carry. The type of a component is essentially
a polymorphic function type. Figure 5 gives examples of
components and component types. id has a polymorphic
type. Its client and server ports can be used with any type
X. dup duplicates its arguments. adda adds a new field with
label a to the messages it receives on client port i. Note that
these messages must not contain label a. removea removes
the field named a, that may or may not be present. reset
reset the value associated to label a to some initial value.
serialize gets an arbitrary message {X} and returns a new
message with one field which is the serialized form of {X}.
deserialize is the converse operation.

id : ∀X.{i : {X}} → {o : {X}}

dup : ∀X.{i : {X}} → {o1 : {X}; o2 : {X}}

adda : ∀X.{i : {a : abs;X}} → {o : {a : pre(A); X}}

removea : ∀X, Y.{i : {a : Y ;X}} → {o : {a : abs; X}}

reset : ∀X.{i : {a : pre(A); X}} → {o : {a : pre(A); X}}

serialize :∀X.{i : {X}} → {o : {s : ser({X}); abs}}

deserialize :∀X.{i : {s : ser({X}); abs}} → {o : {X}}

Figure 5: Examples of component types

As for message types, some component types are mean-
ingless. Consider the following type:

∀X.{i : {a : pre(X); abs}} → {o : {a : X}}

The two occurrences of X are used with a different meaning.
The first one is a type variable whereas the second one is a
field variable. In a more subtle way, the following type is
incorrect:

∀X.{i : {X}} → {o : {a : pre(A); X}}

Both occurrences of X are row variable. However, the first
one includes rows that may contain a field with label a,
whereas the second does not.

Figure 6 depicts the same architecture definition as in
figure 3, using these more precise types. The definition will
be well-typed if and only if we can solve the equations:

{X} = {ts : pre(A); Y }

{X} = {ts : abs; Z}
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{ts : pre(A) ; Y}

{ts : pre(A) ; Y}

i

o

readTS

{ts : abs ; Z} {ts : pre(A) ; Z}

i o

addTS

{X}

{X}

i

o1

duplicator

o2

{X}

Figure 6: Example 1 revisited

Remark that we have chosen different type variables for
each component. The equations do not have any solution,
and thus the system is not well typed.

3.2 Formally

3.2.1 Syntax
We first introduce the syntax of messages types, which are

very similar to record types.

τ ::= µ | ser(τ ) | σB | α types

µ ::= {ρ∅} message types

ρ
L ::= ξ

L | abs
L | a : φ; ρL⊎{a} row

φ ::= θ | abs | pre(τ ) fields

σB ::= A | B | . . . base types

A type τ may either be a message type µ, a serialized type
ser(τ ), a base type σB, or a type variable α. A message type

µ is a record type, described by a row ρ∅. We suppose that
a, b, c, . . . range over a denumerable set of message labels Lm

and L over finite subsets of Lm. Intuitively, a row ρL must
not contain any field whose label is in Lm. In the case of a
message type, there is no restriction as to which labels may
occurs, hence the ∅ superscript.

A row ρ may either be a row variable ξ, the empty row
abs, or the concatenation of a field a : φ with a row where
label a does not occur. This restriction is enforced by the
use of the L superscript. For instance {a : θ; (a : θ′; ξL)} is
not syntactically correct. The ⊎ operator denotes disjoint
union, it is only defined for disjoint sets.

The presence information φ is either a field variable θ, the
indication that the field is absent abs, or that it is present
and carries a value of type τ , denoted pre(τ ).

Finally, σB range over base types, corresponding to Java
types in Dream. We often write {a : φ; b : φ′; ξL} for {a :
φ; (b : φ′; ξL)}.

We next give the syntax of component types.

C ::= ∀eαeθfξL.{I∅} → {I∅} Component

I ::= i : µ; I | ∅ Interface Set

We define Lp as a denumerable set of ports, or interface
names, ranged over by i,o and their decorated variants. A
component type is composed of a set of input interfaces and
a set of output interfaces. An interface consists of a port and
the type of values exchanged on this port. We suppose ports
to be distinct in a given interface set (input or output). We
write ex for a finite set of variables, and require that every

(type, field, or row) variable be bound in the ∀ prefix of the
component type.

In the previous subsection, we used the same syntactic
category for type, row, and field variables and we omit-
ted the superscripts on rows. The reason is that the sorts
of variables and the superscripts can be automatically in-
ferred. For instance, the type ∀X.{i : {X}} → {o : {a :
pre(A); X}} is incorrect because it cannot be rewritten as
∀ξL.{i : {ξL}} → {o : {a : pre(int); ξL}}: L should be ∅ in
the first occurrence of ξ and {a} in the second one.

An architecture definition D is given by a list of compo-
nent names and their type, and a list of connections be-
tween ports. For both syntactic categories, we let ǫ denote
an empty list (of components or connections). We let c and
its decorated variants range over Lc, a denumerable set of
component names.

D ::= (Cp, Co) Architecture Definition

Cp ::= ǫ | c : C, Cp Components

Co ::= ǫ | c.o = c
′
.i, Co Connections

An architecture definition (Cp, Co) is well-formed if

• Component names in Cp are pairwise distinct.

• For every connection c.o = c′.i in Co, c : C and c′ : C′

are in Cp for some C, C′. Moreover, o is a client port
(i.e., it is a port of the output set of interfaces) of C
and i a server port of C′.

• Any port is connected at most once.

3.2.2 Typing
We write T the set of rows ρL for all L. We define an

equational theory E on T with the following axioms and
rule.

a : φ; (a′ : φ
′; ρL) = a

′ : φ
′; (a : φ; ρL)

a : φ; absL = a : φ; (b : abs; absL⊎{b})

a : φ; ξL = a : φ; (b : θ; ξ′
L⊎{b}

)

ρ
L = ρ

′L =⇒ a : φ; ρL⊎{a} = a : φ; ρ′L⊎{a}

The first axiom states that the order in the definition of
the fields does not matter. The second states that the abs

row denotes rows containing only absent fields. The third
axiom states that a row variable denotes rows with fields
whose presence information is not specified.

We know from [16] that the problem of unification in T

modulo E is decidable and syntactic: every solvable unifica-
tion problem has a most general unifier.

From an architecture definition D = (Cp,Co), we can
generate a set of equations E(D). First we get a list Cp′ by
suppressing all quantifiers in Cp, assuming variables are first
renamed such that no variable appear in two distinct types.
We write Cp′(c) for the type of component c in Cp′. For a
component type C, we note TC(C.o) for the type associated
with client interface o. We define similarly TS(C.i).Using
these definitions, we can define E as follows:

E(Cp, Co) = {TC(Cp
′(c).o) = TS(Cp

′(c).i) | c.o = c.i ∈ Co}

An architecture definition D is typable if and only if E

admits an unifier.
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3.3 Example
Figure 7 (a) depicts a stack of dream components. The

component producer at the top of the left stack generates
messages consisting of a unique chunk of type TestChunk

and name tc.

producer : {} → {o : {tc : pre(TestChunk); abs}}

The component serializer returns messages with a unique
chunk sc that is the serialized form of the messages received
on input port i.

serializer : ∀X.{i : {X}} → {o : {sc : ser({X}); abs}}

Component addIP adds a chunk of type IPChunk and name
ipc to a message that does not contain an ipc chunk.

addIP : ∀X.{i : {ipc : abs; X}} →

{o : {ipc : pre(IPChunk); X}}

channelOut dispatches messages on the network, and re-
quires them to define at least an ipc chunk of type IPChunk.

channelOut : ∀X.{i : {ipc : pre(IPChunk); X}} →

{o : {ipc : pre(IPChunk); X}}

The right stack performs the symmetric actions. Fig-
ures 7 (b) and (c) show two incorrect architectures. In (b),
the deserializer component is missing and in (c) the dese-
rializer and addIP components are inverted. Architecture
(a) is well-typed but (b) and (c) are not. Consider architec-
ture (b), we deduce the following equations from the linking
(note that bound variables have been renamed).

{tc : pre(TestChunk); abs} = {U} (1)

{sc : pre(ser(U)); abs} = {ipc : abs; Z} (2)

{ipc : pre(IPChunk); T} = {ipc : pre(IPChunk); Z} (3)

{ipc : pre(IPChunk); Z} = {Y } (4)

{Y } = {ipc : pre(IPChunk); X} (5)

{ipc : abs; X} = {tc : pre(TestChunk); abs}
(6)

From 6, we deduce that

X = {tc : pre(TestChunk); abs}

Then from 5, we have

Y = {ipc : pre(IPChunk); tc : pre(TestChunk); abs}

It follows from 4 and 3 that

T = Z = {tc : pre(TestChunk); abs}

Besides, we deduce from 2 that

Z = {sc : pre(ser(U)); abs}

The terms tc : pre(TestChunk); abs and sc : pre(ser(U)); abs
are obviously not unifiable and thus the system is not ty-
pable.

We implemented this type system in Ocaml. It takes as
input an architecture definition, checks that it is well-sorted,
generates a system of equations and try to solve it. We used
this tool to check the validity of several assemblages. Figure
8 corresponds to the input file for architecture (c).

Our prototype fails to solve the equations corresponding
to this architecture. The output corresponds to a set of

producer:
{}->{o:{tc:pre(TestChunk);abs}}

consumer:
{i:{tc:pre(TestChunk);abs}}->{}

serializer:
{i:{’x}}->{o:{s:pre(ser({’x}));abs}}

deserializer:
{i:{s:pre(ser({’x}));abs}}->{o:{’x}}

addIP:
{i:{ipc:abs;’x}}->{o:{ipc:pre(IPChunk);’x}}

removeIP:
{i:{ipc:pre(IPChunk);’x}}->{o:{ipc:abs;’x}}

channelOut:
{i:{ipc:pre(IPChunk);’x}}->{o:{ipc:pre(IPChunk);’x}}

channelIn:
{i:{’x}}->{o:{’x}}

composite c is
{}->{}

with
producer.o = serializer.i
serializer.o = addIP.i
addIP.o = channelOut.i
channelOut.o = channelIn.i
channelIn.o = deserializer.i
deserializer.o = removeIP.i
removeIP.o = consumer.i

end

Figure 8: file archC.d

equations equivalent to the initial system, when the unifica-
tion algorithm encounters a contradictory equation (e.g.abs =
IPChunk).

% dtype archC.d

No solution

-----------

abs = IPChunk

abs = abs

{tc:TestChunk;abs} = {ipc:IPChunk;’removeIP_x}

{ipc:abs;’removeIP_x} = {tc:TestChunk;abs}
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{X}

{tc:pre(TestChunk); abs}

producer

{sc:pre(ser(X)); abs}

serializer

{ipc:abs; X}

{ipc:pre(IPChunk); X}

addIP

{ipc:pre(IPChunk); X}

{ipc:pre(IPChunk); X}

channelOut

{X}

{tc:pre(TestChunk); abs}

consumer

{sc:pre(ser(X)); abs}

deserializer

{ipc:abs; X}

{ipc:pre(IPChunk); X}

removeIP

{X}

{X}

channelIn

i

o

i

o

i

o

io

o

i

o

i

o

i

(a)

{X}

{tc:pre(TestChunk); abs}

producer

{sc:pre(ser(X)); abs}

serializer

{ipc:abs; X}

{ipc:pre(IPChunk); X}

addIP

{ipc:pre(IPChunk); X}

{ipc:pre(IPChunk); X}

channelOut

{ipc:abs; X}

{tc:pre(TestChunk); abs}

consumer

removeIP

{X}

{X}

channelIn

i

o

i

o

i

o

io

o

i

i

o

{ipc:pre(IPChunk); X}

(b)

{X}

{tc:pre(TestChunk); abs}

producer

{sc:pre(ser(X)); abs}

serializer

{ipc:abs; X}

{ipc:pre(IPChunk); X}

addIP

{ipc:pre(IPChunk); X}

{ipc:pre(IPChunk); X}

channelOut

{ipc:abs; X}

{tc:pre(TestChunk); abs}

consumer

removeIP

{X}

deserializer

{X}

{X}

channelIn

i

o

i

o

i

o

io

o

i

o

i

o

i

{ipc:pre(IPChunk); X}

{sc:pre(ser(X)); abs}

(c)

Figure 7: Example: a stack of components

3.4 Discussion and limitations
The main limitation is that this typing discipline is too re-

strictive to type certain Dream components. Typically, they
can exhibit different behavior depending on the presence of
a given label in a message (e.g., routers). Consider for in-
stance a component route that routes messages it gets on
its client port on different server port depending on the pres-
ence of a given label. We would like its type to be something
like:

route : ∀X. {i : {a : pre(A); X}} → {o1 : {X}; o2 : {abs}}

∧ {i : {a : abs; X}} → {o1 : {abs}; o2 : {X}}

Similarly, some components may output messages of dif-
ferent types.

produce : {} → {o : {a : abs; b : B; abs}}

∧ {} → {o : {a : A; b : abs; abs}}

In both cases, we can find approximating types that al-
low us to type a definition involving these components. For
instance:

route : ∀XY Z. {i : {X}} → {o1 : {Y }; o2 : {Z}}

produce : ∀XY. {} → {o : {a : X; b : Y ; abs}}

In doing so, we lose any guarantee about the correctness
of the architecture definition, since obviously, the code of
the components does not conform to these types.

4. RELATED WORK
The type system presented in this paper constitutes an ex-

ample of a domain specific type system, tailored to checking
architectural constraints in the component-based Dream en-
vironment. Type systems that capture various properties of
programs have of course been intensively studied for various
languages, including ML, Java, as well as in more abstract
settings such as process algebras and the π-calculus [18]. Ex-
ploiting type systems for checking architectural constraints
has received less attention, but has nevertheless been the
subject of various works in the past decade. We can mention
for instance work on the Wright language [3], which supports

the verification of behavioral compatibility constraints in a
software architecture, matching a component with a role;
recent work on ArchJava [2], which uses ownership types to
enforce communication integrity in a Java-based component
model; and more recent work on behavioral contracts for
component assembly [6]. The type systems (or compatibil-
ity relations) used in these works, however, do not capture
the architectural constraints that are dealt with in this pa-
per. Both the Wright system and the behavioral contract
system would need to be extended to deal with the record
types that characterize Dream messages, and the ArchJava
type system is tailored to enforce communication integrity,
i.e. , to prevent aliasing that may destroy a component in-
tegrity. The work which is closest to ours is probably the
recent work on the type system for the Ptolemy II system
[13], which combines a rich set of data types, including struc-
tured types such as (immutable) arrays and records, and a
behavioral type system which extends the work on interface
automata [7, 8] for capturing temporal aspects of compo-
nent interfaces. The Ptolemy II type system would not be
directly applicable to our Dream constraints, though, for it
features only immutable record types. However, a combina-
tion of extensive record types as in this paper and behavioral
types of the Ptolemy II system is definitely worth investi-
gating.

5. CONCLUSION AND FUTURE WORK
We have presented a domain specific type system for mes-

sages and components that manage messages in the Dream
framework. This type system is based on existing work on
extensible records, and is rich enough to address component
assemblages such as protocol stacks, as illustrated in Sec-
tion 3.3.

An obvious shortcoming of our approach is that we do not
formally state the guarantees provided by the type system,
namely that there will be no run-time error due to the ac-
cess of an absent message chunk, the addition of a chunk
whose name is already present in the message, or the use
of a chunk’s contents at a wrong type. We have taken the
more pragmatic approach of first implementing and testing
the expressivity of the type system. We plan on formalizing
the behavior of Dream components and state the guarantees
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of our type system as continuation of this work.
Experimenting with our type system has shown that it

is not precise enough when the behavior of a component
depends on the structure of a message, as described in Sec-
tion 3.4. To address this issue, we plan on adapting existing
works on intersection types, such as [15], to our setting.

