
Toward Structural and Behavioral Analysis
For Component Models

Hanh-Missi TRAN
LIFL

∗

missi@lifl.fr

Philippe BEDU

EDF - R&D
†

philippe.bedu@edf.fr

Laurence DUCHIEN
LIFL

∗

laurence.duchien@lifl.fr

Hai-Quan NGUYEN
EDF - R&D

†

quan.nguyenhai@edf.fr

Jean PERRIN
EDF - R&D

†

jean.perrin@edf.fr

ABSTRACT
Component use is becoming more and more prevalent every
day. Indeed advantages such as greater productivity repre-
sent interesting qualities for the creation of industrial ap-
plications. Important efforts are made to help engineers
through the improvement of the design and the description
of components and through the specification of contracts.
However most of the approaches that associate components
and contracts propose only run-time checking. In software
architecture design, it would be useful to consider contracts
when we check the validity of the architecture. Our work
takes place in the context of the RM-ODP(Reference Model
for Open Distributed Processing) and more precisely the
DASIBAO methodology. This paper presents a component-
based model associated with several contracts and it de-
scribes some verifications that can be performed on them.

Keywords
RM-ODP, structural and behavioral analysis,component-based
architecture, ADL, assembly

1. INTRODUCTION
Software architecture is used as a main part of the specifi-

cation of component-based systems. Reasoning about soft-
ware architectures improves design, program understanding,
and formal analysis. Nowadays most of the software ar-
chitects tend to agree that the design of sophisticated and

∗Laboratoire d’Informatique Fondamentale de Lille
Université des Sciences et Technologies de Lille
59655 - Villeneuve d’Ascq Cedex, France
†Electricité de France - Research Division
1, Avenue du General de Gaulle
92141 - Clamart Cedex, France

software-intensive distributed applications has to be per-
formed according to different viewpoints. As proposed in
UML’s “4+1” viewpoint model [9], IEEE1471 [3] or ISO
RM-ODP (Reference Model for Open Distributed Proces-
sing)[2], the separation of concerns during architecture spe-
cification helps the designers to manage the complexity of
the development process. Viewpoints give some guidance
on the models to be produced during a design process as
well as the objectives of these models. EDF R&D (Electri-
city of France Group) has opted for a methodology of archi-
tecture design based on RM-ODP, which recommends the
separation of stakeholders concerns and proposes five view-
points. On top of this reference model, EDF is implementing
an incremental specification method called DASIBAO [8].
This method defines the different transformations between
the viewpoints and particularly between the models carried
by each viewpoint. This approach takes all its dimension
within the framework of the OMG-MDA (Object Manage-
ment group Model-Driven Architecture) [1] where designers
are expected to produce collections of models from different
viewpoints.

However the various models built with this specification
method have to guarantee an acceptable level of quality for
the system to be created. Our work focuses on the fourth
viewpoint which specifies the abstract structure of a model
and its deployment in a distributed environment. This work
is quite original because it introduces formal analysis abili-
ties in the global architecture specification process based on
RM-ODP. This paper presents our approach to model ar-
chitectures in ODP’s systems and a set of tools integrated
in the CASBA (Component Assembly Structural & Beha-
vioral Analyzer) system that has been developed jointly by
LIFL and EDF R&D. Section 2 introduces our composition
model. Then, Section 3 presents some structural elements
that can be checked such as the meta-model conformance,
the operation signature compatibility and the pre- and post-
conditions. Section 4 proposes some behavioral contracts for
handling behavioral composition. We propose a description
language to specify the behavioral contracts and we check
some liveness and safety properties. To avoid an explosion
of the number of states, we propose some cuts to reduce
behavioral composition. Then we present the results of our
verification tool applied to a real application used by EDF.
Finally, we conclude and give some perspectives.



2. COMPONENT TYPES MODEL
Our architecture is specified with components. The con-

cept of component used in this architecture is based on the
following definition from Szyperski[14]: “A software com-
ponent is a unit of composition with contractually specified
interfaces and explicit context dependencies only. A soft-
ware component can be deployed independently and is sub-
ject to composition by third parties.” The elements needed
to describe our component model and the relations between
them are taken into account in the metamodel represented
in Figure 1.

2.1 Components
Our approach only handles component as component type.

Components may have attributes which represent their state.
Moreover they are described by provided and required inter-
faces. A component communicates with other components
through its interfaces. In our model, an interface is repre-
sented by a port which is associated with a single service.
A service is specified by its signature which is composed of
a name and of ingoing and outgoing parameters.

