
Integrating Specification and Documentation in an
Object-Oriented Language

[Extended Abstract]

Jie Liang
Department of Computing and Software

McMaster University
Hamilton ON Canada, L8S 4K1

liangj2@mcmaster.ca

Emil Sekerinski
Department of Computing and Software

McMaster University
Hamilton ON Canada, L8S 4K1

emil@mcmaster.ca

1. INTRODUCTION
This paper reports on the integration of specification and documen-
tation features into an object-oriented programming language and
its compiler. The goal of this integration is to improve software
quality, in particular correctness, extensibility, and maintainability
in a uniform and coherent manner. The language taken is Lime,
an action-based concurrent object-oriented language developed at
McMaster University. The concurrency aspect of Lime is moti-
vated by the observation that concurrency is increasingly used to
improve responsiveness of programs. Concurrency in Lime is ex-
pressed by attachingactionsto objects. This eliminates the concep-
tual distinction between objects and threads. For the theory behind
this approach and an implementation scheme the reader is referred
to [12].

This paper focuses on features that are being added in order to im-
prove software quality. We argue that specification and documenta-
tion means need to be integrated in a programming language. The
documentation can be easier kept up-to-date if there is no need to
switch between the programing and documentation environments;
outdated documentation is a common problem [11]. If specifica-
tions are “first-class citizens”, then the means for structural checks,
composition, reuse, and documentation can be extended to specifi-
cations, in addition to offering the possibility for behavioral checks.
We argue that for object-oriented programs to support specifica-
tion, a strict separation of subclassing (code sharing) and subtyp-
ing (substitutability) is needed. Such a separation allows each class
to serve as a superclass (be reused) or of a supertype (be imple-
mented) and any child class to either inherit the implementation of
the parent class, the behavioral specification, or both. Behavioral
specifications are expressed by preconditions, postconditions, and
invariants. These and other intermediate annotations can be writ-
ten using quantifiers and other standard mathematical notation, and
can be checked at run-time. The associated documentation tool
generates a description of the interface of each class that includes
the preconditions and postconditions of the methods, the class in-

SAVCBS’04Newport Beach, California, USA

variant, the subtype hierarchy, and the subclass hierarchy. Mathe-
matical symbols in the source file are represented by Unicode char-
acters. The compiler, LimeC, generates code for the Java Virtual
Machine and the documentation tool, LimeD, generates HTML.
The behavioral specifications are embedded in the generated JVM
files. When inheriting from a class of a different compilation unit,
both LimeC and LimeD extract these specifications from the object
files of classes; the source code and separate documentation are not
needed.

2. INTEGRATING SPECIFICATIONS
The interface specification languages in the Larch family [13], JML
[2, 3] and Eiffel [10] specify the behavior of their modules by
Hoare-style correctness assertions.

Design by Contract(DBC), proposed by Meyer for Eiffel [10], is a
formal technique for dynamically checking specification violation
during run-time. The idea behind DBC is that a class and its client
have a “contract” with each other. The client must guarantee cer-
tain conditions before calling a method defined by the class, and in
return the class guarantees certain properties that will hold after the
call. In Eiffel, the contracts are defined by program code, and are
translated into executable code by the compiler. Thus, any violation
of the contract can be detected immediately during run-time.

The lack of assertions and design by contract features in Java has
led to some languages and run-time assertion checking tools, such
as Alloy Annotation Language (AAL) [6], Jass [1], and iContract [7].
AAL is a language for annotating Java code based on the Alloy
modeling language.

JML, which stands for “Java Modeling Language,” is a behavioral
interface specification language (BISL) designed to specify Java
modules. JML adds assertions to Java by writing them as special
comments (/*@ ... @*/ or //@ ...). It is based on the use of precon-
ditions, postconditions and invariants. JML uses Java’s expression
syntax to write the predicates used in assertions. Java expressions
lack some expressiveness that makes more specialized assertion
languages convenient for writing behavioral specifications; JML
solves this problem by extending Java’s expressions with some spec-
ification constructs, such as quantifiers.

Lime integrates assertions as programming language constructs, as
Eiffel does; for offering a trade-off between checking for correct-
ness and efficiency, assertion checking can be selectively enabled



and disabled. Lime offersclass invariants, precondition, andpost-
conditionsto specify module behavior. In addition, Lime hasassert
statements which specify a constraint on an intermediate state in a
method body.