Finally, we are studying the integration of our type check-
ing phase in the Dream ADL processing workflow.
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ABSTRACT 
Based on our experiences and those of our peers, we hypothesized 
that in Java code, the majority of declarations that are of reference 
types are meant to be non-null.  Unfortunately, the Java Modeling 
Language (JML), like most interface specification and object-
oriented programming languages, assumes that such declarations 
are possibly-null by default.  As a consequence, developers need 
to write specifications that are more verbose than necessary in 
order to accurately document their module interfaces. In practice, 
this results in module interfaces being left incompletely and 
inaccurately specified. In this paper we present the results of a 
study that confirms our hypothesis.  Hence, we propose an 
adaptation to JML that preserves its language design goals and 
that allows developers to specify that declarations of reference 
types are to be interpreted as non-null by default.  We explain 
how this default is safer and results in less writing on the part of 
specifiers than null-by-default.  The paper also reports on an 
implementation of the proposal in some of the JML tools. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program Verification—
programming by contract; D.3.3 [Programming Languages]; F.3.1 
[Logics and Meanings of Programs]: Specifying and Verifying 
and Reasoning about Programs 

General Terms 
Documentation, Design, Languages, Theory, Verification. 

Keywords 
Contracts, Java Modeling Language, JML, reference types, non-
null references. 

1. INTRODUCTION 
Null pointer exceptions are among the most common faults raised 
by components written in mainstream imperative languages like 
Java.  Increasingly developers are able to make use of tools that 

can detect possible null dereferences (among other things) by 
means of static analysis of component source.  Unfortunately, 
such tools can only perform minimal analysis when provided with 
code alone.  On the other hand, given that components and their 
support libraries are supplemented with appropriate specifications, 
then the tools are able to detect a large proportion of potential null 
pointer dereferences.  The Java Modeling Language (JML) is one 
of the most popular behavioral interface specification languages 
for Java [11, 12].  ESC/Java2 is an extended static checker for 
Java that uses JML as an interface specification language [4].   
While writing Java programs and their JML specifications, it has 
been our experience, and those of peers, that we generally want 
declarations of reference types to be non-null.  Unfortunately 
JML, like most interface specification and mainstream object-
oriented programming languages, assumes that by default 
declarations can be null.  As a result, specifiers must explicitly 
constrain such declarations to be non-null either by annotating the 
declarations with /*@ non_null @*/ or by adding constraints of 
the form o != null to class invariants and/or method contracts.  
Since most developers tend to write specifications penuriously, in 
practice this results in module interfaces being left incompletely 
and inaccurately specified.   
In this paper we present the results of a study that confirms the 
hypothesis that: 

In Java programs, the majority of declarations that are of 
reference types are meant to be non-null, based on design 
intent. 

For this study we sampled over 150 KLOC out of 450 KLOC of 
Java source.  To our knowledge, this is the first formal empirical 
study of this kind—though anecdotal evidence has been 
mentioned elsewhere, e.g. [7, 8].  In light of our study results, we 
propose that JML be adapted to allow developers to specify that 
declarations of reference types are to be interpreted as non-null by 
default.   
The study method and study results are presented in the next two 
sections.  Our proposal to adapt JML to support non-null by 
default is presented in Section 4 along with a discussion of the 
way in which the proposal upholds JML’s design goals.  We offer 
a discussion of related work and conclude in Sections 5 and 6 
respectively. 
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not made or distributed for profit or commercial advantage and that 
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otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
SAVCBS’05, September 5–6, 2005, Lisbon, Portugal. 
Copyright 2005 ACM 1-58113-000-0/00/0004…$5.00. 
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2. STUDY 

2.1 Metrics 
Reference types can be used in the declaration of local variables, 
fields, method (return types) and parameters.  In our study we 
considered all of these types of declaration except for local 
variables since the non-null annotation of local variables is not yet 
fully supported in JML.  Unless specified otherwise, we shall use 
the term declaration in the remainder of this article to be a 
declaration other than that of a local variable.  
We have two principal metrics in this study, both of which shall 
be measured on a per file basis: 

• d, is a measure of the number of declarations that are of a 
reference type, and 

• m is a measure of the number of declarations specified to be 
non-null (hence m ≤ d). 

The main statistic of interest, x, will be a measure of the 
proportion of reference type declarations that are non-null, i.e. m / 
d.  In the next section we explain how m is computed. 

2.2 Counting non-null declarations 
2.2.1 JML core and syntactic sugar 
Like many languages, the definition of JML consists of a core 
(that offers basic syntactic constructs) supplemented with 
syntactic sugar that makes the language more practical and 
pleasant to use.  As is often done in these situations, the semantics 
of JML is defined in terms of a desugaring procedure (that 
describes how to translate arbitrary specifications into the JML 
core), and a semantics of the core [13, 17].   
As such, it is much simpler to accurately describe how to count 
non-null declarations relative to the core JML.  Unfortunately, 
such an account would seem foreign to most.  Hence, in this paper 
we have chosen to provide an informal description of counting 
non-null declarations that is based on “sugared” JML.  We refer 
readers interested in the full details to [5]. 

2.2.2 General rules 
Given a declaration T o, where T is a reference type, we can 
constrain o to be non-null either explicitly or implicitly.  We do so 
explicitly by annotating the declaration with /*@ non_null @*/ 
as is illustrated in Figure 1(a).  Notice that the field nm, the 
method welcome() and the parameter aNm of the method set() 
are explicitly declared non-null. 
Generally speaking, we consider that o is implicitly constrained to 
be non-null if an appropriate assertion is of any one of the 
following forms, or it contains a conjunct of any one of the 
following forms: 
• o != null, 
• o instanceof C, 
• \fresh(o) which states that o is a reference to a newly 

allocated object (hence this can only be used in an ensures 
clause), or 

• \nonnullelements(o), when o is an array reference. 
For example, the greeting() method of Figure 1(a) is 
considered to be implicitly declared non-null because the 
ensures clause constrains the method result to be non-null.  
Next, for each kind of declaration, we describe the circumstances 
under which we consider declarations of the given kind to be 
implicitly declared non-null. 

2.2.3 Fields 
A non-static (respectively, static) field can be implicitly declared 
non-null if a non-static (static) class invariant contains a conjunct 
of the form given in Section 2.2.2.  For example, given the 
declarations of Figure 2, we would count o1, o2 and a as non-null 
but not o3 (because the o3 != null term is an argument to a 
disjunction rather than a conjunction). 

public abstract class Greeting  

{ 
 private /*@ spec_public non_null */ String nm; 

 

 /*@ public normal_behavior 
   @  requires !aNm.equals(""); 

   @  modifies nm; 

   @  ensures nm == aNm; 
   @*/ 

 public void set(/*@ non_null @*/ String aNm) { 
   nm = aNm; 
 } 

 

 //@ ensures \result.equals(greeting()+nm); 
 public /*@ pure non_null @*/ String welcome() { 
   return greeting() + nm; 

 } 
 

 //@ ensures \result != null; 

 //@      && !\result.equals(""); 
 public abstract /*@ pure @*/ String greeting(); 
 

} 

(a)  Greeting class 
 
public class FrenchGreeting extends Greeting  

{ 

 // constructor omitted 
 

 //@ also 

 //@ ensures \result.equals("Bonjour "); 
 public /*@pure non_null*/ String greeting() { 
   return "Bonjour "; 

 } 
} 

(b)  FrenchGreeting class 

Figure 1.  Sample class specifications 

 

/*@ non_null @*/ Object o1; 

Object o2; 
//@ invariant o2 != null; 

int i; 

Object o3; 
//@ invariant i > 0 || o3 != null; 

Object a[]; 

//@ invariant \nonnullelements(a); 

Figure 2.  Sample field declarations, some non-null 
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2.2.4 Method return types 
The pseudo variable \result is used in ensures clauses to 
represent the value returned by a method.  A static method or a 
non-overriding non-static method can be implicitly declared as 
non-null by constraining \result to be non-null in an ensures 
clause as is done for the greeting() method of the Greeting 
class—Figure 1(a). 
A JML method specification can be given as a list of cases 
(having different preconditions) separated by the keyword also 
as is illustrated in Figure 3.  In such situations, the method can be 
counted as non-null if and only if: the method is explicitly 
declared as non-null or, it is implicitly declared as non-null in 
every normal_behavior specification case (and every 
behavior specification case—not discussed here—for which the 
ensures clause is neither false nor \not_specified).   
Due to behavioral subtyping, the case of overriding methods is 
slightly more complicated.  In JML, an overriding method like 
FrenchGreeting.greeting() of Figure 1(b) must respect the 
method specifications of its ancestors—which in this case consists 
only of one method, Greeting.greeting().  As a reminder to 
readers, all overriding method specifications must start with the 
keyword also.  Thus, an overriding method m in a class C can be 
counted as non-null if and only if m is constrained to be non-null 
in C, as well as in all ancestor classes of C where m is explicitly 
declared.   

2.2.5 Method parameters 
The case for method parameters is similar to that for method 
return types.  That is, a parameter of a static or non-overriding 
method is considered non-null if it is constrained as such in a 
requires clause.  On the other hand, a parameter of an 
overriding method can be counted as non-null if and only if it is 
declared as non-null in the given class and all ancestor classes. 

2.3 Statistics tool 
In order to gather statistics concerning non-null declarations, the 
Iowa State University (ISU) JML checker was extended.  The tool 
uses heuristics similar to those described in the previous section.  
The metrics gathered are conservative (i.e. when given the choice 
between soundness and completeness, the tool opts for 
soundness).  The tool gathers data for normal, ghost, and model 
references. It also warns the user of inconsistent specifications 

(e.g. pre- or post-conditions trivially simplifying to false in all 
method specification cases). 

2.4 Case study subjects 
It was actually our work on an ESC/Java2 case study in the 
specification and verification of a small web-based enterprise 
application framework named SoenEA [18] that provided the final 
impetus to initiate the study reported in this paper.  Hence, we 
chose SoenEA as one of our case study subjects.  As our three 
other subjects we chose the ISU JML checker, the ESC/Java2 tool 
and the tallying subsystem of Koa, a recently developed Dutch 
internet voting application1.  We chose these projects because: 

• We believe that they are representative of typical designs in 
Java applications and that they are of a non-trivial size 
(numbers will be given shortly). 

• We were familiar with the source code (and/or had peers that 
were) and hence expected that it would be easier to write 
accurate JML specifications for it.  Too much effort would 
have been required to study and understand unfamiliar and 
sizeable projects in sufficient detail to be able to write correct 
specifications2. 

• The project sources are freely available to be reviewed by 
others who may want to validate our specification efforts.   

• The sources were at least partly annotated with JML 
specifications; hence we would not be starting entirely from 
scratch. 

Aside from SoenEA, the other study subjects are actually an 
integral (and dependant) part of a larger project.  For example, the 
JML checker is only one of the tools provided as part of the ISU 
tool suite—others include JmlUnit and the JML run-time assertion 
checker compiler.   
Table 1 provides the number of files, lines-of-code (LOC) and 
source-lines-of-code (SLOC) for our study subjects as well as the 
projects that they are subcomponents of.  Overall the source for all 
four projects consists of 457 KLOC (278 KSLOC) from over 
almost 1800 Java source files.  Our study subjects account for 161 
KLOC from over 500 files. 

                                                                 
1 Koa was used, e.g., in the 2004 European parliamentary elections. 
2 Particularly since projects often lack detailed design documentation. 

 /*@  normal_behavior 

   @    requires i == 0 
   @    ensures  \result != null  

   @          && \result.equals("zero"); 

   @ also  
   @  normal_behavior 

   @    requires i > 0; 

   @    ensures  \result != null 
   @          && \result.equals("positive"); 

   @ also  

   @  exceptional_behavior 
   @    requires i < 0; 

   @    signals(Exception e) true; 

   @*/ 
 /*@ pure @*/ String m(int i) { 

    ... 

 } 

Figure 3.  Method specification cases separated using ‘also’ 

Overall 
Project  

ISU 
Tools 

ESC 
Tools SoenEA Koa Total 

# of files 831 455 52 459 1797 
LOC (K) 243 124 3 87 457 

SLOC (K) 140 75 2 62 278 
 

Project 
subsys.  

JML 
Checker 

ESC/ 
Java2 SoenEA 

Koa Tally 
Subsys. Total 

# of files 217 216 52 29 514 
LOC (K) 86 63 3 10 161 

SLOC (K) 58 41 2 4 104  
Table 1 General statistics of study subjects 
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2.5 Procedure 
2.5.1 Selection of sample files 
With the study projects identified, our objective was to add JML 
specifications to all of the source files, or, if there were too many, 
a randomly chosen sample of files.  In the later case, we fixed our 
sample size at 35 (as sample sizes of 30 or more are generally 
considered “sufficiently large”).  Our random sampling for a 
given project was created by first listing the N project files in 
alphabetical order, generating 35 random numbers in the range 
1..N, and then choosing the corresponding files. 

2.5.2 Annotating the sample files 
We then added to the selected files JML specifications consisting 
essentially of constraints on declarations of reference types, where 
appropriate.  In most situations we added non_null declaration 
modifiers. 
An example of a field declaration that we would constrain to be 
non-null is: 

static final String MSG1 = “abc”; 

Similarly we would conservatively annotate constructor and 
method return types as well as parameters based on our 
understanding of the software applications.  As an example, 
consider the following method: 

String m(int a[]) { 
  String result = ""; 
  for(int i = 0; i < a.length; i++) { 
    result += a[i] + " "; 
  } 
  return result; 
} 

In the absence of any specification or documentation for such a 
method we would assume that the designer intended a to be non-
null (since there is no test for nullity and yet the length field of a 
is used).  We can also deduce that the method will always return a 
non-null String. 
As was previously explained, constraining the method return type 
or parameters for an inherited method requires adding annotations 
to the method’s class as well as to all ancestors of the class in 
which the method is declared.  This was particularly evident in the 
case of the JML checker code since the class hierarchy is up to 6 
levels of inheritance for some of files that we worked on (e.g. 
JmlCompilationUnit). 

2.6 Threats to validity 
2.6.1 Internal validity 
We see two threats to internal validity.  Firstly, in adding non-null 
constraints to the sample files we may have been excessive.  As 
was discussed in the previous section, we chose to be conservative 
in our specification exercise.  Furthermore, the code samples 
(both before the exercise and after) are available for peer review.  
The JML checker is accessible from SourceForge 
(sourceforge.net); ESC/Java2 and Koa are available from Joseph 
Kiniry’s GForge site (sort.ucd.ie) and SoenEA is available from 
the authors3. 
Secondly, our statistics tool may have incorrectly counted a 
declaration as being non-null.  Again, as was previously 

                                                                 
3 At the time of writing, the updated Koa source has not yet been 

committed to GForge; it is available from the authors. 

explained, we chose soundness over completeness during our 
design of the tool.  The tool source (which is part of the ISU JML 
tool suite) is also available via anonymous CVS for peer review. 

2.6.2 External validity 
Will we be able to draw general conclusions from our study 
results?  The main question is: can our sample of source files be 
taken as representative of typical Java applications?  There are 
two aspects that can be considered here: the design style used in 
the samples, and the application domains. 
Modern object-oriented programming best-practices promote e.g., 
a disciplined (i.e. moderate) use of null with the Null Object 
pattern recommended as an alternative [9].  Of course, not all Java 
code is written following recommended best practices; hence our 
sample applications should include such “non-OO-style” code.  
This is the case for some of the ESC/Java2 core classes (which 
were designed quite early in the project history); e.g. some of the 
classes declare their fields as public (a practice that is 
discouraged) rather than using getters and setters, making it more 
difficult to ascertain if a field was intended to be non-null.  Also, 
the class hierarchy is very flat, with some classes resembling a 
module in the traditional sense (i.e. a collection of static methods) 
more than a class. 
With a four sample set, it is impossible to claim that we have 
coverage in application domains, but we note that the SoenEA 
sample represents one of the most popular uses of Java—namely, 
servlet-based web applications. 

