
Designing a Programming Language to Provide Automated
Self-testing for Formally Specified Software Components

Roy Patrick Tan
Department of Computer Science

Virginia Tech
660 McBryde Hall, Mail Stop 0106

Blacksburg, VA 24061, USA

rtan@vt.edu

Stephen H. Edwards
Department of Computer Science

Virginia Tech
660 McBryde Hall, Mail Stop 0106

Blacksburg, VA 24061, USA

edwards@cs.vt.edu

1. INTRODUCTION
Writing software is an error-prone activity. Compilers

help detect some of these errors: syntactic mistakes plus
those semantic mistakes that can be detected through the
type system. However, locating faults beyond those de-
tectable by the compiler (and other static analysis tools)
is often relegated to the programmer, who must write thor-
ough tests to ensure confidence in the correctness of the
software.

Although the specification and verification community has
traditionally focused on decreasing software bugs by static
verification, research has increasingly explored the dynamic
analysis of the conformance of software components to its
specifications. That is, researchers are investigating systems
that can tell us whether a program’s behavior is consistent
with its specification while the program is being executed.
While dynamic techniques do not offer the same degree of
assurance as full static verification, they may provide useful
pragmatic benefits without the human intervention needed
by currrent generation verification tools. When interpreted
as a testing technique, dynamic analysis offers us a glimpse
of future testing tools that offer another line of automatic
error detection that augments the compiler, and helps the
programmer reduce the number of tests he has to write.

Modern unit testing tools such as JUnit allow some au-
tomation of the testing process. Specifically, they allow the
automated execution of tests. The job of writing tests re-
mains the responsibility of the programmer. In writing a
test for a software component, the programmer must a. ex-
ercise a component such that a bug is likely to manifest; and
b. write code to detect the bug.

Current research suggests that the use of formal specifi-
cations, coupled with the right infrastructure, may allevi-
ate much of the tedious process of writing the tests. For
example, JML-JUnit [?] removes the need to write code
that detects a component failure. It can act as a test-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAVCBS ’04

oracle by checking Java classes against their specifications
as the test cases are being executed. While JML-Junit sug-
gests an ideal strategy for combining test execution with
specification-based oracles, an appropriate test case gen-
eration strategy is necessary for effective performance [?,
Tan04]

Not surprisingly, formal specifications can also play a role
in automatically generating the test-cases themselves. Ko-
rat [?], for example, can quickly generate linked data struc-
tures for inputs by using an invariant checker to filter out
impossible structures. A method to automatically generate
test-cases proposed by one of the authors also leverages the
runtime-checking of specifications [?].

The possibility of combining these supporting techniques
into a unified approach to dynamic verification leads to a
new question: what form would such a consolidated test-
ing tool take? Based on the concept that the best tool is
one that is so transparent it is invisible, we envision infus-
ing the necessary infrastructure directly within the program-
ming language itself. A language that provides the necessary
support for formal behavioral description could generate a
compiled component that has the ability to execute and re-
port the results of tests it has created for itself. This would
amount to a built-in self-testing capability that comes for
free, as a side effect of writing formal specifications.

2. A VISION FOR A NEW STYLE OF PRO-
GRAMMING LANGUAGE

We envision that in the future, when a software compo-
nent is ready for testing, it will have a formal specification
written for it. Ideally, the specification would be complete,
correct, and written well before the implementation. More
probably, the specification might have missing parts, incor-
rect parts, and would have evolved as the implementation
was written.

In any case, when the developer is ready to test his com-
ponent, he runs his testing tool, and the tool will automat-
ically generate the test-cases, run them, determine which
tests passed or failed, and generate a report. This report
will tell the programmer which parts of the component it
found to be inconsistent with its specification. Depending
on the report, the software engineer may fix some of his im-
plementation code; he may refine his specifications; or he
may write additional tests that the automated tool does not
cover. The process iterates until the developer is confident



public void testPush() {

IntStack stack = new IntStack();

stack.push(5);

Assert.assertTrue(stack.size() == 1);

Assert.assertTrue(stack.top() == 5);

}

Figure 1: A JUnit test case method for an integer
stack.

that the component works as specified.
In this scenario, the software developer writes much fewer

test cases, though he is not completely rid of writing them.
Just like most modern programmers do not normally need
to bother with low-level details such as register allocation,
programmers of the future will not have to write lower-level
test cases. Instead, the programmer may concentrate on
writing test cases for more subtle, hard-to-find bugs.