To have more expressiveness for writing behavioral specifications,
Lime allows the following constructs in expressions:

• Boolean operators⇒, ⇐, ⇔. Note that⇔ means the same
as = for expressions of typeboolean; however,⇔ has a
lower precedence.

• old e for referring to a value in the pre-state. It is used in
postconditions to indicate an expression whose value is taken
from the pre-state of a method call. For example,old(x +
y) denotes the value ofx + y evaluated in the pre-state of a
method call.

• resultfor referring to the value or object that is being returned
by a method. It is used in a method’s postcondition. Its type
is the return type of the method.

• linear quantifications∗ x |P •E, where∗ is a quantifier oper-
ator;x is the bound variable;P is the range;E is the body of
the quantification;∗ is ∀, ∃, Σ, Π, MAX, MIN , orNUM .
The range has the formElow � x � Eup, where� is either
< or ≤.

To make the source code and generated documentation more read-
able and meaningful, we use a number of mathematical symbols.
With the aid of Unicode and UTF-8 encoding, these mathematical
symbols can be parsed by the compiler and displayed on any word
processor that supports UTF-8 enconding for editing source code
and inside generated documentation on web browsers.

Since Java and JVM do not support behavioral specifications, we
need a way to store the preconditions, postconditions and invariants
in a Javaclassfile. When handling inheritance and separate compi-
lation, we only get information about other compilation units from
their Java class file. The reason is that in some situation such as
using a library class, we may not have the source code. The class
invariant, preconditions and postconditions are therefore stored in
Java class files as constant strings. They are extracted as constant
values from the constant pool by LimeC and LimeD.

3. TYPES AND CLASSES
Inheritance is a language mechanism that allows new object defini-
tions to be based on existing ones. A new class inherits the prop-
erties of its parents, and may introduce new properties that extend,
modify or defeat its inherited properties. Subtyping and subclass-
ing are conceptually different views of inheritance: Subtyping is
related to specification and interface inheritance; subclassing is a
mechanism for implementation reuse.

Cook [4] points out that in most strongly-typed object-oriented lan-
guages subtyping are subclasses are combined and equated, and in-
heritance is basically restricted to satisfy the requirements of sub-
typing. It has been argued that this eliminates several important op-
portunities for code reuse [8, 10]. Currently, only a few languages,
such as POOL-I, Theta, PolyTOIL and Sather, support separating
subtyping and subclassing to some degree.

τ extend σ

1. τ inherits every non private attributeaσ of σ: τ.A ⊇ σ.A.

2. For any non private methodmσ of σ there is a corresponding
methodmτ of τ , such that

• mτ hasmσ ’s signature:mτ .Sig = mσ.Sig.

• mτ hasmσ ’s implementation:mτ .Imp = mσ.Imp.

Figure 1: Definition of extend

τ implement σ1, σ2, ..., σn

1. τ preserves invariants of all supertypesσ1, σ2, ..., σn: τ.I ⇒Vn
i=1 σi.I.

2. τ inherits all non private attributes from all supertypes
σ1, σ2, ..., σn:
τ.A ⊇

Sn
i=1 σi.A.

3. For any non private methodmσi of each supertypeσi there
is a corresponding methodmτ of τ , such that

• mτ hasmσi ’s signature (mτ .Sig = mσi .Sig).

• mτ weakens preconditions:mτ .P re ⇐
Wn

i=1(mσi ∈
σi.M ∧mσi .P re).

• mτ strengthens postconditions: mτ .Post ⇒Vn
i=1(mσi ∈ σi.M ⇒ mσi .Post).

Figure 2: Definition of implement

Syntactic subtyping can be extended to behavioral subtyping. The
essence of behavioral subtyping is summarized by Liskov and Wing’s
subtype requirement [9]:

Letφ(x) be a property provable about objectsx of type
T . Thenφ(y) should be true for objectsy of typeS
whereS is a subtype ofT .

We propose an inheritance mechanism that strictly separates sub-
classing from subtyping and makes inheritance more flexible. Any
class in Lime can act as a superclass or a supertype. A class con-
tains a syntactic interface, the specified behavior, and an implemen-
tation. A child class has the choice of inheriting either the behav-
ioral specification, the implementation, or both.

A Lime class definition consists of a class invariant (I ), a set of at-
tributes (A) and a set of methods (M). We model a class as a triple
〈I, A, M〉. A method is composed of a signature (Sig), behav-
ioral specification and implementation (Imp). The method signa-
ture includes name, access, return and parameters’ types. The be-
havioral specification consists of a precondition (Pre) and postcon-
dition (Post). The implementation is the source code of the method
body. We model a method as a quadruple〈Sig, Pre, Post, Imp〉.