3. STUDY RESULTS 
A summary of the output of the non-null statistics tool run on our 
study samples (after having completed our specification exercise) 
is given in Table 2.  As is usually done, the number of files in 
each sample is denoted by n and the population size by N.  Note 
that for SoenEA, 11 of the files did not contain any declarations of 
reference types, hence the population size is 41 = 52 – 11; the 
reason that we exclude such files from our sample is because it is 
not possible to compute the proportion of non-null references for 
files without any declarations of reference types.  We see that the 
total number of declarations that are of a reference type (d) across 
all samples is 1978.  The total number of such declarations 
constrained to be non-null (m) is 1254.  The proportion of non-
null references across all files is 63%. 
We also computed the mean, x, of the proportion of non-null 
declarations on a per file basis (xi = di / mi).  The mean ranges 
from 59% for the JML checker sample, to 72% for the SoenEA 

  
JML 

Checker 
ESC/ 
Java2 

Soen-
EA 

Koa 
TS 

Sum or 
Average 

n 35 35 41 29 140 
N 217 216 41 29 503 
∑ di 376 807 231 564 1978 
∑ mi 210 499 177 368 1254 

∑di / ∑mi 56% 62% 77% 65% 63% 
mean (x) 59% 60% 72% 64% 64% 

std.dev.(s) 0.24 0.31 0.37 0.32 - 
E (α=5%) 7.4% 9.3% - - - 

µ min 52% 51% 72% 64% 60%  
Table 2. Distribution of the number of  

declarations of reference types 
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sample.  Also given are the standard deviation (s) and a measure 
of the maximum error (E) of our sample mean as an estimate for 
the population mean with a confidence level of 1 – α = 95%.  
Hence we can conclude with 95% certainty that the population 
means are above 50% in all cases. 
It should be noted that for both the JML checker and ESC/Java2 
samples, we stopped annotating the files once we had reached a 
value for µ min (i.e. µ − E) that was greater than 50% for α = 5%.  
Hence, it is quite likely that µ is actually higher for these samples.  
In the case of SoenEA we essentially completed the annotation 
exercise for all files, and as a result µ is 72%. 
A distribution of x, the proportion of non-null declarations, is 
given in Figure 4—following standard notation, [a,b) represents 
the interval of values v in the range a ≤ v < b.  The bar length 
represents the percentage of files for which x is in the given range.  
We see that the checker has no files with an x in the range [0-
10%).  On the other hand, SoenEA has the largest proportion of 
files in this range as well as for x = 100%.   
The mean of x by kind of declaration (fields, methods and 
parameters) for each of the study samples is given in Figure 5.  
Almost all samples have a mean for parameters that is higher than 

for methods.  The mean of x for fields is much higher in the case 
of the JML checker possibly because the checker sample had the 
smallest number of field declarations. 
We believe that the study results support our hypothesis that in 
Java code, the majority of declarations that are of reference types 
are meant to be non-null.  It is for this reason that we propose a 
modification to JML as is explained next. 

4. ADAPTING JML 
Motivated by the study results, we propose that JML be adapted to 
support  

• the module4 modifier non_null_ref_by_default that will 
allow developers to indicate that reference type declarations 
in the given module are to be interpreted as non-null by 
default, 

• a null declaration modifier, to be used in the context of 
non_null_ref_by_default classes, indicating that a 
given declaration can be null, and 

• a null_ref_by_default module modifier. 
An example of the use of these modifiers is given in Figure 6.  We 
justify our proposal in the following subsections. 

4.1 Null vs. non-null by default 
The study results support the hypothesis that, in general, designers 
want more than 50% of declarations of reference types to be non-
null.  Thus, under the current JML semantics, designers must 
effectively add /*@ non_null @*/ annotations to the majority of 
declarations if he or she wants the non-null constraints to be 
accurately documented.  As was remarked in the introduction, 
since developers tend to write specifications penuriously, in 
practice this results in module interfaces being left incompletely 
and inaccurately specified.  Thus, module clients might call 
methods with null arguments when these should be prohibited, 
resulting in NullPointerException’s—one of the most 
common programming errors. 
It would seem more sensible for declarations to be non-null by 
default.  Adopting this default would allow, on average, over 50% 
of declarations of reference types in an unannotated source file to 
be accurately constrained to be non-null.  Designers could then 
gradually add /*@ null @*/ annotations. A consequence of 
forgetting or delaying the addition of null annotations would, at 
worst, present a more restrictive interface to a module’s clients.  
This is a safer alternative than null-by-default.  Furthermore, since 
developers must generally provide special code to handle null, it 
is best for them to be explicitly informed that a value might be 
null by the presence of an annotation rather than by its absence. 

4.2 Upholding JML design goals 
One of the language design goals of JML is to adhere to the 
semantics of Java to the extent possible.  In those situations where 
JML semantics differ from Java, it should not come as a surprise 
to Java developers [14].  In our case, since Java assumes that 
references are possibly-null by default, it would not be appropriate 
to simply propose that JML’s default be non-null.  Instead, there 
should be an explicit indication in a JML module specification 
that unadorned references are to be interpreted as non-null. (Of 
course, it would be preferable for Java to adopt non-null as a 

                                                                 
4 I.e., class or interface. 
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default, as will be done in the next release of Eiffel for example—
see Section 5.2.2.) 
Hence we propose the addition of a module modifier named 
non_null_ref_by_default that can be placed just ahead of the 
class or interface keywords. In this way, a completely 
unadorned Java module will have the same semantics as Java 
(with respect to the interpretation of declarations of reference 
types).  An example of the use of this module modifier is given in 
Figure 6; it is a revised version of the Greeting class 
specification of Figure 1.  
As was previously mentioned, we believe that it is safer to have 
declarations represent non-null references rather than possibly-
null references by default.  As a final enhancement we suggest 
that JML tools emit a warning if neither default has been explicitly 
specified for any given Java module5.  In those situations where a 
developer wishes to preserve Java semantics, he or she can make 
use of the null_ref_by_default module modifier.  Such a 
behavior will help developers who are new to JML remember to 
use the safer non_null_ref_by_default when appropriate 
(which should be most of the time). 

4.3 Implementation 
The given proposal has been implemented in the JML checker and 
the JML Run-time Assertion Checker.  Since these tools already 
supported the notion of possibly-null and non-null declarations, 
the adaptation was relatively easy (approximately two person-
weeks).  We expect that the adaptation of other JML tools should 
be just as straight-forward.  Joseph Kiniry and the first author are 
currently implementing the proposal in ESC/Java2. 

5. RELATED WORK 

5.1 Nullity annotations 
Most closely related to our current proposal for JML are the 
nullity annotations supported by Splint [6].  Splint is a static 
                                                                 
5 Of course, such warnings can be disabled using a command-line option. 

analysis tool for C programs that evolved out of work on Lclint.  
Lclint was essentially a type checker for Larch/C, a behavioral 
interface specification language for C [10].  In Splint, all pointer 
variables are assumed to be non-null by default, unless adored 
with @null.  Splint can be used to statically detect potential null 
dereferences. 

5.2 Non-null types 
In contrast to using assertions or special annotations, some 
languages have enriched type systems supporting the notion of 
non-null types.  Of the three described here, two are proposing 
that references be non-null by default.  

5.2.1 Nice 
The Nice programming language can be seen as an enriched 
variant of Java supporting parametric types, multi-methods, and 
contracts among other features [2].  Nice also supports non-null 
types.  By default, a reference type name T denotes non-null 
instances of T.  To express the possibility that a declaration of 
type T might be null, one prefixes the type name with a question 
mark [3]. 

5.2.2 Eiffel 
The next major release of the Eiffel programming language [15] 
will also include support for attached types (i.e. non-null types, or 
non-void types as they might be called in Eiffel) as opposed to 
detachable types (that can be null) [16].  The proposed default for 
this new release of Eiffel will be attached types.  Special 
consideration has been given to minimizing the migration effort of 
current Eiffel code. 

5.2.3 Spec# 
Spec# is an extension of the C# programming language that adds 
support for contracts, checked exceptions and non-null types.  The 
Spec# compiler statically enforces non-null types and generates 
run-time assertion checking code for contracts [1].  For reasons of 
backwards compatibility with C#, a reference type name T refers 
to possibly null references of type T whereas T! is used to 
represent non-null references of type T.   

public abstract /*@ non_null_ref_by_default @*/

class Greeting  
{ 

 private /*@ spec_public @*/ String nm; 

 
 /*@ public normal_behavior 

   @  requires !aNm.equals(""); 

   @  modifies nm; 
   @  ensures nm == aNm; 

   @*/ 

 public void set(String aNm) { 
   nm = aNm; 

 } 

 
 //@ ensures \result.equals(greeting()+nm); 

 public /*@ pure @*/ String welcome() { 

   return greeting() + nm; 
 } 

 

 //@ ensures !\result.equals(""); 
 public abstract  

  /*@ pure @*/ String greeting(); 

} 

Figure 6.  Greeting specification using 
non_null_ref_by_default 

class GenericGreeting : Greeting {  

 string! greeting; 
 public GenericGreeting(string! n, string! g) {  

   base(n); 

   // (1) 
 } 

 // ... 

} 

(a) Partially initialized object (Spec#) 

 
class GenericGreeting : Greeting {  

 string! greeting; 

 public GenericGreeting(string! n, string! g) { 
   greeting = g; 

   base(n); 

   // (1) 
 } 

 // ... 

} 

(b) Use of initializer (Spec#) 

Figure 7.  Spec# GenericGreeting examples 
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The introduction of non-null types naturally complicates the type 
system and leads to other issues.  The main issue has to do with 
partially initialized objects [7].  Consider the example given in 
Figure 7(a). At point (1) in the constructor code, the field 
greeting will be null—due to the automatic initialization 
performed on instance fields.  To solve this problem, Spec# 
allows constructors to provide field initializers as is illustrated in 
Figure 7(b). 
In the case of JML, no such special measures are required since a 
non-null constraint on a field like greeting would be translated 
into a non-null constraint in a class invariant.  Class invariants are 
not assumed to hold on entry to or during the execution of a 
constructor body.  This is not to claim that JML’s approach is 
better—especially given the open issues related to the treatment of 
invariants—but rather than it is an alternative approach. 

6. CONCLUSION  
In this paper, we report on a novel study of four open projects 
(totaling over 450 KLOC) taken from various domains of 
application.  The study results support the hypothesis that, by 
design, the majority of reference type declarations are meant to be 
non-null in Java.  
It would be preferable that Java be adapted so that declarations are 
interpreted as non-null by default (as will be the case, for 
example, in the next release of Eiffel).  In the meantime, we have 
suggested an adaptation to JML that would allow specifications to 
be more concise by interpreting reference types as non-null unless 
explicitly annotated with the null declaration modifier.  Our 
proposal results in a safer default since in the absence of 
declaration annotations, modules simply present stricter interfaces 
to their clients. 
We have implemented our proposal in the JML checker and run-
time assertion checker compiler.  As future work, we intend to 
complete the implementation of the proposal in ESC/Java2, and to 
conduct further studies in an attempt to measure the effectiveness 
of our new proposed default for reference type declarations. 
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ABSTRACT
Design by Contract enables the development of more reliable
and robust software applications. In this paper, a method-
ology that diagnoses errors in software is proposed. This
is based on the combination of Design by Contract, Model-
based Diagnosis and Constraint Programming. Contracts
are specified by using assertions. These assertions together
with an abstraction of the source code are transformed into
constraints. The methodology detects if the contracts are
consistent, and if there are incompatibilities between con-
tracts and source code. The process is automatic and is
based on constraint programming.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Assertion check-
ers, Correctness proofs, Programming by contract; D.2.5
[Testing and Debugging]: Diagnostics; F.3.1 [Specifying
and Verifying and Reasoning about Programs]: As-
sertions Invariants Pre- and post-conditions

General Terms
Verification, Design by Contract, Diagnosis

1. INTRODUCTION
Design by Contract was proposed in [5]. This work speci-
fied that the major component of quality in software is the
ability to perform its job according to the specification. The
software quality is especially important in Object-Oriented
(OO) methodology because of the software reusability. In
a recent work, [1] it is showed that contracts are useful for
fault isolation. By using contracts, the fault isolation and
diagnosability is significantly improved.

∗This work has been funded by the Ministry of Science and
Technology of Spain (DPI2003-07146-C02-01) and the Eu-
ropean Regional Development Fund (ERDF/ FEDER).

In this work, a methodology for diagnosing software is pro-
posed, that is, for detecting and locating faults in programs.
The main idea is the transformation of the contracts and
source code into an abstract model based on constraints.
The methodology detects if the contracts are consistent, and
if there are incompatibilities between contracts and source
code.

CSP + Model Based Diagnosis

MAX-CSP

Contracts + Source Code

Abstraction

Logic Fundamentals

Automatic Identification

BugsBugs

Test Cases

Contracts
Diagnosis

Source Code
Diagnosis

Figure 1: Diagnosis framework

2. DIAGNOSIS FRAMEWORK
Figure 1 shows the completed diagnosis process. The pro-
cess obtains an abstract model based on the source code,
contracts and test cases. The diagnosis of a program is a set
of infeasible assertion and/or erroneous statements. These
definitions specify the kind of errors that can be detected.

Definition 1. An infeasible assertion is a non-viable asser-
tion due to conflicts with previous assertions or statements.
The set of assertions of a contract are verified when a pro-
gram is executed. An infeasible assertion is a wrongly de-
signed assertion that cannot be satisfied and it stops the
program execution when it is not specified.

Definition 2. An erroneous statement is a statement or a
set of statements that are faults since they do not allow the
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/** 
 *  @inv getBalance()>= 0 
 *  @inv getInterest >= 0 
 */ 
 
public interface Account { 
 
    /** 
     *  @pre income > 0 
     *  @post getBalance() >= 0 
     */ 
    public void deposit (double income); 
 
    /** 
     *  @pre withdrawal > 0 
     *  @post getBalance() ==  
     *     getBalance()@pre - withdrawal 
     */ 
    public void withdraw (double withdrawal); 
 
    /** 
     *  @pre interest >= 0 
     *  @post getInterest() == interest 
     */ 
    public void setInterest (double interest); 
 
    public double getInterest (); 
 
    public double getBalance (); 
 
} 

 
public class AccountImp implements Account { 
 
    private double interest; 
 
    private double balance; 
 
    public AccountImp()  { 
       this.balance = 0; 
    } 
 
    public void deposit (double income) { 
       this.balance = this.balance - income; 
    } 
 
    public void withdraw (double withdrawal) { 
       this.balance = this.balance - withdrawal; 
    } 
 
    public double getBalance() { 
       return this.balance; 
    } 
 
    public double getInterest() { 
       return this.interest; 
    } 
 
    public void setInterest(double interest) { 
       this.interest = interest; 
    } 
 
}

 

Figure 2: Interface Account and class AccountImp source code

correct results to be obtained. The errors under consider-
ation are minor variations of the correct program, such as
errors in loop conditions or errors in assignment statements.
This paper does not consider errors detected in compilation
time (such as syntax errors), nor dynamic errors (such as
exceptions, memory access violations, infinite loops, etc).

The following sections explain the phases of the diagnosis
process.

3. ABSTRACT MODEL GENERATION
In model-based diagnosis approaches, a model of the system
components enables detecting, identifying and isolating the
reason of an unexpected behaviour of a system. In a Object-
Oriented program the methods of different objects are linked
in order to obtain the specified behaviour. Each method of
a object can be considered as a component, which generates
a specified result. The pretreatment of the source code and
program contracts enables obtaining an abstract model of a
program. This abstract model allows to diagnose errors in
programs. The following subsections shows the process for
generating abstract model.

