
Open Incremental Model Checking (Extended Abstract)

Nguyen Truong Thang Takuya Katayama
School of Information Science

Japan Advanced Institute of Science and Technology
email: {thang, katayama}@jaist.ac.jp

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—formal methods, model checking

1. INTRODUCTION
Separation of concerns is the core of successful software [5].
One of the most prominent form of concerns are hyperslices
[5] or features. A system is structured by composing sev-
eral separate features. The terms feature, hyperslice and
component are used interchangeably henceforth.

This paper focuses on the interaction between two compo-
nents: base and extension. Specifically, the extension refines
or modifies the base, i.e. the interferences of the base and
extension execution paths occur. Unlike traditional modu-
lar model checking methods which treat systems as static,
a new method of model checking, called open incremental
model checking (OIMC) in our opinion, is proposed to ad-
dress the changes to systems [1]. Given a base component,
an extension component is attached such that the extension
does not violate some property inherent to the base. A prim-
itive model and a simple verification procedure are suggested
to ensure the consistency between two components [1]. The
model checking is executed in an incremental manner within
the extension component only. This approach is also open
for various kinds of changes. This paper is quite different the
work of [1] in several key points such as proposing a general-
ized model with overriding capability (Section 3), an explicit
consistency condition among components (Section 4). More
importantly, we also examine key issues not addressed in
[1] such as the soundness (Section 5.1) and scalability (Sec-
tion 5.2). Discussion about the contribution of this paper,
its future and related work are presented in Section 6.

2. BACKGROUND
CTL is a restricted subset of CTL∗ in which each tempo-
ral operator among X (“next”), F (“eventually”), G (“al-
ways”), U (“until”) and R (“release”) must be preceded by

a quantifier of A (“for all paths”) and E (“for some path”).
With respect to CTL, the incremental verification method
has been attempted by [1]. Its key ideas are:

• Proposing a simple formal model whose interface is
fixed with single exit and single reentry. Importantly,
this model is additive, i.e. the extension is not allowed
to override any behavior of the base.

• Presenting a verification algorithm to check whether a
property continues to hold at those exit states. Fun-
damentally, the algorithm is based on the assumption
about labels at all reentry states. From the assump-
tion, the conclusion about the extension component
with respect to the property is drawn. The unproven
assumption is a weakness of [1] in terms of soundness.

In this paper, the formal interface is generalized to accom-
modate multiple exit and reentry points with overriding ca-
pability. The soundness of OIMC with respect to this gener-
alized model is then tackled in two aspects: proving assump-
tions at reentry states instead of simply assuming them (1);
and based on the proven facts at reentry states, proving the
property preservation in the base component (2). Later, the
scalability problem of OIMC is discussed with respect to the
reality that many subsequent extension components will be
incorporated into the newly evolved system. We investigate
the complexity of OIMC under such a situation to preserve
the property of the original base component.

3. FEATURE SPECIFICATION MODEL
Each component is separately modeled via a state transition
model. Let AP be a set of atomic propositions.

Definition 1. A state transition model M is a tuple 〈S,
Σ, s0, R, L〉 where S is a set of states, Σ is the set of input
events, s0 ∈ S is the initial state, R ⊆ S × PL(Σ) → S
is the transition function (where PL(Σ) denotes the set of
propositional logic expressions over Σ), and L : S → 2AP

labels each state with the set of atomic propositions true in
that state.

Typically, there are two components to consider: a base
and an extension. Between the base and its extension is an
interface consisting of exit and reentry states. An exit state
is the state where control is passed to the extension. On the

other hand, a reentry state is the point at which the base
regains control. A base is expressed by a transition model
B and an interface I , where B = 〈SB , ΣB , soB , RB , LB〉.
An interface is a tuple of two state sets I = 〈exit, reentry〉,
where exit, reentry ⊆ SB and exit, reentry �= ∅. On the
other hand, an extension is represented by a model E =
〈SE , ΣE , �, RE , LE〉, if considered separately from the base
B. � denotes no-care value. The interface of E is J =
〈in, out〉.

E can be inserted to B via the compatible interface states
according to the following.

• An exit state ex ∈ exit of B can be matched to an
in-state i ∈ in if LE(i) ⊆ LB(ex).

• A reentry state re ∈ reentry of B can be matched to
an out-state o ∈ out if LB(re) ⊆ LE(o).