Lime uses theextendclause to handle single subclassing (Figure
1) and theimplementclause to handle multi-subtyping (Figure 2).
The case of combined subclassing and subtyping is expressed by
the inherit clause. The subtyping definitions follows that of [9];
JML uses the generalization of [5]. For example, the class header

class Sub extend Sup2 implement Sup1



Sup1Sup2

Sub

Figure 3: Inheritance graph in Lime

Sup1

Sup1_C
Sup2_C

Sup2

Sub

Sub_C

Figure 4: Inheritance graph of generated Java classes

builds an inheritance relation shown by the inheritance graph in
Figure 3. Solid and dashed arcs are used to represent subtype and
subclass relationships, respectively.

We sketch how the inheritance relationship is implemented in the
generated executable Java class file. Java supports single inheri-
tance of classes and multiple inheritance of interfaces that can only
contain method signatures and constant static variables. For each
Lime source file, we generate two Java class files. One stores a Java
class that contains all the information in the original Lime file, and
its name ends with “C”, the other stores a Java interface that still
uses its original name. The graph in Figure 4 shows the inheritance
relationship among the generated Java classes. In Java, it would
be legal to assign an instance ofSubC to a variable declared as of
type Sup1or Sup2. According to our definition ofextend, imple-
mentand inherit, classSub is Sup1’s subclass, not subtype. The
compiler checks whether the variable being assigned is of a super-
type of the instance’s class. From the inheritance graph view, this
amounts to checking whether there exists a path that is composed
of all solid arcs between two types.

In the following example, classPolygonis only a subclass ofRect-
angle, not a subtype. It can reuse the code in classRectanglesuch
as methodboundingBox. It also overrides methodmoveandarea.
Quantifier∀ is used for specifying the behavior of methodmove. In
the initialization,MAX andMIN are used for calculation.

abstract class Shape
protected attr x, y : integer;
public abstract method boundingBox : Rectangle;
public method area : integer

return 0
public method move (dx, dy : integer)

begin
x : = x + dx;
y := y + dy

end
initialization(x, y : integer)

begin
self.x := x;
self.y := y

end
end

class Rectangle inherit Shape
protected attr w, h : integer;
public method boundingBox : Rectangle

return new Rectangle(x, y, w, h)
public method area : integer

return w * h
initialization(x, y, w, h : integer)

begin
super.initialization(x, y);
self.w := w;
self.h := h

end
end

class Polygon extend Rectangle implement Shape
protected attr i, n : integer;
attr Xs : array of integer;
attr Ys : array of integer;
invariant n> 0
initialization(Xs, Ys : array of integer, n: integer)

begin
self.n := n;
x := Xs[0];
y := Ys[0];
w := (MAX i | 0 ≤ i < n •Xs[i])−

(MIN i | 0 ≤ i < n •Xs[i]);
h := (MAX i | 0 ≤ i < n • Y s[i])−

(MIN i | 0 ≤ i < n • Y s[i]);
i : = 0;
while i < n-1 do

self.Xs[i], self.Ys[i] := Xs[i+1], Ys[i+1];
end

public method move (dx, dy : integer)
post∀ i | 0 ≤ i < n− 1 • (dx =

old Xs[i] - Xs[i]) ∧ (dy = old Ys[i] -Ys[i])
begin

super.move(dx, dy);
i := 0;
while i < n - 1 do

Xs[i], Ys[i] := Xs[i] - dx, Ys[i] - dy
end

public method area : integer
...

end
end

4. DOCUMENTATION GENERATION
Lime’s support for automatic documentation generation was influ-
enced by early work on literate programming and documentation
system likeJavadocand Doxygen. Both Javadoc and Doxygen
generate on-line interface documentation in HTML format. The



design for LimeD is along those lines:

• LimeD generates documentation directly from the source code;

• LimeD provides a behavioral interface specification, not only
a syntactic interface;

• LimeD shows the subclass and subtype hierarchies.

For a project, LimeD generates a summary page and a page for
each individual class. For quickly accessing class documentation,
a list with linked indices for all classes is generated and acts as
a navigation menu. The documentation of each individual class
starts with the class description extracted from the documentation
comment in the source file. Documentation comments can contain
embedded HTML code. The document may contain the following
parts:

• Class Invariant with the invariant defined in the current class
and the invariants inherited from all supertypes. The inher-
ited invariants are conjoined to generate a single expression.
All the information is extracted from the current class and
from the Java class files of all supertypes.