3.1 Determining basic blocks
Every OO program is a set of classes. In order to automate
the diagnosis of a program it is necessary to divide the sys-
tem into subsystems. Each program classes is transformed
into a set of basic blocks. These basic blocks (BB) can be:
blocks of invariants (IB), blocks of static class fields (SB),
blocks of object attributes (OB), and blocks of object or
class methods (MB). A IB includes the set of invariants of
a class. A SB includes the set of static field declarations
and static code blocks of a class, and a OB includes the
set of object field declarations of a class. A MB is the set
of all the statements and assertions (such as preconditions,
postconditions or loop invariants) included in the method.

Each program class can be transformed into a set of basic
blocks (BBs) equivalent to the Classi. When a program is
executed, the microprocessor links the basic blocks. The
order of these blocks can be represented as a Control Flow
Graph (CFG). The CFG is a directed graph that represents
the control structure of a program. A CFG is a set of sequen-
tial blocks and decision statements. A Path is the sequence
of statements of the CFG that is executed. The following
sections will use the basic blocks of an executed path in
order to obtain the constrains of the abstract model.

3.2 SSA form
The order of the constraints is not important for solving
a CSP. But when a program is executed the order of the
assertions and statements is very important. It is necessary
to maintain this order in the abstract model. The program
under analysis is translated into a static single assignment
(SSA) form. This step maintains the execution sequence
when the program is translated into constraints. In SSA
form, only one assignment is made to each variable in the
whole program. For example the code x=a*c; ...x=x+3;...
{Post:x =...} is changed to x1=a*c; ...x2=x1+3;... {Post:x2
=...}.

3.3 Program transformation
The abstract model is a set of constraints which simulate the
behaviour of the contracts (assertions) and the source code
(statements) of a program. Our approach uses the function
A2C (assertion to constraints) for transforming an assertion
into constraints. The transformation of the source code to
constraints appears in previous work [3]. The process is
based on the transformation of each statement of the path.
The main ideas of the transformation are:

• Indivisible blocks:

Assignments: {Ident := Exp}
The assignment statement is transformed into the fol-
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Table 1: The modified toy problem model
PC : PD :
S1 : int x = a * c (AB(S1) ∨ (x == a * c))∧
S2 : int y = b * d (AB(S2) ∨ (y == b * d))∧
S3 : int z = c + e (AB(S3) ∨ (z == c + e))∧
S4 : int f = x + y (AB(S4) ∨ (f == x + y))∧
S5 : int g = y + z (AB(S5) ∨ (g == y + z))
TC : Inputs : {a = 3, b = 2, c = 2, d = 3, e= 3}

Outputs : {f = 12, g = 12}
Test Code: S1 .. S5

lowing equality constraint: {Ident = Exp}. If the as-
signment statement is not a part of the minimal diag-
nosis then the equality between the assigned variable
and the assigned expression must be satisfied.

Method calls and return statements: For each method
call, the constraints defined in the precondition and
postcondition of the method are added. If we find
a recursive method call, this internal method call is
supposed to be correct in order to obtain the formal
verification of the recursive calls.

• Conditional blocks: {if (cond) {IfBlock} else {ElseBlock}}
There are two possible paths in a conditional state-
ment depending on the inputs of the condition. The
constraints of a conditional statement include the con-
dition and the inner statements of the selected path(only
one of the two possible paths is executed).

• Loop blocks: {while (cond) {BlockLoop}}
In a loop, the number of cycles depends on the inputs.
Each cycle is transformed into a conditional statement.
The structure of a loop is simulated as a set of nested
conditional statements. If the invariant of the loop
exists, the diagnosis process is more precise.

3.4 Test cases
Testing techniques enables the selection of those observa-
tions which are the most significant for detecting bugs in a
program. A Test case (TC) is a set of inputs (class fields,
parameters or variables), execution preconditions, and ex-
pected outcomes, which are developed for a particular ob-
jective, such as to exercise a particular program path or to
verify compliance with a specific requirement. The values
of a test case must satisfy the DbC specification. In our ap-
proach when a program is executed by using a test case, the
information of the executed basic blocks is stored. This in-
formation is necessary for the diagnosis of the system, since
it contains which are the statements of the executed path.

4. DIAGNOSIS PROBLEM
A diagnosis is a hypothesis for how a program must change
in order to obtain a correct behavior. The definition of diag-
nosis, in Model Based Diagnosis (MDB), is built up from the
notion of abnormal [4]: AB(c) is a boolean variable which
holds when a component c of the system is abnormal. For
example, an adder component is not abnormal if the output
of the adder is the sum of its inputs. A diagnosis specifies
whether each component of a system is abnormal or not. In
order to clarify the diagnosis process, some definitions must
be established.

Definition 3. System model(SM) is a tuple {PC, PD, TC}
where: PC are the program components, that is, the finite
set of statements and asserts of a program; PD is the pro-
gram description, that is, the set of constraints (abstract
model, AM) obtained of the PC, PD = AM(PC); and TC is
a test case.

Definition 4. Diagnosis: Let D ⊆ PC, D is a diagnosis if
PD’ ∪ TC is satisfiable, where PD’ = PD(PC − D).

The goal of diagnosis is to identify, and refine, the set of
diagnoses consistent with the test case.

Definition 5. Minimal Diagnosis is a diagnosis D that for
no proper subset D’ of D is D’ a diagnosis. The minimal
diagnoses imply to modify the smallest number of program
statements or assertions.

The rules described in the section 3 enables implementing
the function AM(Abstract Model) which generates the PD
of a program. Table 1 shows the PD of the toy problem
program, this is derived from the standard toy problem used
in the diagnosis community [4]. The program can not reach
the correct output because the third statement is a adder
instead of a multiplier.

In order to obtain the minimal diagnosis it is generated
a Maximal Constraint Satisfaction Problem (Max-CSP). A
Max-CSP is a CSP with a goal function. The objective is
to find an assignment of the AB variables that satisfies the
maximum number of the PD constraints: Goal Function =
Max(N i : AB(i) = false). A constraints solver will generate
the different solutions of the Max-CSP. The diagnosis pro-
cess by using a Max-CSP is shown previous work [2]. For
example, by using a Max-CSP, the minimal diagnoses in the
toy program will be: {{S3}, {S5}, {S1, S2}, {S2, S4}}.

5. DIAGNOSING PROGRAMS
In order to clarify the methodology the class AccountImp
is used. This class implements the interface Account that
simulates a bank account. It is possible to deposit money
and to withdraw money. Figure 2 shows the source code
and contracts. The method deposit has a bug, in that it
decreases the account balance. In the first phase, assertions
are checked in two different ways: without test cases and
with test cases. In the second phase the source code with
assertions is checked by using test cases.

5.1 Diagnosis of assertions without test cases
Two kinds of checks are proposed at this point: 1) a Max-
CSP with all the invariants of each class, in order to check
if all the invariants of a class can be satisfied together; and
2) a Max-CSP with the assertions of the methods and the
invariants, in order to check if the precondition and post-
condition of a method is feasible with the invariants of a
class. The solutions of these Max-CSP problems enable the
verification of the feasibility of assertions.

5.2 Diagnosis of assertions by using test cases
It is possible to obtain more information about the viabil-
ity of the method assertions by applying test cases to the
sequence {invariants + precondition + postcondition + in-
variants } in each method.
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Table 2: Diagnosis of the method Withdraw
Inputs: {balance@pre = 0, withdrawal > 0}

TC Outputs: {balance = 0}
Test code: Method Withdraw

Inv. (AB(Inv) ∨ (balance@pre >= 0))
PD Pre. (AB(Pre) ∨ (withdrawal > 0))

Post. (AB(Post) ∨ (balance =
balance@pre - withdrawal))

Inv. (AB(Inv) ∨ (balance >= 0))

Example. Table 2 shows the PD for the method withdraw
verification. The test case specified that the initial balance
must be 0 units and, when a positive amount is withdrawn,
the balance must preserve the value 0. The balance must be
equal or greater than zero when the method finishes, but if
this invariant is satisfied it implies that the precondition and
the postcondition could not be satisfied together. The post-
condition implies that balance = balance@pre - withdrawal,
that is, 0 − withdrawal > 0, and this is impossible if the
withdrawal is positive. The problem resides in the precon-
dition, since this precondition is not strong enough to stop
the program execution when the withdrawal is not equal or
greater than the balance of the account.

5.3 Diagnosis of source code and assertions
The diagnosis of a program is the set of those statements
which include the errors. We are looking for the minimal
diagnosis, that is, it is necessary, by using a Max-CSP, to
maximize the number of satisfied constraints of the PD. The
constraint obtained by the assertions must be satisfied, be-
cause these constraints give us information about the correct
behaviour. The diagnosis process result depends on the the
final situation of the program:

Situation 1 : If the program ended up with a failed asser-
tion, and did not reach the end as specified in the test case,
the problem can be a strict assertion (the assertion is very
restrictive) or one or more erroneous statements before the
assertion. In order to determine the cause of the problem,
the program should be executed again without the asser-
tion, in order to deduce if the program can finish without
the assertion. If this happens, the assertion is very strict. If
the program does not finish, the problem is due to the code
up to the point of the assertion.

Situation 2 : If the program ends, but the result is not the
one specified by the test case, then the problem can be a
wrong statement, or an assertion which is not sufficiently
restrictive (this enables executing statements which obtain
an incorrect result). If the problem is a wrong statement, the
resolution of the Max-CSP problem provides the minimal
diagnosis that includes the bugs. If the problem is due to
a weak assertion then a deeper study of the assertions is
necessary.

Example. Table 3 shows an account with an initial bal-
ance of 300 units. Two sequential operations are applied: a
withdrawal of capital of 300 units, and a deposit of the same
quantity. The constraint solver determines that the error is
caused by the statement included in the method deposit. If
the method is examined closely, it can be seen that there is

Table 3: Diagnosis of the class AccountImp
Inputs: {balance@pre = 300, withdrawal =

300, income = 300}
TC Outputs: {balance = 300}

Test code: S1: account.withdraw(withdrawal)
S2: account.deposit(income)

Inv. balance0 >= 0
Pre. withdrawal > 0
Code (AB(S1) ∨ (balance1 =

balance0 - withdrawal))
Post. balance1 = balance0 - withdrawal

PD Inv. balance1 >= 0
Inv. balance1 >= 0
Pre. income > 0
Code (AB(S2) ∨ (balance2 =

balance1 - income))
Post. balance2 >= 0
Inv. balance2 >= 0

a subtraction instead of an addition. The postcondition of
this method is too weak, and did not detect this problem.

6. CONCLUSION AND FUTURE WORK
In order to automate the diagnosis of software with con-
tracts, the combination of techniques from different subjects
is proposed, such as Constraint Programming, Model-Based
Diagnosis, and Design by Contract. This paper is an im-
provement of previous work [3], and incorporates a more
precise way to diagnose software since more characteristics
of Design by Contract are incorporated. The methodology
detects if the contracts are consistent, and if there are in-
compatibilities between contracts and source code. A more
complex diagnosis process is being developed in order to
obtain a more precise minimal diagnosis. We are extend-
ing the methodology to include all the characteristics of an
Object-Oriented language, such as inheritance, exceptions
and concurrence.
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ABSTRACT 
Nowadays the increasing demand for customized products and 
services in traditional areas such as Automotion Manufacturing or 
Aeronautical Component Engineering is being satisfied with a 
new approach called “Product Platform”. This successful 
approach is also being considered in the design of software-based 
components in these areas, which are recognized as complex and 
critical. 

In this paper, we present the research that is being carried out at 
Mondragon University. This effort focuses on the analysis of 
existing Product Platform Development methods and the 
transference of this know-how to Software Product Development. 

As a result, a Software Product Line (SPL) development method 
will be defined and applied in a real case. This method will be 
based upon market demands, so it should be flexible enough to 
respond to customer’s requests and market pressure. In this paper 
we will explain in detail one step of the process. This step is 
concerned with how QFD technique can be used to the 
specification of components in a SPL.  
Keywords 
Software Product Lines, Mass Customization, Market 
Perspectives, Requirements analysis and specification, 
Viewpoint-Oriented Requirements, Components. 

 

1. INTRODUCTION 
Today’s highly competitive, global marketplace is redefining the 
way companies do business. If we focus on the Software 
Development area, we can see that during the last few years the 
Software producer’s interests have been in contradiction with the 
customer’s interests. Indeed, producers want to maximize their 
benefits and, thus, to minimize their production’s costs and time 
to market. In opposition, customers ask for better quality and for 
Software tailored to their individual needs. Furthermore, 
complexity and size of software products are rapidly increasing 
due to the market’s evolution.  

This situation is not new, as the scenario is well known in other 
sectors such as Automotion Manufacturing or Aeronautical 
Component Engineering. In these sectors, the development of a 

family of products—a group of related products derived from a 
common Product Platform—has provided an efficient and 
effective mean to implement a sufficient product variety to satisfy 
a range of customer demands.  

Software community has tried to adopt this new approach of 
product development. They called it “Software Product Lines “ 
(SPL). A SPL is a set of intensive systems of software that share a 
set of common characteristics, that satisfy the specific needs of a 
segment of a particular market and that are developed from a set 
of common assets in a pre-established way [1].SPL represent an 
innovative and growing concept in Software Engineering. It can 
also efficiently satisfy the current demand for mass customization 
of software. 

Despite the fact that SPL have recently gained research interest, 
there are only few empirical studies on them. We would expect a 
rush by the Software industry to exploit the competitive 
advantages offered by SPL. However, most of the software 
industry is either unaware of the emerging field of SPL, or if an 
organization is aware, they don’t understand how SPL might be 
applied in their situation. There is a need of process and 
quantitative models to help enterprises in this new way of product 
development. 

The purpose of our research in Mondragon University is the 
analysis of existing Product Platform Development methods and 
the transference of this knowledge to Software Product 
Development. There is an especial interest in product 
specification and modularization. The Governing Body of 
Guipuzkoa (Spain) takes part in this research.  

The rest of the extended abstract is organized as follows. In 
section 2, we present the previous work in this field. In Section 3, 
we illustrate our advances. In this section, the core part of our 
contribution is given. Finally, in section 4, the paper ends with a 
conclusion and some words on the future work.  

 

2. PREVIOUS WORK 
From a mechanical perspective or taking into consideration 
products of tangible structure, we can affirm that this issue has 
been studied widely. During the decade of the 90’s, multiple 
studies and investigations appeared that were trying to tackle 
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these difficulties: how to obtain a great variety of products with a 
unique design that combines the greatest number of possible 
similarities [2]. The solution to gain this mass customization 
passes through the concept of product platform [3]. That is, a 
unique design for a platform can be personalized in such a way 
that can extend the variety of different products. We can mention 
the automation sector [4], aeronautical sector [5], aerospace sector 
[6] or companies like Hewlett-Packard or Black&Decker[7]]. In 
all, the challenge is in how to define this platform.  

From a Computer Science perspective or intangible structure 
Product Development, considerable efforts have been made, too. 
Its origins can go back to the 60’s. In a conference titled "Mass 
Produced Software Components" held in 1968, [8] introduced the 
Reusability concept as the key for the efficient design of new 
Software Products. The efforts made in the definition of 
methodologies for the development of Product Lines are 
considerable: PuLSE [9], KobrA [10], COPA[11], FAST [12], 
FORM [13], SPLIT [14], etc. From an application point of view, 
the SPL approach is being adopted by organizations of different 
sectors [15] [16][17]. 

As much from the theoretical point of view as form the  
application one, Product Lines are an interesting and promising 
approach. Therefore, we can appreciate how very different 
industries converge towards a new way of design when 
undertaking a product family development: SPL.  Nevertheless, 
the software development sector is not as advanced as the 
mechanical industry. Most of the real cases of SPL creation are 
based upon theoretical methods and a great amount of intuition. 
There is a need of sound processes and quantitative models to 
help enterprises in their new way towards Product Development. 
This is the main motivation for this research.   