2.2 Components assembly
The model does not include explicit connectors between

components. Nonetheless, if an architect needs one, he can
model it in a component. Communications between compo-
nents or more precisely between their ports are specified by
an assembly link. The semantics of a link corresponds to
a synchronous call from the required port to the provided
port. The choice regarding a port structure involves that a
required port can only be bound to a provided port whereas
a provided port can be bound to several required ports.

2.3 Components composition
In order to build a complex architecture, we use compo-

site components. They are differentiated from primitive
components because they contain subcomponents which
may be primitive components and also composite compo-
nents hence a recursive definition of a component. The ports
of a composite component are called delegated ports. In-
deed a call to a provided port of a composite component is
forwarded to a provided port of one of its subcomponents.
Moreover a call from a required port of a composite com-
ponent results from the forwarding of a call from a required
port from one of its subcomponents.

2.4 Functional contracts
The conditions of validity of a component assembly are

improved by associating an assembly contract composed
of a pre-condition and a post-condition to each port.
These conditions focus on the attributes of the component
and on the parameters of the signature. Thus in addition to
the verification of the signature compatibility between two
linked ports, there is an analysis that checks respectively
the compatibility of the precondition and postcondition of a
port with the precondition and postcondition of the linked
port.

Furthermore behavioral contracts are added to the com-
ponents. These contracts describe the expected behavior of
a component and are used to generate the behavior of the
components assembly. An appropriate tool has been deve-
loped to check some properties on it.

3. STRUCTURAL VERIFICATION
Our tool provides basic verification features common to

several ADLs (Architecture Description Languages). It of-
fers a syntactic verification by checking if the components
model is in accordance with the metamodel. The metamodel
is translated into an XML schema to use the mechanism of
validation of XML documents against XML schema.

Another analysis focuses on the assembly links. The pre-
vious mechanism verifies that a required port is bound to
only one provided port. Moreover there is an analysis on
the compatibility of the signatures of bound ports that is
based only on their parameters. Indeed we consider that the
name of the signature can only be used to identify the port
and that it does not give the semantics of the service of the
port. The compatibility of a port signature with another
uses the notions of covariance and contravariance. These
concepts are bound to the paradigm of object-oriented pro-
gramming. They are distinct mechanisms: “The so-called
contravariance rule correctly captures the subtyping relation.
A covariant rule, instead, characterizes the specialization of
code”[6]. The compatibility of port signatures is characte-
rized by three levels. There is a strong compatibility
of the signature of the required port with the signature of
the provided port when there is a contravariance of the in-
going parameters and a covariance of the outgoing parame-
ters. If there is a covariance instead of a contravariance or
vice versa, there is only a weak compatibility. There is
no compatibility when there is neither a covariance nor a
contravariance between the parameters.

The compatibility of the assembly contracts associated
with a required port and a provided port is checked on top
of these verifications. Three levels characterize this com-
patibility. In our model, pre-conditions and post-conditions
specify conjunctions and disjunctions of linear inequations.
Given P1 and P2 two logical formulas and x1,...,xn the va-
lues in these logical formulas, the strong compatibility can
be checked by:
∀ (x1,...,xn) ∈ {(x1,...,xn)/P1(x1,...,xn)=true}, P1(x1,...,xn)
⇒ P2(x1,...,xn)

Our tool uses CiaoProlog[4], an implementation of Prolog
that offers a constraint solver on real values. Because Ciao-
Prolog finds values that solve the constraints, it checks in
fact:
¬ (∃ (x1,...,xn) ∈ {(x1,...,xn)/P1(x1,...,xn)=true}, ¬(P1(x1,...,xn)
⇒ P2(x1,...,xn)))

Given P1 and P2 two logical formulas and x1,...,xn the
values in these logical formulas, the weak compatibility can
be checked by:
∃ (x1,...,xn) ∈ {(x1,...,xn)/P1(x1,...,xn)=true}, P1(x1,...,xn)
∩ P2(x1,...,xn) 6= ∅

Our pre-conditions and post-conditions are written in a
language very close to Java Modeling Language (JML)[10]
which can be used as a design by contract language for Java.
For example, instead of using the keyword result, the post-
condition is specified with the name of the outgoing parame-
ter. More complex pre-conditions and post-conditions could
be expressed by the use of boolean expressions on top of
the arithmetical ones. The research of solutions could be
made by associating the use of a constraint solver and a
SAT solver.