Subsequently, states ex and re will be used in place of i and
o whenever interface states are referred.

Definition 2. Composing the base B with the extension
E, through the interfaces I and J produces a composition
model C = 〈SC , ΣC , s0C , RC , LC〉. C is defined from B =
〈SB , ΣB , s0B , RB , LB〉 and E = 〈SE , ΣE , �, RE , LE〉.

• SC = SB ∪ SE ; ΣC = ΣB ∪ ΣE ; s0C = s0B ;

• RC is defined from RB and RE. For each s ∈ SC, let
∨E

s =
W

pli where (s, pli) ∈ Dom(RE),

– ∀(s, pli) ∈ Dom(RE): RC(s, pli) = RE(s, pli)

– ∀(s, plB) ∈ Dom(RB): RC(s, plB∧¬∨E
s) = RB(s,

plB ∧ ¬∨E
s)

• ∀s ∈ SB , s �∈ I.exit ∪ I.reentry : LC(s) = LB(s);

• ∀s ∈ SE , s �∈ J.in ∪ J.out : LC(s) = LE(s);

• ∀s ∈ I.exit ∪ I.reentry : LC(s) = LB(s) ∪ LE(s);

The propositional logic expressions between different tran-
sitions from the same state are disjoint. ∨E

s represents the
union of all events directing to the extension from a state s.
In the composition definition above, a transition (s, plB, s′)
in B can be partially or completely overridden by E. In
case of being overridden, s is certainly an exit state because
overriding only occurs at exit states. The transition is com-
pletely removed from C if plB ∧ ¬∨E

s = false. Otherwise,
it is partially overridden. This is another key difference be-
tween our model and the former [1] in which E is not al-
lowed to override any transition in B. The former is called
additive-only composition, while ours is limited overriding.

Definition 3. The closure of a property p, cl(p), is the
set of all sub-formulae of p, including itself.

Definition 4. The truth values of state s with respect to
a set of CTL properties ps within a model M = 〈S, Σ, s0, R,
L〉, denoted VM (s, ps), is a function: S × 2CTL → 2CTL

defined according to the following:

• VM (s, ∅) = ∅
• VM (s, {p} ∪ ps) = VM (s, {p}) ∪ VM (s, ps)

• VM (s, {p}) =

j {p} if M, s |= p
{¬p} otherwise

CTL denotes the set of all CTL properties. Hereafter,
VM (s, {p}) = {p} (or {¬p}) is written in the shorthand form
as VM (s, p) = p (or ¬p) for individual property p.

In the subsequent discussion, incremental model checking is
represented by an assumption model checking [4] in E only
rather than in C. The assumption function for that model
checking is a function As : I.reentry → 2CTL. In such
a situation, the reentry states re in E are assumed with
truth values seeded from B, VB(re, cl(p)), namely As(re) =
VB(re, cl(p)).

Definition 5. The assumption function As is proper at
a reentry state re if the assumed truth values are exactly
those resulted at re from the standard model checking in C,
i.e. VB(re, cl(p)) = VC(re, cl(p)).

4. PROPERTIES PRESERVATION AT BASE
STATES

A property p is adhered to the base B = 〈SB , ΣB , s0B , RB,
LB〉 if it holds for every state in B, i.e. ∀s ∈ SB : B, s |= p.
An extension E is composable with B with respect to p if
∀s ∈ SB : C, s |= p where C is the composition of B and E.

The key problem this paper tries to deal with is: Given B
and p, what are the conditions for E so that B and E are
composable with respect to p?

With respect to the generalized model, the soundness issue is
very important. It will be discussed in Section 5.1. Another
question relates to the scalability of OIMC (Section 5.2) with
respect not only to E but also to many future extensions to
the composition C.

4.1 A Theorem on Component Consistency
Due to the inside-out characteristic of model checking, dur-
ing verifying p in B, VB(s, cl(p)) are recorded at each state
s. The truth values VB(ex, cl(p)) at any exit state ex serve
as the conformance for the composition between B and E.

Definition 6. B and E are in conformance at the exit
state ex (with respect to cl(p)) if VB(ex, cl(p)) = VE(ex, cl(p)).

Theorem 7. Given a base B and a property p, an ex-
tension E is attached to B at some interface states. Fur-
ther, suppose that the assumption function As defined during
model checking E is proper. If B and E conform with each
other at all exit states, ∀s ∈ SB : VB(s, cl(p)) = VC(s, cl(p)).