 

3. SPL development with HOQ 
This research analyzes the ability to apply a design methodology 
for mechanical products in the design of SPL. The base 
methodology was defined in a project realized in 2002 by the 
Design Group of Mondragon University with the cooperation of 
the Governing Body of Guipuzkoa (Spain) 

During our research, we are focusing our effort in two main 
activities. On the one hand, we have been studying the process 
itself and the suitability to apply it in Software Manufacturing. On 
the other hand, we have been analyzing the importance of the 
Voice of the Customers for the analysis and specification of the 
SPL.  During the rest of the paper, we will explain in depth the 
second subject. 

 

3.1 Requirements Engineering for SPL: 
Getting the Voice of the Customer  
 
In the context of SPL, requirements analysis and specification 
defines the system to be developed and forms the basis for a 
contract between a system provider and a customer.  There are a 
number of inherent difficulties in this process. As [18], [19] [20] 
said, the hardest single part of building a software system is 
deciding precisely what to build. No other part of the conceptual 

work is as difficult as establish the detailed technical 
requirements. No other part of the work so cripples the resulting 
system if done wrong. No other part is as difficult to rectify later. 

It’s known by all the Software community that the most critical 
dimension in Product Development nowadays -and even more in 
the future- is to develop the products your customers want.  
During the product development, the Voice of the Customer 
(VOC) must be accurately defined. Without an accurate and 
complete definition of what a customer desires, the rest of the 
process is irrelevant.  

In Product Development context, requirements specification is 
used to formalize and communicate the needs of a real or 
hypothetical customer to product developers. This is the forward 
flow of information from concept development to design and 
implementation. In our research we propose the use of QFD 
(Quality Functional Deployment )  to deploy the Voice of the 
Customer throughout the product’s design.  Specifically, we apply 
the first part of QFD: the House of Quality (HOQ).  
 
3.1.1 QFD in SPL environment 
 
QFD is a structured approach for defining customer needs or 
requirements and translating them into specific plans to produce 
products that meet those needs. QFD can be considered as a tool 
for requirements analysis and specification. QFD answer the 
following questions: 

• What are the features the customers/market desires? 

• What functions must the product serve, and what 
functions must we use to provide the product or 
service? 

• Based on our available resources, how can we best 
provide what our customer wants? 

QFD is intended to be used by multidisciplinary or cross-
functional teams (Marketing, Design Engineering, Finance, 
Quality Assurance, Manufacturing, Test Engineering, Product 
Support, etc). This is, of course, to add variety, varying 
perspectives, and hopefully provide more insight into issues that a 
single function team would eliminate or not consider relevant.  
All these reasons, allow us to believe that QFD will support the 
different perspectives of the multiple customers, so we will use it 
to support the analysis and specification of the Product Line 
Requirements and to obtain the suitable Product Lines Structure 
based upon stakeholders demands. 
 

3.2 Building the HOQ for SPL 
 

The initial step of QFD is determining the voice of the customer 
(VOC). There is no one monolithic VOC. Customer voices are 
diverse. All these voices must be considered to develop a 
successful product. This is accomplished through extensive 
market research, or other more direct communication methods 
such as surveys, product complaint history, direct customer 
feedback, etc. The goal is to find the exact desires of the intended 
target group and design to provide these aspects, but still remain 
cost effective for the manufacturer as well as the customer. This 
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understanding of the customer needs is then summarized in a 
Product Planning Matrix, or House of Quality (HOQ). We use 
these matrices to translate higher level “what´s” or needs into 
lower levels “hows” product requirements or technical 
characteristics to satisfy these needs.  

In software development different roles are found (customers, 
developers, designers, etc.), where each one provides different 
needs, with different abstractions levels and with their own 
perspectives. We have defined four actors. Each actor has his own 
perspective of the product.  

• Customer or Market: this group represents all the 
possible clients around the world.  

• Enterprise: this group is conformed for all the roles 
into an enterprise, who are involved on the 
development and commercialization of the product 
(Marketing, Design Engineering, Quality Assurance, 
Manufacturing, Test Engineering, Finance,  Product 
Support, etc.) 

• Designer: this is a role whose work is concern with the 
implementation aspects. 

• Stakeholder: this role groups the previous roles.   
When trying to unify all this information and use it in the parts 
identification (product structuring), we realize that we need to 
pass twice the first step of HOQ.  In each step, different actors 
play their roles. In each step, we cross different views.  In the first 
round, we cross customer expectations (customer views) against 
product requirements (enterprise view). During this step, a 
functional language is used. The result of the first step is a 
complete identification of the wished functional requirements for  

the LPS. Nevertheless, we must consider that there are 
characteristic of a product that affects many others.  We call them 
"Crosscutting concerns". Concretely the term "crosscutting 
concerns" talks about the quality factors of the Software System 
(security, real time constraints, usability, persistence, etc.). In the 
second passage of our method, we establish the correlation 
between the requirements obtained in step 1 and the "crosscutting 
concerns".  From this step we obtain a quantitative knowledge of 
the quality characteristics wished by the users, as well as the 
requirements that are affected and in what degree. 

It’s interesting to rank the WHATs from the most desired ones to 
least desired ones, so we can give precedence to some 
requirements. After this step, all the Product Line requirements 
are discovered, and we can determinate which of them are 
common to all the products and which are specific. 

In the next step, the abstraction level is lower than in the previous 
step. This time, technical aspects appear. On the vertical axis we 
write Product Line requirements (result of the previous step), and 
on the horizontal axis we write a first proposal of components. 
This proposal is based upon object oriented concepts (abstraction, 
inheritance, etc.).  The correlation between the proposal of 
components and the product requirements allow us to detect  the 
exceed or lack of components. The components, may be 
correlated among them (tiled of the HOQ) based on their 
behavior, so we can detect the necessity to optimize this proposal 
of components, adding or eliminating some of them. Figure 1 
summarizes all the steps. 

 

 

Figure 1. HOQ for SPL 
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4. CONCLUSIONS AND FUTURE LINES 
OF WORK 
This paper presents a method whose aims to get the best Product 
Lines Structure based upon stakeholders demands. This method is 
integrated in a complete process for SPL development in an 
enterprise context.  
The method applies recognized approaches from Software 
Engineering discipline such us Object-Oriented principles and 
Aspect Oriented Software Development ideas (AOSD).  
The essence of the method is not a new idea. It is based on the 
work realized in the area of mechanical manufacture. In our 
research, we have just analyzed the existing product platform 
development methods in the mechanical area and the transference 
of this knowledge to Software Product Development. We must 
conclude that it’s possible to apply mechanical methods and 
process to SPL as long as we complete some aspects like the 
adoption of SPL and the consideration of management activities. 
Also, it’s possible to apply techniques like QFD with some 
adjusts.  

As for future lines of work, we think that the application of the 
method in multidisciplinary products (i.e. products with software 
and electronic components) would seem to be of great interest. 
Also, it would turn out interesting to deal with the factor time in 
explicit form in the method. 
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ABSTRACT 
This paper presents a framework for specification and testing of 
component-based embedded systems using formal description 
techniques (FDTs). We deal with embedded systems from the 
point of view of communication and thus we propose a 
communication model for them. We further explain the 
meaning of component-based embedded systems and how these 
can be specified using FDTs. FDTs such as Estelle and SDL are 
based on EFSMs (Extended finite State Machines) and have 
been widely used in the automation of the development process 
of protocols and communicating systems, i.e. for specification, 
analysis and validation purposes. The main goal of this work is 
to demonstrate the reusability of FDTs for component-based 
systems. 

Keywords 
Formal description techniques, component-based systems, 
embedded system, specification, testing 

1. INTRODCTION 
Embedded systems are becoming more and more the key 
technology of any kind of complex technical systems, ranging 
from telecommunications devices to automobiles and aircrafts. 
An embedded computer system is a computer system that 
represents a part of a larger system and performs some 
requirements of that system. 

The growing amount and complexity of requirements on 
embedded systems regarding properties like safety and real-
time behaviour make the software development process a costly 
and error-prone activity. The cost factor plays, however, a 
central role in today’s industrial competition, for instance, 
between car manufacturers. The development of competitive 
and efficient products is imposing more and more constraints to 
the design of embedded systems. One of the means to reach this 
goal are formal methods to support the different phases of 
system development, i.e. specification, synthesis and validation. 
There are several requirements for those methods that should be 
among others qualities abstract, understandable, analyzable, 
scalable and unambiguous specification formalisms. 

 

 

 

Component-based development represents an attractive 
approach in the embedded system area, in particular for the 
development of many variants of products [10]. While in the 
last few years component-based software development gained 
much more attention from both researchers and practitioners, 
testing such software systems is still however to be more 
studied [11]. Because one believes that once a component is 
sufficiently tested, it is not needed to test it again when reused. 
But, this is generally not true, since components may satisfy a 
certain application domain and fails in a new environment [11]. 

Formal description techniques have demonstrated their 
effectiveness in testing complex requirements like those for 
communicating systems [1] [2]. They provide a solid mean for 
unambiguous specification and rigorous analysis and are based 
on EFSMs (extended finite state machines). They differ from 
conventional programming languages by providing not only a 
formal syntax but also a formal semantic. The application of 
formal specifications increases the confidence in the software 
and the system. Especially in the area of safety-critical systems, 
the use of formal techniques is highly recommended [3] [8]. 

Testing of communication systems based on FDTs mainly 
concerns conformance testing. The later corresponds to a black 
box test. But this type of test is the most dominant and 
important one in component-based systems due to the nature of 
the constituents and properties of component-based systems. 
Indeed, components are independent and replaceable parts of a 
system and should be conform to and provide a set of interfaces. 
They also consist usually of special components, called COTS 
(commercial-off-the-shelf) that can be purchased on a 
component market. These are often delivered without their 
source code which makes other types of tests like white or grey 
tests less appropriate. 

Actually, the mostly used formalisms to specify requirements 
for embedded systems are Statecharts and also UML 
(Statecharts are converted in UML) as semi-formal models. 
Although Statecharts and UML provide graphical facilities, they 
might lack formal and unambiguous semantics. Therefore, 
detecting bugs, incompleteness and inconsistencies becomes a 
difficult task. To alleviate these lacks many authors try to 
combine formal notations like Z with state-transition models 
[5]. Z is based on set theory and first order predicate logic and 
used for data structuring and abstracting. However, approaches 
developed around this model do not clearly address test data 
generation methods for analysis and validation purposes [6] [7] 
and/or do not deal with component-based systems. 

Finite state machines are very popular in the control flow 
specification of state/transition-based systems and many related 
analysis methods have been developed [6] [7]. These support a 
formal test derivation which is used for validation and testing 
purposes. However, finite state machines lack to deal with the 
data flow. This shortcoming can be alleviated by using the 
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extended finite state machine model on which formal 
description techniques are based. 

In this paper, we present a framework for testing component-
based embedded systems by using formal description 
techniques (FDTs). We first identify the main components an 
embedded system consisting of and then show how these can be 
linked together to constitute the whole embedded system by 
using the FDT Estelle. The principle of testing such obtained 
embedded systems is explained, i.e. fault model, test derivation 
and test execution. 

The rest of the paper is organized as follows. Section 2 give the 
basic structure of embedded systems and explains their basic 
communication model. The specification and testing framework 
for component-based embedded systems using the FDT Estelle 
is presented in Section 3. Finally, Section 4 concludes the 
paper. 

2. BACKGROUNDS 
2.1 Embedded System Components 
An embedded system (ES) is any computer system or 
computing device that performs a dedicated function or is 
designed for use with a specific embedded software application, 
e.g. PDA (Personal Data Assistant), Mobile Phone, E-Book 
(Electronic Book), Robot, etc. That is, an embedded system is a 
special-purpose system built into a larger device. It is embedded 
as a subsystem in a larger system which may or may not be a 
computer system. An embedded system is typically required to 
meet specific requirements. 

Embedded systems must usually be dependable, efficient and 
must meet real-time constraints. Be ‘dependable’ means that an 
embedded system must be reliable, available and safe. The 
efficiency mostly concerns properties like energy, code-size, 
run-time, weight and cost. An embedded system is dedicated for 
a certain application and characterized also by a dedicated user 
interface. Thus, knowledge about future behavior at design time 
can be used to minimize resources and to maximize robustness. 
Many embedded systems must meet real-time constraints. A 
real-time system must react to stimuli from the controlled object 
(or the operator) within the time interval dedicated by the 
environment. 

external process 

embedded 
system 

controller 

sensors actuators 

user-machine-
interface 

 
Figure 1. Main components of an embedded system 

Embedded systems are frequently connected to a physical 
environment through sensors and actuators. They are typically 
reactive systems. A reactive system is in continuous interaction 
with its environment and executes at a pace determined by that 

environment. The behavior depends on input and current state 
for which the automata model is often most appropriate. 

Figure 1 illustrates the main constituents of an embedded 
system comprising an external process, sensors, actuators, and 
a controller: 
 The external process is a process that can be of physical, 

mechanical, or electrical nature. 
 Sensors provide information about the current state of the 

external process by means of so-called monitoring events. 
They are communicated to the controller. For the 
controller, they represent input events. They are 
considered as stimuli for the controller. 

 The controller must react to each received event, i.e. input 
event. Events originate usually from sensors. Depending 
on the received events from sensors, corresponding states 
of the external process will be determined. 

 Actuators receive the results determined by the controller 
which are communicated to the external process by means 
of so-called controlling events. 

The external process is usually given in advance. In contrast, 
the controller is often implemented by real-time hardware and 
software. This should allow each modification of the controller 
algorithm in a straightforward way each time this is needed. 
The controller’s behavior is depending on that of the external 
process. The controller commands the behavior of the external 
process taking into consideration requirements on the process 
and its characteristics, such as physical laws, real time and other 
constraints. 

2.2 Component-Based Embedded System 
Development 

In the component-based approach for embedded systems one 
distinguishes a component repository, a composition 
environment and a run-time environment. The component 
repository consists of single specifications of the above 
indicated components of an embedded system: sensors, 
controller and actuators. These correspond to EFSMs and for 
each component build functional modules with respect to the 
used FDT. The composition environment is the embedded 
system specification which consists of the specification of its 
environment and its controller. This takes places by linking the 
single modules to each other by means of channels via 
interfaces, called interaction points (Figure 2). These modules 
interact with each other via broadcasting events via these 
interaction points. However, a sequence has to be respected in 
this communication. For instance, the direct communication of 
a module of an actuator with a sensor is not allowed. Run-time 
environment consists of the instantiated embedded system 
specification issued from the former step, i.e. the composition. 
Assuming the FDT Estelle, this builds a tree of linked tasks 
from which the system is composed. Each subtree rooted in a 
so-called system process or system activity task represents a 
subsystem [2]. The number of subsystems and the links between 
them are fixed once the specification is initialized. 

 

 

 Sensor’s behaviour 
modules 

controller behaviour 
modules 

EFSMs 

Actuator’s behaviour 
modules 

EFSMs 

monitoring 
signals 

controlling 
signals 

channel channel EFSMs EFSM EFSM EFSM 

interface
 

Figure 2. Overview of the composition environment for embedded system based on EFSMs 
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The most important component of an embedded system consists 
of the controller which communicates with its environment, i.e. 
sensors and actuators, via signals (i.e. events). To be recognized 
by all components, these events have to be declared as global 
variables for adjacent EFSMs. The output events of sensors 
represent input events for the controller. The events from the 
controller to the actuators are output events and represent input 
events for the actuators. They result from new computations 
performed by the controller that is triggered by the received 
input events. 