The previous verifications correspond to a structural ap-
proach. The analysis of the behavioral contracts performs
verifications in a dynamic approach.



Figure 1: Metamodel of components composition

4. BEHAVIORAL VERIFICATION
In order to check if the system runs as required, the be-

havior of the component assembly is analyzed. Several parts
of the behavior of the component assembly need to be des-
cribed: they are called behavioral contracts. This sec-
tion first presents the language to specify the behavioral
contracts and then the verifications that are performed.

4.1 Component behavior
A component can be viewed as either a black box or a

white box. Thus its external behavior can be distinguished
from its internal one. The external and internal behaviors
are the same in the case of a primitive component. Its beha-
vior is composed of the ways its ports are called. These com-
munications are described in behavioral contracts. We dis-
tinguish dependences from synchronizations as shown
in the metamodel (figure 1). A dependence represents a
behavioral contract which specifies the internal communica-
tions of a component. It consists of the specification of the
required ports that are needed by a provided port and the
way they are called by the provided port. A synchronization
deals with the concurrency issues.

In order to get the internal behavior of a composite com-
ponent, we add the behavior specified by the composition
links, the assembly links between its subcomponents to the
behavior of its subcomponents. A communication through
either an assembly link or a composition link represents a
call from a port to another port.

4.2 Description language
The execution of a service is represented by a sequence of

events. Given a sequence S, its execution is translated into
S.call → S.begin → S.end → S.return. This means that S
is called, then begins, ends and finally returns a value. The
operator → symbolizes a partial order because the relation
is not reflexive but symmetric and transitive. The operators
of the description language are based on this operator.

The sequence and alternative operators are both used in
the specification of dependences and synchronizations. Let
A et B be two services. A;B means that A is executed
and then B is executed. It is translated into A.call →
A.begin → A.end → A.return → B.call → B.begin → B.end
→ B.return. A|B means that either A or B is executed.
Thus possible traces are either A.call → A.begin → A.end
→ A.return or B.call → B.begin → B.end → B.return.

The other two operators are only used in dependences.
The call operator represents the communication from a pro-

vided port to the required ports and the parallel operator
represents parallel composition of services. Let A, B and C
be three services. A{B} means that the execution of A is
composed of the execution of B. It is translated into A.call
→ A.begin → B.call → B.begin → B.end → B.return →
A.end → A.return. A{B‖C} means that the execution of A
is composed of the interleaving execution of B and C.

The last operator * is used to specify that there can be an
undetermined number of executions of a service or that this
service is not executed. For example, if we specify A*|B, it
means that either the service A is executed several times or
not at all or the service B is executed. This operation may
be used to describe loops.

The null sequence symbolized by ∅ comes in addition to
these operators. It indicates that no service is executed.

4.3 Behavior verification
In order to analyze on the behavior of a component model,

we transform the behavioral elements into FSP (Finite State
Process)[11] processes. We operate this translation first by
generating a behavior formed of the behaviors of the com-
position and assembly links and the dependences and then
by making a composition of it with the synchronizations.
The analysis uses a verification tool for concurrent systems,
named LTSA (Labelled Transition System Analyser)[12],
which supports FSP and a LTL (Linear Temporal Logic)
checker to check safety and liveness properties such as dead-
locks or absence of reachability.

This approach works well when applied on small archi-
tectures. However large architectures are represented by
complex hierarchical component structure and the analy-
sis of the behavior of such architectures may lead to state
explosion problems. Thus the behavior of composite com-
ponents has to be minimized. This approach is close to the
TRACTA approach[7]. Both are based on FSP but because
the behavioral contracts are described with our own lan-
guage, the produced FSP specifications do not use all the
features of this language.

4.4 Behavior minimization
The first way to obtain the external behavior from the

internal behavior of a composite component is to use the
FSP minimization operator. However the FSP processes
describe a composite component internal behavior. More-
over each time an analysis uses its external behavior, the
internal behavior of each subcomponent is minimized again.
To address this problem, we have decided to perform this
minimization with our description language. This operation



Figure 2: Architecture of the CALCIUM coupler

aims at producing the behavior of a composite component
as if it were a primitive component. Thus this behavior is
composed of dependences and synchronizations.

The transitivity of the operator → is the basis of the re-
duction of an internal behavior into an external one. Indeed
the calling operator is based on the operator → and the be-
haviors of the dependences and the assembly and delegation
links use the calling operator. The beginning of the mini-
mization consists in transforming the ports that do not call
any other ports into the null sequence. Then the transitivity
of the calling operator allows the behavior to be reduced.