• Class Hierarchy displayed graphically; Lime supports sin-
gle subclassing.

• Type Hierarchy presented as an indented list; Lime supports
multiple subclassing.

• Attribute with all non-private attributes defined in the cur-
rent class.

• Inherited Attribute with all attributes inherited from super-
classes and supertypes.

• Method contains all methods defined in the current class. It
gives the method signature and the precondition and postcon-
dition defined in the current class. If the method redefines or
implements a method of a supertype, it also gives the pre-
condition and postcondition defined in supertypes. These are
extracted from the Javaclassfiles of all supertypes.

• Inherited Method contains all inherited methods. It gives
the method signature, precondition and postcondition.

5. OUTLOOK
Currently the development is still in an experimental stage. An
exception handling mechanism needs to be integrated and the spec-
ification language needs to be extended with abstract date types.
Currently specifications can only use the data types of the program-
ming language.

6. REFERENCES
[1] D. Bartetzko, C. Fischer, M. Moller, and H. Wehrheim. Jass -

Java with assertions. In K. Havelund and G. Rosu, editors,
Proceedings of the First Workshop on Runtime Verification,
Electronic Notes in Theoretical Computer Science,
volume 55. Elsevier Science, July 2001.

[2] L. Burdy, Y. Cheon, D. Cok, M. D. Ernst, J. Kiniry, G. T.
Leavens, K. R. M. Leino, and E. Poll. An overview of JML
tools and applications. InEighth International Workshop on
Formal Methods for Industrial Critical Systems (FMICS 03),

Electronic Notes in Theoretical Computer Science,
volume 66, pages 1–17, Trondheim, Norway, June 5–7,
2003. Elsevier Science.

[3] Y. Cheon and G. T. Leavens. A Runtime Assertion Checker
for the Java Modeling Language (JML). InInternational
Conference on Software Engineering Research and Practice
(SERP), pages 322–328. Computer Science Research,
Education, and Applications (CSREA) Press, Las Vegas,
Nevada, USA, June 2002.

[4] W. R. Cook, W. L. Hill, and P. S. Canning. Inheritance is not
subtyping. InProceedings of the ACM Conference on
Principles of Programming Languages (POPL ’90), pages
125–135, San Francisco, January 1990. ACM Press.
Addison-Wesley.

[5] K. K. Dhara and G. T. Leavens. Forcing behavioral
subtyping through specification inheritance. InProceedings
of the 18th international Conference on Software
Engineering,, pages 258–267, Berlin, Germany, March 1996.
IEEE Computer Society Press.

[6] S. Khurshid, D. Marinov, and D. Jackson. An analyzable
annotation language. InACM SIGPLAN Notices ,
Proceedings of the 17th ACM SIGPLAN conference on
Object-Oriented Programming, Systems, Languages, and
Applications, volume 37, pages 231–245, Seattle,
Washington, USA, November 2002.

[7] R. Kramer. iContract - the Java design by contract tool.
TOOLS 26: Technology of Object-Oriented Languages and
Systems, pages 295–307, 1998.

[8] B. B. Kristensen, O. L. Madsen, B. Moeller-Pedersen, and
K. Nygaard. The BETA programming language. In B. D.
Shriver and P. Wegner, editors,Research Directions in
Object-Oriented Programming. MIT Press, 1987.

[9] B. H. Liskov and J. M. Wing. A behavioral notion of
subtyping.ACM Transactions on Programming Languages
and Systems, 16(6):1811–1841, November 1994.

[10] B. Meyer.Object-Oriented Software Construction 2nd
edition. Prentice-Hall, 1997.

[11] A. L. Powell, J. C. French, and J. C. Knight. A systematic
approach to creating and maintaining software
documentation. InProceedings of the 1996 ACM symposium
on Applied Computing, pages 201–208, Philadelphia,
Pennsylvania, February 1996.

[12] E. Sekerinski. Concurrent object-oriented programs: From
specification to code. InFirst International Symposium on
Formal Methods for Components and Objects, FMCO 02,
Lecture Notes in Computer Science 2852, pages 403–423,
Leiden, The Netherlands, 2003. Springer-Verlag.

[13] J. M. Wing. Writing Larch interface language specification.
ACM Transactions on Programming Languages and Systems,
9(1):1–24, January 1987.