Depending on the nature of sensor events (e.g. indicating the 
power on/of state for an electrical unit, the speed of a mobile 
object such as a car, etc.) the corresponding EFSM of this 
component is triggered and the concerned transition(s) are 
performed. This triggers the EFSMs of the controller whose 
states change. Depending on the received events, transitions in 
the FSMs are executed. Note, that transitions in the controller 
can spontaneously be triggered by other events, e.g. time out. 
The modeled subsequent state of the external process is 
computed and communicated as output events via the actuators. 

To provide an intermediate specification model which better fits 
the behaviour part of the considered FDT, i.e. Estelle, we 
introduce a new EFSM, called p-EFSM (p stands for 
‘predicated’). This is defined as follows: 

Definition 1 A predicated extended finite state machine (p-
EFSM) is an 8-tuple <S, C, I, P, O, T, s0, c0> where S is a non-
empty set of main states, C=dom(v1) x … x dom(vn) a non-
empty countable set of contexts with vi∈V, V a non-empty finite 
set of variables, and dom(vi) a non-empty countable set referred 
to as the domain of vi, P a countable set of predicates (possibly 
empty), I a non-empty finite set of inputs, O a non-empty finite 
set of outputs, T⊆ S x C x I x P x O x S x C a set of transition 
relations, s0∈S the initial main state, and c0∈C the initial 
context of the p-EFSM. 

p-EFSM extends the conventional EFSMs for FDT mapping 
purposes as we will see later. p-EFSM is similar to EFSM 
except that in a p-EFSM the conditions on transitions are 
explicitly specified. This is just a notation facility and 
functionally and conceptually there is no difference between 
both models. In the rest of the paper, we indifferently address 
both models. 

This, a transition t∈T of a p-EFSM is a 7-tuple <s, c, I, p, o, s’, 
c’> where s∈S is a current main state, c∈C a current context, 
i∈I an input, p∈P a enabling predicate which depends on the 
context c, o∈O an output, s’∈S a next main state, and c’∈C a 
next context. 

We consider one or more p-EFSMs for each component of the 
system and denote them with indices s, c and a for sensors, 
controller, and actuators. 

Interdependencies between these components are described as 
follows: 
 Let be given a transition 

ts∈Ts: ts =<ss, cs, is, ps, os, s´s, c´s> with 
ss∈Ss, cs∈Cs, is∈Is, ps∈Ps, os∈Os, s´s∈Ss, c´s∈Cs ⇒ ∃ tc∈Tc 
| os ≡ ic  
That is, each output event generated by sensors must 
trigger a transition of the controller. This event represents 
an input event for the triggered transition. We assume here 
that the predicates related to the transitions are satisfied by 
the actual context. 

 Let be given a transition tc∈Tc with sc∈Sc, cc∈Cc, ic∈Ic, 
pc∈Pc, oc∈Oc, s´c∈Sc, c´c∈Cc, 
if ic∈Os ⇒ ∃ ts∈Ts and ic ≡ os. 
This means that if there exists a transition of the controller 
whose input event belongs to the set of output events of the 
sensors then it must exist a transition of the sensors whose 
output event is identified with the given event. 

 Let be given a transition ta∈Ta: ta =<sa, ca, ia, pa, oa, s´a, 
c´a> with sa∈Sa, ca∈Ca, ia∈Ia, pa∈Pa, oa∈Oa, s´a∈Sa, 
c´a∈Ca ⇒ ∃ tc∈Tc: tc=<sc, cc, ic, pc, oc, s´c, c´c> and oc ≡ ia. 
Each transition of actuators must be only triggered by the 
controller and must match the output event of the 
triggering transition of the controller. 

Estelle is a standardized formal description technique 
(International Standard ISO 9074) based on concepts of 
structured communicating extended state automata and Pascal. 
It is oriented towards the specification of complex distributed 
systems, in particular communicating systems. A specified 
system is presented as a tree of tasks where each task has a 
fixed number of input/output access points (interaction points). 
Within a specified system it exists a fixed structure of 
subsystems (sub-trees of tasks) and communication links 
between subsystems. 

SDL (Specification and Description Language) is an object-
oriented, formal language defined by The International 
Telecommunications Union Telecommunications 
Standardization Sector (ITU) (formerly Comité Consultatif 
International Télégraphique et Téléphonique [CCITT]) as 
recommendation Z.100. The language is intended for the 
specification of complex event-driven real-time, and interactive 
applications involving many concurrent activities that 
communicate using discrete signals. 

Indeed, EFSMs can functionally describe system components 
that may be blocks or modules depending on the used formal 
description technique1. 

3. SPECIFICATION AND TESTING 
BASED ON Estelle 

3.1 Specification 
A specified embedded system is a tree of tasks (p-EFSMs) 
which can be categorized in three classes corresponding to 
controller, sensor and actuator modules. They are organized in 
an hierarchical structure (parent-son-relationship). Each task 
has a fixed number of Input/Output access points (interaction 
points) which can be associated to controller, sensors or 
actuator modules. Bidirectional communication links may exist 
between tasks (between their interaction points). Within a 
specified embedded system exists a fixed structure of 
subsystems (sub-trees of tasks), corresponding to controller, 
sensors or actuators, and of communications links (between 
them) (s. Figure 3). Within a subsystem both structures (of tasks 
and communication links) may change dynamically. Tasks 
exchange interactions: 

                                                 
1 SDL uses the ‘block’ concept whereas Estelle ‘module’. 
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Figure 3. Structuring and communication in an ES-

component-based specification 
• A task may send an interaction through its interaction point 

to a task linked to it, e.g. from C to A via the interaction 
points in C and A which are linked to each other (Figure 
3). 

• An interaction received by a task, as its interaction points, 
is appended to a FIFO queue associated to this interaction 
point. A FIFO queue may be either associated to one 
interaction point (individual queue) or to many interaction 
points (common queue) 

A task may export variables towards its parent which can access 
them (read and write). 

Parallelism: Two kinds of parallelism can be expressed in a ES 
specification: 
• Asynchronous parallelism: only between (actions of) tasks 

of different subsystems 
• Synchronous parallelism: only between different (actions 

of) tasks of the same subsystem. Synchronous parallelism 
between actions means that all actions have to complete 
their parallel execution before other actions can be 
executed in parallel. 

Time notion: 
• Execution time of tasks (actions) is assumed unknown 

because it is implementation dependent. 
• Some actions can be specified in such a way that their 

execution will be delayed. There are two delay values (min 
and max) which may be specified. The values of these 
delays are supposed to be modified by an independent 
process. 

3.2 Syntax Overview 
3.2.1 Channel Definition 
channel NAME (IP1, IP2) 
  by IP1: 
      interactionName1 (typed parameters); 
      …; 
  by IP2: 
      interactionName1 (typed parameters); 
      …; 
  by IP1, IP2: 
      interactionName1 (typed parameters); 
      …; 
 
A channel determines two channel types: Channel_NAME 
(IP1) type and Channel_NAME (IP2) type. A channel type 
defines two sets of interactions: those which can be sent through 
an interaction point (interface) of this type and those which can 
be received through an interaction point of this type (Figure 4). 

 ES 

C S 

Receive_Req 

Send_Resp, DATA IPC IPS 

Channel CS (IPC, IPS); 
  by IPC: Receive_Req; 
  by IPS: Send_Resp (a:boolean); 
          DATA; 
  by IPC: DATA; 

p: CS (IPS) 
p: CS (IPC)

CONNECT C.p to S.p 

 
Figure 4. Interactions via a channel in an ES-component-

based specification 

3.2.2 Module Definition 
The module definition consists of three main parts: 
declaration part, initialization part and transition part. The 
declaration part defines the manipulated objects like 
constants, types, variables, functions or procedures, state, 
stateset, channels, (sub) module headers and bodies, 
module variables etc. The initialization part initializes 
and controls variables and state variables, creates 
subtasks (sub-module instances) and establishes 
communication links. The transition part is the most 
important because it specifies the embedded system 
behaviour. 

3.2.3 Transition Part 
The transition part is composed of a set of transitions. Each 
transition has two parts: conditions and actions. Conditions are 
formed by the following clauses: when, from, 
provided, delay, priority. The actions are defined 
by the clause TO and PASCAL-Program with some extensions 
and restrictions: 

WHEN clause 
 when 

raction_point_id.interaction_name inte
FROM clause 
 from state 
 f
PROVIDED clause 

rom stateset 

 
DELAY clause 

provided Boolean expression 

 delay (integer_expression) 
 
TO clause 

delay (integer_expr1, integer_expr2) 

 to state 
 to same 
 output 

It is easy to map a p-EFSM specification onto the behavioral 
part (transition part) of an Estelle module. The when clause 
corresponds to input events in p-EFSM, from to edge state, 
provided to predicate, delay is a timing special input event, to to 
the tail state and output to output event. 

If the formal specification is provided in form of p-EFSMs 
(corresponding to a module) or in FDT many properties 
(completeness, correctness, consistency, safety, reachability 
etc.) of an embedded system can be automatically checked. In 
addition, different phases of the development process (analysis, 
implementation derivation, test data generation, diagnosis) can 
be unambiguisly and effectively supported [6] [7] [9]. 

3.3 Test Generation Methods 
There exist many test generation methods that are based on 
FSMs and which can be under some assumptions adapted to 
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EFSMs [6] [7] [8]. Some of them are able to detect only certain 
errors classes, whereas other allow to cover all errors classes. 
All these methods based on FSMs have a common basic idea. A 
test sequence is a preferably short sequence of consecutive 
transitions that contains every transition of the FSM at least 
once and allows to check whether every transition is 
implemented as defined. To test a transition, one has to apply 
the input for the transition in the starting state of the transition, 
to check whether the correct output occurs, and to check 
whether the correct next state has been reached after the 
transition. Checking the next state might be omitted (transition 
tour method) or be carried out by means of distinguishing 
sequences (checking experiments method), characterizing 
sequences (W-method), or unique input/output sequences (UIO 
methods). Some of these methods were also extended to 
nondeterministic FSMs [7]. 

4. CONCLUSION 
In this paper we presented an approach based on formal 
description techniques for specification of component-based 
embedded systems. The intermediate model EFSM allows to 
specify a system component independently of a given FDT, 
however, easily translatable in a preferred FDT, i.e. Estelle or 
SDL. We described the basic structure of embedded systems 
and demonstrate how a component-based approach can be 
applied for them using Estelle as FDT example. The main goal 
is to reuse the many well-known methods (automatic analysis, 
test data generation, validation, diagnosis, formal fault models) 
that have been since decades developed around state/transition-
based models because formal approaches are very 
recommended in the today’s growing complexity of embedded 
system requirements, especially regarding safety real-time 
property. 

In a future work, we plan to specify a real-life embedded system 
from the automotive area by using FDTs. 
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ABSTRACT
The # programming model attempts to address the needs of
the high performance computing community for new paradigms
that reconcile efficiency, portability, abstraction and gener-
ality issues on parallel programming for high-end distributed
architectures. This paper provides a semantics for the com-
positional features of # programs, based on category theory.

1. INTRODUCTION
Due to the advent of clusters and grids, the processing power
of large-scale distributed architectures is now accessible for a
wider number of academic and industrial users, most of them
non-specialists in computers and programming. This new
context in high-performance computing (HPC) has brought
new challenges to computer scientists. Contemporary par-
allel programming technologies that can exploit the poten-
tial performance of distributed architectures, such as mes-
sage passing libraries like MPI and PVM, still require a fair
amount of knowledge on the architecture and the strategy
of parallelism used. This knowledge goes far beyond the
reach of naive users [7]. The high-level approaches available
today do not join efficiency with generality. The scientific
community still looks for a parallel programming paradigm
that reconciles portability and efficiency with generality and
a high-level of abstraction [4].

The # component model attempts to meet the needs of the
HPC community [5], by moving parallel programming from
a process-based perspective to a concern-oriented one based
on components, separating concerns of specification of com-
putations from concerns related to their coordination, and
providing a number of features for abstraction in topological
composition of components. This paper provides a categor-
ical [2] foundation for the # component model, focused on
the semantics of its compositional features.

2. THE # COMPONENT MODEL
The # component model moves parallel programming from
a process-based perspective towards a concern-oriented one.
Without any loss of generality, in the former perspective,
a parallel program may be seen as a set of processes that

∗Supported by FUNCAP and CNPq.
†Supported by CNPq.

synchronize by means of communication channels. Appli-
cation concerns [10] are scattered across the implementa-
tion of processes. In fact, a process may be decomposed in
a set of slices, each one describing the role of the process
with respect to a concern. In the latter outlook, compo-
nents are programming abstractions that address concerns.
In # programming, a component is described as a set of
units organized in a network topology through synchroniza-
tion channels that connect their interfaces. The interface
of a unit comprises a set of input and output ports, whose
activation order is dictated by a protocol, specified using
a formalism with the expressiveness of labeled Petri nets.
Component units have direct correspondence to processes
slices. In fact, a # process is defined by the unification of
a set of units from distinct components. Each unit from
a component corresponds to a slice that describes the role
of a process with respect to its concern. It is not difficult
to see that processes are orthogonal to concerns (Figure 1)
and that concern-oriented parallel programming fits better
modern software engineering methodologies.

In # programming, the concerns about computations and
the ones related to their coordination are separated in com-
posed and simple components, respectively. Composed com-
ponents comprise the coordination medium of # programs,
while simple components comprise their computation medium.
Components may be combined with other components yield-
ing new components, through nesting or overlapping compo-
sition. Nesting composition occurs when a simple/composed
component is assigned to a unit of another composed compo-
nent. Overlapping composition occurs when units from dis-
joint composed components are unified. Component mod-
els of today allow only nesting composition [1, 3] and does
not support separation of cross-cutting concerns. The #
model also brings the support to skeletal programming [6]
to component-based programming. The essence of # pro-
gramming is to provide compositional features for raising
the level of abstraction in dealing with basic channel-based
parallel programming. It is supposed that any parallel pro-
gramming artifact may be defined in terms of # program-
ming abstractions. This section provided only an overview
of the # component model features. Details about composi-
tional and abstraction issues in # programming will be given
in the categorical semantics presented in the next sections,
where concepts like compositional interfaces and interface
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3. THE CATEGORICAL # MODEL
For better understanding of this section, knowledge about
basic category theory and graph theory concepts are re-
quired. However, some intuition behind the introduced for-
mal concepts will be provided whenever possible. The con-
cepts of sketch [2] and institution [8] are the only advanced
categorical concept employed herein. Sketches were firstly
proposed for the specification of certain mathematical struc-
tures. They play the same role as traditional techniques
from first-order logic and universal algebra, but they seem
to be more appropriate for dealing with multi-sorted struc-
tures and with models in categories other than sets. Institu-
tions were proposed by Goguen and Burnstal for providing
a unified theory for algebraic specification systems, which

in general differs by the underlying logical system used for
expressing properties.

3.1 The Category of Units
The sketch H is defined by (GH, DH, ∅, KH). The graph
GH, the diagrams DH, and the cocones KH are presented
in Figures 2, 4, and 3, respectively. A # component is de-
fined by a model (sketch homomorphism) of the sketch H
on Set, the category of sets, satisfying the commutative
diagram in Figure 5, where Unit is the category of units,
defined further, and M, M’ are # components. Therefore,
a homomorphism µ between # components M and M ′ is a
homomorphism of models, defined by a natural transforma-
tion µ : M → M ′. The category of # components, named
Hash, has components as objects and homomorphisms be-
tween components as morphisms. As usual for categories of
functors (components are functors), the vertical composition
of natural transformations defines composition in Hash.