The programmer here never has to write any code to de-
termine the correct behavior of the component under test.
Instead, he has to write formal specifications. Making the
programmer write specifications may be the most difficult
part of transitioning from the current way of writing soft-
ware. However, this may be mitigated in part by the fact
that the techniques we are considering to bring us closer to
this vision do not require complete or comprehensive speci-
fications.

3. TECHNIQUES FOR AUTOMATED UNIT
TESTING

Much of the ground work for our scenario for the future
of unit testing has already been done. We believe it is pos-
sible to automate at least partially the two things a devel-
oper has to do manually in testing: exercise the compo-
nent, and detect a fault if it occurs. The apporoaches we
have been looking at have these two key aspects: software
components have to be specified formally, and that there
is a runtime environment that executes these specifications
alongside the implementation. That is, specifications such
as preconditions, postconditions, and class invariants must
be checkable at runtime, whenever a method is called—a
design-by-contract style of specification execution.

3.1 Using Specifications as a Test-Oracle
Figure 1 is an example of what a JUnit test case method

for a stack may look like. Take note the two assertTrue

calls, these assertions tells JUnit what must be true after the
push statement. Every test of push has to have “assertions”
similar to the one in Figure 1. It would be advantageous if
we could write assertions in a single location that tells JUnit
what must be true after every call to the push method.

Using the Java Modeling Language (JML) [?], to spec-
ify Java classes, you can do exactly this. The commented
parts of Figure 2 is the postcondition of the push method.
Since JML can execute the postcondition every time the
push method is called, there is no more need to write asser-
tions for the push test. Instead we can let JML detect the
fault for us.

This is in fact what the JML-JUnit tool does; it uses
JML’s runtime checking of specifications as a test oracle.
Thus, with formal specifications and the right runtime in-

//@ensures size() == \old(size()) + 1

//@ && top() == x;

public void push(int x) {

//...

}

Figure 2: A partial JML specification of the push
method.

init

finalize

push

pop

depth

Figure 3: A flow graph for a stack component

frastructure, specifications can be used to check correct be-
havior in lieu of manual assertions inserted in test cases.

3.2 Test cases generation
In [?], one of the authors (Edwards) presents a strategy

of generating test cases using flow graphs which in turn is
based on the methodology described by Zweben and Heym
[?]. We present a brief explanation:

Given a specified component, we build a graph where any
walk represents a possible object lifetime. We define a flow-
graph as follows:

A flowgraph is a directed graph where each ver-
tex represents one operation provided by the com-
ponent and a directed edge from vertex v1 to v2

indicates the possibility that control may flow
from v1 to v2.[?]

In other words, when there is an edge from v1 to v2, it
means that there exists an object state where v2 can be
legally called after v1. A flowgraph for any component
can be constructed in the following way: Represent every
method as a node in a graph. Construct a complete, di-
rected graph with self-loops from these vertices. And then,
add two more nodes, begin and end; place a directed edge
from begin to every node and from every node to end. Addi-
tionally, there is an edge going from begin to end. Figure 3,
for example, is a flowgraph for a stack component.



Thus, a walk from the begin vertex to the end vertex rep-
resents a sequence of method calls from object initialization
to object finalization, i.e. a possible object lifetime. It is
easy to see that each feasible walk can be a test-case for the
component.

There are two problems that come to mind, one is that
some of the walks may be infeasible. For example, the se-
quence of method calls represented by begin → push →
pop → pop for a stack component may be infeasible, be-
cause the last pop call violates the method’s precondition.
The other problem is that there are a pontentially infinite
number of feasible walks through the graph.

The problem of infeasible walks can be solved by using
the dynamic execution of specifications to detect them. An
infeasible path is detected when a precondition failure occurs
while executing a sequence of method calls represented by a
walk on the flowgraph.

The second problem of choosing the right walks to use as
test-cases is an open topic for research. There are several
possible ways to achieve this:

• Random walk. Random walks are simple to implement
but may not be best.

• Bounded exhaustive enumeration. For example, choose
all walks going through 5 nodes or less.

• Various machine-learning algorithms. Tonella [?], for
example, reports on an experiment that uses evolu-
tionary algorithms to essentially generate these walks.

Work is ongoing to investigate the efficacy of each of these
strategies.

4. SUPPORTING AUTOMATED TESTING
In the previous section, we see that a software developer

who is willing to write formal specifications may be able to
take advantage of a higher level of automated testing. Aside
from the developer’s willingness to write the formal specifi-
cations, however, the developer must possess tools that can
take advantage of these specifications.

What are the necessary requirements to be able to build
these tools? What language features must exist for our au-
tomated testing strategy to work? The basic necessities are
that the programming language must have its components
formally specifiable, and that there is a runtime system that
can execute the specifications in a design-by-contract style.