The theorem holds regardless of composition type, either
additive or overriding. Due to space limitation, the proof
of the theorem is skipped. Figure 1 depicts the composition

.

. . .

B

. . .

ex

s1

s2

s1

s2

f

AG f

f

f*

f

f

AG f f

f*

ex

.

E

.

. . .

B’

. . .

s3 s3f

f*

f

f*

f* f*

f*

f*
f*

f*

f

B, ex |= AG f B’, ex |= AG f

E, ex |= AG f

AG f

AG f!f !f AG f

AG f

C, ex |= AG f

ev

ev

Figure 1: An illustration of base-overriding composition conformance. The truth value with respect to the
property p = AG f is preserved at ex as well as all states in B.

preserving the property p = AGf when B and E are in con-
formance. The composition is done via a single exit state
ex. Further, E overrides the transition ex-s3 whose input
event is ev in B. B′ is the remainder of B after removing
all overridden transitions. f∗ denotes that f holds at all
intermediate states along the computation path. In the fig-
ure, within B, p = AG f holds at s2, ex and s3 but not at
s1. As VE(ex, p) = VB′(ex, p) = VB(ex, p) = AG f , B and
E conform at ex. While the edge ex-s3 is removed, the new
paths in E together with the remaining computation tree in
B′ still preserve p at ex directly; and consequently s2 indi-
rectly. For s1, its truth value VC(s1, p) = ¬p is preserved as
well. On the other hand, s3 is not affected by E. In this fig-
ure, we do not care about the descendant states in E. Thus,
E is intentionally left open-end so that the reentry state re
is not explicitly displayed. In this part, what E can deliver
at ex is important regardless of ex’s descendants. The ar-
guments are still valid when the downstream of E converges
to the reentry state re.

From Theorem 7, if there is a conformance at all exit states,
all truth values with respect to cl(p), surely including p,
at base states are preserved. The following corollary is the
answer to the problem earlier prescribed in this section - the
key of this paper.

Corollary 8. Given a model B and a CTL property p
adhered to it, an extension E is attached to B at some inter-
face states. Further, suppose that the assumption function
As is proper. E does not violate p inherent to B if B and
E conform with each other at all exit states.

The properness of As is a major part for the soundness of
the incremental verification which is mentioned with in Sec-
tion 5.1. Instead of assuming As’s properness, we need to
prove it.

4.2 Open Incremental Model Checking
From Corollary 8, the preservation constraints are required
at exit states only. Corresponding to an exit state ex, the

algorithm to verify a preservation constraint in E can be
briefly described as follows:

1. Seeding all reentry states re with VB(re, cl(p)).

2. Executing the standard CTL model checking proce-
dure in E from re states backward to ex. The formula
to check are ∀φ ∈ cl(p).

3. At the end of the the model checking procedure, check-
ing if VE(ex, cl(p)) = VB(ex, cl(p)).

4. Repeating the procedure for other exit states.

At the end of the process, if at all exit states, the truth
values with respect to cl(p) are matched respectively. B
and E are composable.

5. SOUNDNESS AND SCALABILITY ISSUES
5.1 Soundness Issue
In Section 4, the assumption function As is constructed by
copying the truth values at reentry states re in B directly.
The copying step implicitly assumes that As is proper at all
reentry states. For the soundness of OIMC, this section is
mainly concerned with proving As’s properness, i.e. check-
ing whether Theorem 7 remains valid if the assumption on
the properness of As is dropped. Thus, the soundness prob-
lem in essence consists of two parts:

1. Proving that As is proper at all reentry states (This
is to make sure that the label seeding steps at reentry
states are correct). (Soundness Problem 1)

2. Based on the above As’s properness, proving that the
truth values with respect to cl(p) are preserved at all
exit states and hence at all base states. (Soundness
Problem 2)

In OIMC, we are only concerned with the interface states
between B and E because at these states, the associated

ex1 ex2

E [f U g]

(f,!g)

e1

B

E

e2

E [f U g]

(f,!g)
e2

e1

(f,!g) (f,!g)

(f,!g)

E [f U g]E [f U g]

(_ ,g)

(_ ,g)

Figure 2: A composition failing to preserve p =
E [f U g] in case of extension-only cyclic dependency.

computation trees are first to change, if any. Certainly, the
property changes at these states then propagate to ascen-
dant states in B. By an observation, if the truth values
with respect to cl(p) are preserved at all interface states,
the same thing happens at all base states.