Let M be a component. M(U) is a set of units. M(G) is a set
of references to groups of ports. M(P) is a set of ports. M(C)
is a set of communication channels. M(CB), M(CR), and
M(CS) are sets of buffered, ready and synchronous channels,
respectively. The Cocone K1 states that M(CB), M(CR),
and M(CS) are disjoint subsets of M(C). M(Gany ) and
M(Gall ) are sets of references to groups of ports of kind any
and all, respectively. The Cocone K3 yields that M(Gany )
and M(Gall ) are disjoint subsets of M(G). M(PI), and
M(PO) are sets of input and output ports, respectively. The
Cocone K2 states that M(PI), and M(PO) are disjoint sub-
sets of M(P). The function M (grouping) associates ports to

µ

(U)

M(U)

U

Set Unit

u

u’M’

in_comp

H
M

M’

Figure 5: Sketch Restriction
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their groups of ports. Diagram D3 is an epimorphism, for-
bidding empty groups. The function M (group owner) de-
fines the unit for which a group of ports belongs to. Diagram
D4 ensures that it is an epimorphism too, forbidding units
with an empty set of ports. The function M(comm pair)
defines the channel where a port is a communication pair.
Together, D1, D2 and K3 ensure that channels are unidi-
rectional. The restriction in Figure 5 ensures that the map-
ping between units induced by Hash-homomorphisms obeys
morphisms in the category of units (Unit).

The next sections define categories for units and interfaces.
The relation between interfaces and units resembles the re-
lation between signatures and algebras in universal algebra.
For this reason, an institution will be employed for charac-
terizing the relation between interface signatures and units.

3.2 The Category of Interface Signatures
The objects of category InterfaceSig represent interface
signatures. They are defined as tuples 〈G, E, ν〉. G is a
finite, connected, directed, and acyclic graph 〈V, A, ∂0, ∂1〉
with exactly one root node. Graphs of this kind are re-
ferred as IDAG’s. Leave nodes represent ports and branch
nodes represent interface slices. The category of IDAG’s
is IDAGr, with a special notion of morphism that will be
defined further on. As usual, Gr denotes the category of
graphs. E is the set of exposed nodes of G (E ⊂ nodes(G)).
Each path in G must have exactly one exposed node.
ν : V → N is a total function that maps nodes of G onto a
stream nesting factor.

Let I1 and I2 be interface signatures. A morphism ı : I1 →
I2, in InterfaceSig, is defined by a tuple 〈iG, iE , iν〉. The
IDAGr-morphism iG : G1 → G2 maps G1 to a branch (also

a IDAG) of G2, called Ĝ2, in such way that there is an

Gr-morphism ı̂G : Ĝ2 → free(G1) that preserves leaves,

e.g. leaves(Ĝ2) = leaves ◦ free(G1). This is illustrated in
Figure 6. The function iE maps exposed nodes from the
interface signatures. It must satisfy iE(E1) ⊆ E1, which is
a sufficient condition to ensure the preservation of exposed
nodes between I1 and I2. iν(ν1) = ν2, satisfying the commu-
tativity of the diagram in Figure 7 (preservation of stream
nesting factors).

3.3 The Institution of Units
In terms of the theory of institutions, a unit is essentially a
model for an interface signature, as well as Σ-algebras are
models for an algebra signature Σ. Units augment interface
signatures with a notion of behavior, defined by a protocol
that generates a formal language whose alphabet is com-
posed by the set of exposed nodes of the interface signature
of the unit.

Let I be an arbitrary interface signature. The functor Sen :
InterfaceSig → Set maps I to the set E∗ (Kleene closure
of E). A unit is defined by a tuple 〈P, R, δ, π〉, where P
is a set of ports, R is a set of slice references, δ : P →
{input, output} is a total function defining direction of ports,
and π is a protocol. A protocol expression is defined by the
syntactic class Π, whose definition is

Πi ::= seq {Π1, Π2, . . . , Πk} | par {Π1, Π2, . . . , Πk} |
alt {Π1, Π2, . . . , Πk} | pi? | po! | do r | s+ | s-

where pi ∈ {p ∈ P | δ(p) = Input}, po ∈ {p ∈ P | δ(p) =
Input}, r ∈ R, and s is a semaphore symbol. The proto-
col combinators seq, par and alt denote respectively se-
quence, concurrency and alternative. The symbols ! and
? are the basic primitives for sending and receiving data
in distributed synchronization channels, respectively. The
primitive do, the unfolding primitive, denotes the protocol
underlying the slice reference r. It can be viewed as a macro
expansion operator. The symbols + and - mean the usual
signal (V) and wait (P) semaphore primitives. Protocols of
units may generate a terminal Petri net formal language on
the alphabet P [9]. The motivation for Petri nets is to build
dynamic models for the behavior and interaction of units,
making possible the analysis of formal properties and per-
formance evaluation of programs using Petri net tools and
their variants. The formal language generated by a protocol
π is denoted by Λ(π).

A unit U complies with an interface I if the following con-
dition holds: (1) P = E ∩ leaves(G) (ports are exposed
leaf exposed nodes of G), and (2) R = E − leaves(G) (slice
references are exposed non-leaf nodes of G). The covariant
functor Mod : InterfaceSig → Catop maps each interface
signature I onto the category of units that complies with I.

Let I be an interface signature. The relation |=I : Sen(I)×
Mod(I) associates units with the activation sequences sup-
ported by their protocols. For instance, let w ∈ Sen(I) be a

Cat
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Figure 7: Commutative Diagram for iν
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word in E∗, U be a unit, and π be the protocol of U . Then,
U |=I w iif w ∈ Λ(π).

The category InterfaceSig, the functors Sen and Mod and
the relation |=I , as defined before, forms an institution.
In fact, for some morphism i : I → I ′ in InterfaceSig,
the required satisfaction condition u′ |=I′ Sen(i)(w) ⇔
Mod(i)(u′) |=I w holds for each u′ ∈| Mod(I ′) | and for
each w ∈ Sen(I)

3.4 The Category of Units
The institution of units splits the category of units in classes
of units that complies to the same signature. Also, it natu-
rally expresses the unusual behavior preservation prop-
erty between units. The functor interface sig : Unit →
InterfaceSig maps units to their interfaces. The commu-
tative diagram in Figure 8 must be satisfied.

3.5 Composition of Components
The category HashFDDiag has all discrete diagrams in
Hash as objects and the graph homomorphisms between
them as morphisms. Let h : D1 → D2 be a morphism
in HashFDDiag , and let 〈C1, C2〉 be a pair of nodes in
D1 and D2, respectively. Then h(C1) = C2 implies that
f : C1 → C2 is a morphism in HashFDDiag.

Let D be a HashFDDiag-object formed by n components.
D is the start diagram for overlapping them. The vertex
of its co-limit is conventionally called MD

0 . For the sake of
simplicity, M0 may be used instead of MD

0 whenever this
does not cause confusion. M0 is called initial component of
D , obtained from the disjoint overlapping of the components
in D. From M0, new components are formed by applying the
composition operations unification, factorization, replication
and superseding. The functor overlap : HashFDDiag →

Hash

0

Y

X

M

f

f ’g

g ’

M

Figure 9: A Commutative Diagram for overlap

Cat associates a diagram D with the sub-category of Hash
containing all objects M such that there are epimorphisms
f : M0 ³ X, f ′ : M ³ X, g : Y ³ M0, and g′ : Y ³ M ,
for some pair of objects X and Y , such that the diagram in
Figure 9 commutes.

4. CONCLUSIONS
This paper introduced a categorical interpretation for the
compositional features of # component model. Further works
will use the formal framework introduced herein for formaliz-
ing concepts and proving properties regarding the structure
of # components. Another source of work is to study the
expressiveness of component models, by mapping # compo-
nents onto components from other component models using
functors and natural transformations. In fact, this is the
main motivation for adopting category theory as an under-
lying mathematical foundation.
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ABSTRACT 
Rewriting logic has been revealed as a powerful tool to represent 
concurrent and state-transitions aspects in a declarative way, 
providing an adequate environment to specify and execute system 
representations. Moreover, rewriting logic is reflective, allowing 
for the definition of operations that transform, combine and 
manipulate specification modules by making use of the logic 
itself. Taking advantage of these capabilities, this paper presents a 
set of tools based on the rewriting logic language Maude to 
express the specifications of component-based systems with 
important coordination constraints, where coordination aspects 
are treated as separate components from functional ones. This 
representation allows for the testing of the system behavior from 
the early stages in the development process by executing the 
specifications. In addition, the development of basic coordination 
patterns using UML is presented to describe the coordination 
relationships between components in any system, providing a 
standard notation that complements the tools of the proposal. 

Categories and Subject Descriptors 
D.2.1 Requirements/Specifications (D.3.1)  
D.2.2 Design Tools and Techniques  
D.2.4 Software/Program Verification (F.3.1) 

General Terms 

Performance, Design, Standardization, Languages, Verification. 

Keywords 
Coordination Requirements, Behavior Simulation, Accordance 
Checker, Coordination Patterns. 

1 INTRODUCTION 
The need to develop more and more complex systems has enabled 
the improvement in languages and models to manage the 
coordination constraints between system components, promoting 

reusability, and the flexibility to change the interaction policies 
between components by means of the separate treatment of 
functional and coordination concerns. However, a serious 
limitation of these models, with regard to their usability, is that 
they do not provide support to manage the coordination 
constraints from the early stages in the software life cycle. That 
makes the adoption of a particular coordination model or 
language more difficult during the detailed design or 
implementation phases, due to the fact that coordination aspects 
are implicit and dispersed along all the components present in the 
system model, and now it is necessary to express explicitly the 
coordination aspect in a separate way from the functional one, to 
be able to apply a specific coordination model. Dealing with the 
specification of complex systems, coordination models should be 
encompassing a methodology that supports the separation of 
concerns throughout the whole software development process. 
Such methodology should be based on the use of formal 
techniques providing strictness and allowing the demonstration of 
properties that the specifications must satisfy. 

Among the varieties of logics on which the formal specification 
techniques are based, rewriting logic has been revealed as a well 
suited base to express the system specifications in concurrent and 
state transition environments. Moreover, rewriting logic supports 
a wide spectrum of applications for developing prototypes, 
parallel execution and transformations. In addition, the reflective 
capability of this logic makes it a powerful tool to express the 
system specifications and to develop applications by 
transforming, checking and manipulating the logic itself.  

In particular, this work focuses on the execution of specifications 
from the early stages of the life cycle, to validate and test the 
system behavior imposed by the coordination constraints between 
components. The use of Maude language [1] supporting rewriting 
logic is proposed. This choice is motivated by Maude's 
capabilities not only to specify and execute the system 
coordination requirements, but also to construct tools that 
manipulate the system specifications and transform them from a 
representation which is closer to designers to a more detailed and 
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complex representation that specifies the mechanisms needed to 
perform the coordination concerns.  

This supposes accepting specifications which adopt the syntax of 
a coordination model, and which transform them into represent-
tations detailing how the coordination mechanisms act to simulate 
the coordinated behavior by executing this last representation.  

As the detailed representation can be refined along the software 
development process with features of design and implementation, 
a tool to check the accordance between representations of 
different abstraction levels is required. This tool manipulates 
specifications, and it is developed in the rewriting logic itself, 
making use of the reflective capability. 

With these aims, we have developed COFRE (Coordination 
Formal Requirements Environment) [2], a set of tools considering 
all the above features, providing a methodology to make the 
system specification easy based on formal and graphic techniques, 
and dealing with coordination constraints from the early stages in 
the software development process. As regards benefits, changing 
and reusing components and coordination patterns from 
requirements are more systematic and pleasant tasks; in addition, 
the system behavior can be simulated by executing the formal 
specifications, simplifying the validation process, and the use of a 
model checker allows for the verification of the accordance 
between specifications in different abstraction levels. 

In order to provide a standard notation to specify the system 
coordination constraints, we have developed a set of basic 
coordination patterns in UML that can be combined to express 
any kind of coordination constraints between the components of a 
system, even the most complex. Although these patterns are 
proposed to complete COFRE, they can also be used 
independently of this set of tools and the coordination model or 
language in which the system will be implemented. 

The structure of this paper is organized as follows: In Section 2 
the motivation for this work is presented. The steps of our 
proposal which makes use of a language based on rewriting logic 
to represent the system model along the software development 
process are described in Section 3. Section 4 gives an overview of 
the work in progress, describing the design of coordination 
patterns and their integration into the proposal. Finally, Section 5 
provides the conclusions. 

2 MOTIVATIONS 
In recent years a wide range of tools combining both graphical 
and formal techniques have been developed with the aim of 
making software development easier. These tools can express in a 
detailed way the static and dynamic aspects of the system. But, 
initial requirements making use of these techniques are expressed 
in a global way which makes it difficult to adopt an architectural 
or design technique based on the separation of concerns 
(including coordination constraints). Particularly, in coordination 
environments, the adoption of a coordination language requires 
the separation of the specification of the coordination behavior 
from the functional one. But this task is delegated to designers or 
programmers starting from a conceptual model where these 
concerns are mixed. By avoiding this problem, the development 
processes are made more agile and consistent. Consequently, we 
proposed a set of tools named COFRE, based on the use of a 
rewriting logic language that tries to separate the functional 

concerns described for each component from concerns related to 
the interactions between components starting from the 
requirements definition in the development process. 

Simulation by means of the execution of the model is the 
technique that best permits the observation and testing of the 
system dynamic properties. Often the simulation techniques by 
formal specifications execution, named animation techniques, 
required the translation of the specification to an imperative 
programming language like C++ or Java to be executed [10,11]. 
However, the different abstraction levels of the languages used to 
specify and to animate the model can provoke lack of precision 
and fidelity between both representations. This justifies the use of 
formal techniques allowing the execution of specifications to 
check the system behavior when implementation details have not 
yet been described.  

Particularly, in coordination systems, special attention must be 
paid to guaranteeing that the final behavior obtained in the 
composed application is semantically coherent. That means 
verifying whether gluing together a coordination policy and a set 
of components in an application (which can have been coded and 
checked separately) will produce the expected behavior, and 
whether the addition or change of coordination constraints will 
produce conflicts with the current behavior. 

Because the adoption of a coordination model means specifying 
the system constraints in a more detailed way, it is necessary to 
guarantee the accordance of this representation with regard to the 
initial requirements definition by means of a verification process 
checking that the interaction between the system components are 
maintained. 

3 COFRE: SPECIFYING COORDINATION 
SYSTEMS 

In this section, the above topics are focused on, proposing 
COFRE to make the specification and validation process easier 
for both software engineers and users. This proposal is based on 
the use of the formal language Maude to express the different 
representations of the system specifications and as a language in 
which the tools that manipulate and transform these specifications 
are implemented.  

Maude is an executable algebraic language based on rewriting 
logic, that describes the specifications in a concurrent and non-
deterministic way. The specifications can be executed by means 
of reducing terms in equations and rewrite rules performed by the 
interpreter provided by the language, which facilitates its use for 
prototyping and for checking the specifications behavior. 

Maude allows for the definition of functional modules containing 
operations and equations, system modules also containing rewrite 
rules and object modules that are system modules allowing the 
specification of features concern to O-O paradigm. The use of 
rewrite rules is particularly appropriate to represent state 
transitions in systems of concurrent objects, where a configuration 
formed by the object instances and the current messages present 
in the system determine the system state in each moment. Maude 
provides specific definitions and operations to efficiently manage 
system configurations.  

These are the capabilities that make the use of Maude appropriate 
to represent the different abstraction level specifications of the 
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system as well as to manipulate the specifications themselves, 
being the language in which part of the tools composing COFRE 
are implemented. 