We believe that any language with design-by contract
style specifications (and the ability to check them at run-
time) is amenable to the automated testing strategy we
outline above. However, we have also listed a number of
secondary characteristics that may be beneficial:

• Simple specification language—a simple language al-
lows for easier programmer buy-in, part of this is to
have the specification language be as close as possible
to the implementation language, to make it easier to
learn.

• Support for modular reasoning—modular reasoning means
that each module (e.g. a class) is as encapsulated as
possible; that it can be reasoned about in isolation
of the rest of the program, and thus can be tested in
isolation.

• Small programming language—a small language with-
out too many features may make for simpler specifica-
tion.

• Ability to measure other metrics—such as time for ev-
ery method call, code coverage, etc.

Several programming languages have the necessary char-
acteristics to implement tools that follow our testing strat-
egy. The aforementioned JML-JUnit tool, for example, al-
ready uses runtime checkable specifications as a test oracle.
Eiffel, which popularized design by contract, is certainly a
candidate for this type of tool. Theoretically, design-by-
contract extensions to popular scripting languages such as
Python [?] and Ruby can also be used.

Each of these languages, however, also have characteris-
tics that makes building automated testing tools for them
difficult. For example, Java allows direct access of data
members, breaking modularity of reasoning. The meta-
programming features of Python and Ruby, might allow de-
velopers to circumvent specification checking. Eiffel breaks
the Liskov substitution principle [?] All the languages con-
sidered are also fairly feature-rich; building a tool that cov-
ers all the features of one of these languages may be beyond
the resources of academic researchers. The use of reference
semantics in all these languages introduce aliasing, which
also introduces all the difficulties associated with specifying
them.

We have decided to take on the challenge of designing a
new programming language and its runtime system. Ten-
tatively called Sulu, we are designing it with the goal that
every component written in this language can be tested au-
tomatically. By implementing a new language we will have
the advantage of having complete control of the language,
we can make it only as large as necessary, place only the fea-
tures we require. It can also serve as a platform for future
research.

5. DISCUSSION
We discuss many of the technical concepts of building the

automated testing tools that we envision. But beyond build-
ing the tools, we must be able to measure their effectiveness.
We must also measure other metrics like the number of test
cases, the time it takes for the automated process to gener-
ate them, and the time it takes to execute the tests.

By deciding to implement a new programming language,
we encounter a new set of challenges; what features should
we put in the new language? What should be left out? We
must strike a balance between making it small enough to
be easy to implement, and big enough to show that our
techniques are also applicable to mainstream languages.

The key elements of a specification language and the abil-
ity to check the specifications against the implementation at
runtime will be included, of course, but what about other
features? Sulu will be component-based. That is, it will
have strong separation of an object’s specification and its
implementation. It will use value semantics to avoid the
difficulties of specifying aliased variables. Performance con-
cerns will be addressed somewhat by allowing a swap oper-
ator [?].

We are still actively evaluating whether to include other
features, such as the object-oriented concepts of inheritance
and polymorphism. These features may make results from



future experiments more comparable to mainstream lan-
guages, but it may also mean a much more complicated
implementation and specification language.

Another crucial question that may need to be addressed is
the cost/benefit to the software developer. Will the promise
of automated test-case generation convince practitioners to
write formal specifications? How effective should the tools
be to facilitate this change?

If the developer does write formal specifications, this ar-
tifact may be useful for other analysis tools. How can tradi-
tional verification tools be used in conjuction with the test-
ing tools to help us build better, more reliable software?

6. CONCLUSION AND RELATED WORK
In this paper, we have outlined our vision for unit testing,

that testing tools will come to the fore as another level of
automatic error detection.

We have discussed the techniques we are implementing as
we develop our testing platform, but there is a fair amount
of other research on the automatic generation of test cases.
ASTOOT [?] and DAISTS [?] approach the problem quite
differently. They automatically generate test cases directly
from algebraic specifications through term-rewriting.

Korat [?] is a system that automatically generates linked
data structures that can be used as parameters for methods
under test. Korat’s use of a “representation invariant” to
filter out infeasible data structures is similar and may be
compatible with our technique.

Tonella [?] describes a system in Java that uses an evo-
lutionary algorithm to generate method sequences essen-
tially equivalent to walks in our flowgraph model. However,
he does not consider the problem of infeasible method se-
quences.

The basic techniques to achieve this vision already exist,
and discussed how we can support our techniques in a mod-
ern programming language.