Between these interface states are dependency relations due
to CTL model checking, i.e. from a state s to any descendant
state d of s. If VC(d, cl(p)) �= VB(d, cl(p)) then it is likely
that VC(s, cl(p)) �= VB(s, cl(p)). These interface states to-
gether define a dependency structure. The soundness of The-
orem 7 after dropping the assumption on As’s properness is
examined. The results are as follows:

• The theorem is sound if the dependency structure is
acyclic, regardless of composition type (additive or
overriding).

• The theorem is sound if the composition is additive,
regardless of the dependency structure.

• It may fail in some extreme cases of overriding com-
position with cyclic dependency.

The failing case is illustrated in Figure 2. Two exit states
are mutually reentry states in E, namely cyclic dependency
between ex1 and ex2. Further, E overrides critical paths
rooted at ex1 and ex2, whose associated input events are e1

and e2, with respect to p = E [f U g]. Initially, p = E [f U g]
holds at both ex1 and ex2. However, after the overriding
composition, at these states, the property no longer holds
(being crossed out). The assumption function As is not
proper at both states. Thus, the result of OIMC within E
is not correct due to incorrect label seeding.

5.2 Scalability Issue
So far, we have investigated only one-step extension in which
E is attached to B. We are concerned with the application
of OIMC for subsequent extensions to C. We consider the
n-th version (Cn = C(n−1) + En) during software evolution
as a structure of components B, E1, E2, ..., En. Here, Ei

is the extension component to the (i− 1)-th evolved version
(C(i−1)). The initial version is C0 = B. The complexity

of verification does not change after adding feature En ac-
cording to Theorem 9 below whose proof is skipped. OIMC
maintains its scalability - the incremental characteristic.

Theorem 9. Suppose that any pair of base and extension
components C(i−1) and Ei respectively conform at all exit

states, i = 1, (n − 1). The complexity of the incremental
verification for confirming En not violating the property p
in B only depends on the size of En (proportional to the
number of states and transitions in En).

6. CONCLUSION
Compared with the earlier work [1], this paper differs in
several significant points. They include: a precise and gen-
eralized formal model of feature-based software with over-
riding possibility (1); the soundness problem of OIMC, espe-
cially in case of cyclic dependency between interface states,
via two sub-problems: the properness of As and proper-
ties preservation at exit states (2); an unified condition,
VE(ex, cl(p)) = VB(ex, cl(p)), for any legal composition of
B and E (3); and the scalability of OIMC (4).

Comparing to the modular verification work [2, 3, 4], there
is a fundamental difference in characteristic between those
and the work of both [1] and ours. Modular verification
in those work are rather closed. Even though it is based
on component-based modular model checking, it is not pre-
pared for changes. If a component is added, the whole sys-
tem of many existing components and the new component
is re-checked altogether. On the contrary, the approach in
[1] and this paper is incrementally modular. It is also open
for future changes. We only check the new system partially
within the new component and its interface with the rest
of the system. Certainly, this merit comes at the cost of
“fixed” conditions at exit states. This “fixed” constraint
can cause false negatives to some legal extensions. One of
the future work is to relax the conformance condition based
on matching truth values with respect to cl(p).

7. REFERENCES
[1] K. Fisler and S. Krishnamurthi. Modular verification of

collaboration-based software designs. In Proc.
Symposium on the Foundations of Software
Engineering, September 2001.

[2] O. Grumberg and D. E. Long. Model checking and
modular verification. In International Conference on
Concurrency Theory, volume 527 of Lecture Notes of
Computer Science. Springer-Verlag, 1991.

[3] O. Kupferman and M. Y. Vardi. Modular model
checking. In Compositionality: The Significant
Difference, volume 1536 of Lecture Notes in Computer
Science. Springer-Verlag, 1998.

[4] K. Laster and O. Grumberg. Modular model checking
of software. In Conference on Tools and Algorithms for
the Constructions and Analysis of Systems, 1998.

[5] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton.
N-degrees of separation: Multi-dimensional separation
of concerns. In Proc. ICSE, pages 109 – 117, 1999.