The methodology under COFRE proposes the use of IRD 
diagrams to represent the system components and their 
interactions from requirements analysis. IRDs have a correspon-
ding specification in Maude language. However, this 
representation is not executable, because a specific coordination 
model needs to be adopted, but it is necessary to check the 
accordance of subsequent detailed specifications with regard to 
the initial requirements. COFRE adopts a specific coordination 
model and generates, starting from this initial specification, the 
equivalent specification making use of the coordination model 
syntax. This specification can be transformed in a more detailed 
Maude representation, expressing all the artifacts to represent the 
coordination aspects. This more detailed representation can be 
executed to simulate the system coordinated behavior [3], 
contributing to the system validation. Moreover, the specification 
adopting the coordination model can be verified with respect to 
the initial formal representation of the IRD to determine their 
accordance making use of the accordance checker, developed for 
this purpose. Figure 1 shows a schematic representation of the 
method. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic representation of COFRE method steps 

Figure 1 shows the main steps of COFRE:  

1. The main system components, their external interface and 
the interaction rules of the system are expressed using 
Interelement Relation Diagrams (IRDs). IRDs are used to 
specify the cooperation rules (coordinated interactions) 
between components in a graphical way. 

2.  The system IRD has a Maude representation allowing for 
verification of the agreement of a detailed Maude specification 
with regard to the original requirements expressed in the IRD.  

3. The system specification can adopt a specific coordination 
model making use of its syntax, and this specification has a 
Maude representation of the coordination details permitting the 
model execution.  

4. The behavior simulation of the system can be tested and 
validated after each iteration in the refinement of the 
development process. 

5. The accordance with regard to the requirements expressed 
in the system IRD can be checked.   

The transition to the design stage is made by adopting the 
exogenous coordination model Coordinated Roles (CR) [4]. CR is 
inspired by IWIM model [5] and based on the Event Notification 
Protocols (ENP) mechanism. This mechanism allows a 
coordinator component to ask for the occurrence of an event in 
another component, and the notifications can be asked for in a 
synchronous and an asynchronous way. The process must be 
transparent for the components to be coordinated. 

Each coordination component imposes a coordination pattern 
structured as a set of roles. A role represents each of the 
characters that can be played in a coordination pattern. Behavior 
components will have to adopt these roles in order to be 
coordinated. For each role, coordination components specify the 
set of events required to represent the desired coordination 
constraints. The binding between coordinators and components to 
be coordinated is done at run-time via composition syntax. 

4 COORDINATION PATTERN DESIGN  
Design patterns [6] are common solutions accepted as being 
correct for specific design problems. They constitute an apprecia-
ted tool to improve of the quality of software development.   
In order to take the advantage of using design patterns and 
applying them to the coordination aspects, we are working on the 
definition of a set of coordination patterns.  These coordination 
patterns are specified using some diagrams of UML [7], to 
provide a standard representation that facilitates their use. We are 
starting with the definition of patterns representing basic 
coordination events and patterns representing the coordinators to 
develop the solution to problems in coordinated environments, in 
a level of abstraction independent of the programming language 
or the platform used. 

The coordination patterns are developed with the aim of being 
widely applied, and with the purpose of being integrated in 
developing tools making use of UML. However, we propose to 
integrate coordination patterns in COFRE, to provide a standard 
notation that improves this set of tools and facilitates its use and 
its comprehension.  

The coordination pattern integration is divided into three phases 
that are shown in figure 2: 

Phase 1:  This phase includes several steps:   

• Specification of the events and the coordinators in a Class 
Diagram. Thus, it will define the static part of the system, the 
functional and singular aspects of each of its components of 
it. Also, the coordination aspects will be defined, that is, the 
system coordinated behaviour with the Interaction Diagrams 
of UML, composed of two kind of diagrams: 

− The Sequence Diagrams, showing the messages 
temporary ordination of the different objects in the 
system. The behavior and the role of the coordinator or 
coordinators in an action will be shown in these diagrams. 
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(omod ELMT_ticket-machine is 
protecting DefELEMENT .
class ticket-machine .
subclass ticket-machine < Elmt .
msg Give : Oid -> Msg .
msg Collect : Oid -> Msg .

endom)

Constraint: < Event(sync, EoP, Collect('T)) or 
Event(sync, EoP, Read-sticker('O))> Action (Rise('B))>

< 'Car_Park : IRD | ElmtSet : 'T 'B 'TL 'O , 
RelSet : 'pass-Ok 'entry-Ok > .

endom )

IRD Formal 
Representation

COORDMAUDE

CR Syntax
Interface

Accordance Checker

CRCR
CoordinatedCoordinated RolesRoles
Coordination Model

(Class ticket-machine Methods Collect Give endClass)
(Class barrier Methods Rise Pull-down endClass)
(Class optic-reader Method Read_stick endClass)
(Class traffic-light State Pass (true false) 

Attributes ...
Methods In Out  

Oper In = ...  *** Methods sentences not shown ***
endClass)

(Coord Entry_Ok DefRol X method MObj1; Y method MObj2 endDefRol
DefEvent Syn SR Event MObj1_Terminated for MObj1 

Exec Termination_MObj1 ;
Syn BoP Event Request_MObj2 for MObj2 

Constr MObj1_Processed? endDefEvent
Oper Termination_MObj1 = (MObj1_Processed = true ) ;
Oper MObj1_Processed? = (Aux = MObj1_Processed ;

MObj1_Processed = false ;
return Aux )

endCoord)

(omod Car_Park is
protecting COORD_entry-ok[tic-to-NOT, opt-to-NOT, bar-to-NOT] .
protecting COORD_pass-ok[tra-to-NOT, opt-to-NOT, tic-to-NOT] .
protecting DefSeqMsg .
op init : -> Configuration . 
eq init = 
< 'PO : pass-ok[tra-to-NOT, opt-to-NOT, tic-to-NOT] | 

Processed : false, ACKY : false, 
ACKZ : false, Confirm : false, 

actList : none >
< 'EO : entry-ok[tic-to-NOT, opt-to-NOT, bar-to-NOT] | 

ProcessedX : false, ProcessedY : false,
ACK : false, Confirm : false, 
actList : none >

< 'TL : traffic-light | Capacity : 3, Green : true, 
state : (Setstate('Pass, false)), 

UnLock : none , Faction : none , actList : none > 
< 'TM : ticket-machine | UnLock : none , Faction : none , 

actList : none > 
< 'OR : optic-reader | UnLock : none , Faction : none , 

actList : none >
< 'B : barrier | UnLock : none , Faction : none , actList : none > 
< 'NT1 : Notifier[tic-to-NOT] | Obj : ('TM), NBlock : 0, 

Trigg : (Collect('TM)), NotProc : 0, 
LNotif : (notif(EoP,1,0,1,0) nil) >  

< 'NT2 : Notifier[tic-to-NOT] | Obj : ('TM), NBlock : 0,
Trigg : (Give('TM)), NotProc : 0,

LNotif : (notif(BoP,1,0,1,0) nil) >
< 'NO1 : Notifier[opt-to-NOT] | Obj : ('OR), NBlock : 0, 

Trigg : (read-sticker('OR)), NotProc : 0, 
LNotif : (notif(BoP,1,0,1,0) notif(EoP, 1,0,0,0) nil) >

< 'NB1 : Notifier[bar-to-NOT] | Obj : ('B), NBlock : 0, 
Trigg : (Rise('B)), NotProc : 0,

LNotif : (notif(BoP,1,0,1,0) nil) >  
< 'NB2 : Notifier[bar-to-NOT] | Obj : ('B), NBlock : 0, 

Trigg : (Pull-down('B)), NotProc : 0,
LNotif : nil >  

< 'NS1 : Notifier[tra-to-NOT] | Obj : ('TL), NBlock : 0, 
Trigg : (in('TL)), NotProc : 0,

LNotif : nil >  
< 'NS2 : Notifier[tra-to-NOT] | Obj : ('TL), NBlock : 0, 

Trigg : (out('TL)), NotProc : 0,
LNotif : nil >

< 'NS3 : Notifier[tra-to-NOT] | Obj : ('TL), NBlock : 0, 
Trigg : (Setstate('Pass, true)),

NotProc : 0, LNotif : (notif(SR,1,0,1,0) nil) > 
< 'S : seqmsg | ListMsg : (in('TL) ; read-sticker('OR) ; Give('TM) ; 

in('TL) ; Rise('B) ; Pull-down('B) ;
Give('TM) ; Collect('TM) ; Rise('B) ;
Pull-down('B) ; none) > .

endom) 
(rew init .) 
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(omod ELMT_ticket-machine is 
protecting DefELEMENT .
class ticket-machine .
subclass ticket-machine < Elmt .
msg Give : Oid -> Msg .
msg Collect : Oid -> Msg .

endom)

Constraint: < Event(sync, EoP, Collect('T)) or 
Event(sync, EoP, Read-sticker('O))> Action (Rise('B))>

< 'Car_Park : IRD | ElmtSet : 'T 'B 'TL 'O , 
RelSet : 'pass-Ok 'entry-Ok > .

endom )

IRD Formal 
Representation

(omod ELMT_ticket-machine is 
protecting DefELEMENT .
class ticket-machine .
subclass ticket-machine < Elmt .
msg Give : Oid -> Msg .
msg Collect : Oid -> Msg .

endom)

Constraint: < Event(sync, EoP, Collect('T)) or 
Event(sync, EoP, Read-sticker('O))> Action (Rise('B))>

< 'Car_Park : IRD | ElmtSet : 'T 'B 'TL 'O , 
RelSet : 'pass-Ok 'entry-Ok > .

endom )

IRD Formal 
Representation

COORDMAUDE

CR Syntax
Interface

Accordance Checker

CRCR
CoordinatedCoordinated RolesRoles
Coordination Model

(Class ticket-machine Methods Collect Give endClass)
(Class barrier Methods Rise Pull-down endClass)
(Class optic-reader Method Read_stick endClass)
(Class traffic-light State Pass (true false) 

Attributes ...
Methods In Out  

Oper In = ...  *** Methods sentences not shown ***
endClass)

(Coord Entry_Ok DefRol X method MObj1; Y method MObj2 endDefRol
DefEvent Syn SR Event MObj1_Terminated for MObj1 

Exec Termination_MObj1 ;
Syn BoP Event Request_MObj2 for MObj2 

Constr MObj1_Processed? endDefEvent
Oper Termination_MObj1 = (MObj1_Processed = true ) ;
Oper MObj1_Processed? = (Aux = MObj1_Processed ;

MObj1_Processed = false ;
return Aux )

endCoord)

(omod Car_Park is
protecting COORD_entry-ok[tic-to-NOT, opt-to-NOT, bar-to-NOT] .
protecting COORD_pass-ok[tra-to-NOT, opt-to-NOT, tic-to-NOT] .
protecting DefSeqMsg .
op init : -> Configuration . 
eq init = 
< 'PO : pass-ok[tra-to-NOT, opt-to-NOT, tic-to-NOT] | 

Processed : false, ACKY : false, 
ACKZ : false, Confirm : false, 

actList : none >
< 'EO : entry-ok[tic-to-NOT, opt-to-NOT, bar-to-NOT] | 

ProcessedX : false, ProcessedY : false,
ACK : false, Confirm : false, 
actList : none >

< 'TL : traffic-light | Capacity : 3, Green : true, 
state : (Setstate('Pass, false)), 

UnLock : none , Faction : none , actList : none > 
< 'TM : ticket-machine | UnLock : none , Faction : none , 

actList : none > 
< 'OR : optic-reader | UnLock : none , Faction : none , 

actList : none >
< 'B : barrier | UnLock : none , Faction : none , actList : none > 
< 'NT1 : Notifier[tic-to-NOT] | Obj : ('TM), NBlock : 0, 

Trigg : (Collect('TM)), NotProc : 0, 
LNotif : (notif(EoP,1,0,1,0) nil) >  

< 'NT2 : Notifier[tic-to-NOT] | Obj : ('TM), NBlock : 0,
Trigg : (Give('TM)), NotProc : 0,

LNotif : (notif(BoP,1,0,1,0) nil) >
< 'NO1 : Notifier[opt-to-NOT] | Obj : ('OR), NBlock : 0, 

Trigg : (read-sticker('OR)), NotProc : 0, 
LNotif : (notif(BoP,1,0,1,0) notif(EoP, 1,0,0,0) nil) >

< 'NB1 : Notifier[bar-to-NOT] | Obj : ('B), NBlock : 0, 
Trigg : (Rise('B)), NotProc : 0,

LNotif : (notif(BoP,1,0,1,0) nil) >  
< 'NB2 : Notifier[bar-to-NOT] | Obj : ('B), NBlock : 0, 

Trigg : (Pull-down('B)), NotProc : 0,
LNotif : nil >  

< 'NS1 : Notifier[tra-to-NOT] | Obj : ('TL), NBlock : 0, 
Trigg : (in('TL)), NotProc : 0,

LNotif : nil >  
< 'NS2 : Notifier[tra-to-NOT] | Obj : ('TL), NBlock : 0, 

Trigg : (out('TL)), NotProc : 0,
LNotif : nil >

< 'NS3 : Notifier[tra-to-NOT] | Obj : ('TL), NBlock : 0, 
Trigg : (Setstate('Pass, true)),

NotProc : 0, LNotif : (notif(SR,1,0,1,0) nil) > 
< 'S : seqmsg | ListMsg : (in('TL) ; read-sticker('OR) ; Give('TM) ; 

in('TL) ; Rise('B) ; Pull-down('B) ;
Give('TM) ; Collect('TM) ; Rise('B) ;
Pull-down('B) ; none) > .

endom) 
(rew init .) 
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− The Collaboration Diagrams, showing the structural orga-
nization of the objects, that is, the set of messages sent 
and received between different objects in a collaboration. 

• Generation of the formal definition of the system in Maude. 
Starting from this representation the sequence of steps 
proposed in COFRE can be applied to obtain a representation 
of the system in CoordMaude and to simulate the system 
behaviour. 

• A detailed system specification is obtained independent of 
the platform and the programming language to be 
implemented. This solution will be saved in a repository 
together the documentation generated. The coordinated 
patterns are proposed to be reused and the documentation 
generated could be exploited to help in their reutilization. 

Phase 2: This phase will consist of the development of a tool 
(black arrow number 1 in the figure 2) that transforms the Class 
and the Interaction Diagrams of Phase 1 to the IRD diagrams of 
COFRE. In this way, the development of the coordinated system 
is performed in the analysis phase with COFRE and in the design 
phase with the tools developed in phase 1. Thus, it will be 
necessary to develop a new tool (black arrow number 2 in figure 
2) to check the accordance between the results of both phases.  

Phase 3: In this phase, a tool will be developed to allow the 
inverse process to the explained one in phase 2; that is, a tool that 
converts the IRD diagram to the corresponding UML diagrams. 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 2.  Integration of the Coordination Patterns in COFRE 

5 CONCLUSIONS 
The system requirements representation must be done performed 
making use of formal techniques allowing the validation of 
system requirements from the early stages in the development 
process, by executing specifications. This is especially important 
in coordination environments, where it is necessary to guarantee 
that interactions between system components work properly.  

COFRE has been developed for this purpose, providing these 
advantages: 

1. The coordinated interactions between components can be 
specified independently from component functionality By 

using IRDs. The formal representation of IRDs in Maude 
avoids ambiguity, adding precision to the model.  

2. The adoption of a specific coordination model is facilitated 
from early stages in the development process due to the 
separation of functional and coordination concerns. 

3. The features and event notification protocols are represented in 
Maude to make use of the rewrite engine of the language and 
with the aim to simulate the system behavior with different 
configurations.  

4. The system representation making use of the CR syntax is 
possible, using CoordMaude that extends Maude, to accept 
specifications made on CR and generating all the mechanisms 
needed for the representation of the coordination model in 
Maude, in order to execute the system specifications. 

5. Formal representation of IRDs can be checked with the 
specifications resulting from applying the coordination model 
to determine whether the accordance between both 
representations is maintained. 

The definition of basic and generic coordination patterns in a 
standardized notation like UML allows the system specification to 
be expressed in an independent way from the tools used for the 
developing process and the coordination model adopted for the 
implementation of the system. The specification of complex coor-
dination constraints can be made by combining basic coordination 
patterns, maintaining the separation of the coordination and the 
functional aspects of the systems. This separation contributes to 
making the software development and modification easier. 
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