The minimization of synchronizations may lead to the
loss of information on the behavior. Because our language
is based on services and not on events, it is currently not
tractable enough to realize a minimization on it. Our ver-
ification tool uses the minimization based on our behavior
language but only minor changes would be needed in order
to use the minimization feature in FSP.

5. RESULTS
The most significant example verified by our verification

tool is an existing application from EDF. The figure 2 gives
an idea of the complexity of the architecture. Required and
provided ports are symbolized respectively by - and +. The
example represents the use of a generic coupler of scien-
tific code named CALCIUM[5] which first version was devel-
opped in 1994. This coupler is used to study the interactions
between codes of different domains in physics. It manages
the exchange of values between the codes.

Several assembly and behavioral contracts are added to
the architecture shown in the figure 2. The structural verifi-
cation takes some time to be performed, due to the number
of compatibilities of assembly contracts to be checked. The
behavioral analysis can not be done because of the explo-
sion of the number of states. For example, the potential
state space for the behavior of the component Coordination
is wide of 2170 states and an usual desktop computer does
not have enough memory to handle it.

6. CONCLUSION AND FUTURE WORK
Our component model is used to specify functional ar-

chitectures in the computational viewpoint. We integrate
contracts into the model to carry out strong verifications
on the components model. Assembly contracts add con-
ditions to the validity of components assembly. Moreover
behavioral contracts specify the communications within a
component. Furthermore the use of behavior minimization

associates hierarchical composition with behavioral compo-
sition in our architecture. The verifications we describe are
implemented by tools in CASBA. These tools can be called
from a graphical interface integrated in the modelling tool
ArgoUML [13] which allows the design and the analysis of
component model based on our metamodel.

The structural and behavioral verifications of our compo-
nent model represent only a part in our approach of archi-
tecture building. Indeed we now need to specify how to go
from a computational viewpoint, which is the fourth view-
point in RM-ODP, to an engineering viewpoint which is its
last one. Thus our goal is to integrate non functional require-
ments in functional architectures in order to produce tech-
nical architectures. This leads us to propose a new concept
called architectural figure inspired by previous works on
the reuse of architectural systems such as the architectural
patterns and styles. This architectural figure represents a
component model slightly different from our previous model
which allows us to transform the functional architecture into
a technical one. Thus our future work will focus on providing
tools to describe figures associated with quality attributes,
to realize the transformation of functional architectures into
technical ones with architectural figures and to analyse qua-
lity aspects of the produced architectures.

7. REFERENCES
[1] www.omg.org/mda.

[2] Iso/iec, open distributed processing reference model -
parts 1, 2, 3, 4. ISO 10746 or ITU-T X.901, 1995.

[3] Recommended practice for architectural description.
IEEE Standard P1471, 2000.

[4] F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo,
P. Lopez, and G. Puebla. The ciao prolog system: A
next generation logic programming environment.
Technical Report 3/97.1, CLIP, April 2004.

[5] C. Caremoli and J.-Y. Berthou. CALCIUM V2: Guide
d’utilisation.

[6] G. Castagna. Covariance and contravariance: conflict
without a cause. ACM Transactions on Programming
Languages and Systems, 17(3):431–447, 1995.

[7] D. Giannakopoulou. Model Checking for Concurrent
Software Architectures. PhD thesis, Imperial College
of Science Technology and Medecine, University of
London, March 1999.

[8] A. W. Group. Dasibao: Methodology for
architecturing odp systems. Technical report, EDF
R&D, 2002.

[9] P. Kruchten. The 4+1 view model of architecture.
IEEE Software, 12(5):42–50, November 1995.

[10] G. Leavens and Y. Cheon. Design by contract with
jml. Draft paper, March 2004.

[11] J. Maggee and J. Kramer. Concurrency - State Models
and Java Program. John Wiley & Sons, 1999.

[12] J. Maggee, J. Kramer, and D. Giannakopoulou.
Behaviour analysis of software architectures. In
Proceedings of the 1st Working IFIP Conference on
Software Architecture (WICSA1), 1999.

[13] J. E. Robbins. Cognitive Support Features for Software
Development Tools. PhD thesis, University of
California, Irvine, 1999.

[14] C. Szyperski. Component Software - Beyond Object
Programming. 1998.


