
Using Wrappers to Add Run-Time Verification Capability
to Java Beans

Vladimir Glina
Department of Computer Science

Virginia Tech
660 McBryde Hall, Mail Stop 0106

Blacksburg, VA 24061, USA
vglina@vt.edu

 Stephen Edwards
Department of Computer Science

Virginia Tech
660 McBryde Hall, Mail Stop 0106

Blacksburg, VA 24061, USA
edwards@cs.vt.edu

ABSTRACT
Because of limited information exchange between component
providers and users, both these parties should perform component
verification. Java Modeling Language, a notation which allows
writing of behavioral specifications for Java programs, can be
used for verification purposes. This paper shows that placing JML
specifications in separate wrappers distributed in the binary form
alongside components gives component buyers an additional
value. The wrapper can serve for Java components verification on
the user’s side, verification checks can be enabled and disabled on
per-class or per-package basis at run-time, and there is no
performance overhead when they are disabled, unlike the
traditional variant when checking code generated from JML
specifications is placed directly into the underlying class
bytecode. The paper describes wrapper design for Java Beans run-
time verification and discusses advantages and challenges of it.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification—
programming by contract, assertion checkers, class invariants;
F.3.1 [Logics and Meanings of Programs]: Specifying and
Verifying and Reasoning about Programs—pre- and post-
conditions, invariants, assertions; D.2.3 [Software Engineering]:
Coding Tools and Techniques—object-oriented programming;
D.2.5 [Software Engineering]: Testing and Debugging—
debugging aids; D.3.2 [Programming Languages]: Language
Classifications – design languages, constraint and logic
languages

General Terms
Languages, Verification.

Keywords
JML, Java Beans, run-time verification, design by contract, events
handling

1. INTRODUCTION
Construction of software from commercial off-the-shelf (COTS)
components is getting more and more popular. But limited
information exchange between component providers and
component users is a serious problem for it. Because of that, both
component provider and user must perform component
verification [1].
Assertion checking is an effective means to improve quality of
software verification [2]. One of assertion checking tools is Java
Modeling Language (JML), a notation for formal specification of
behavior and interfaces of Java classes and methods. JML
implements the Design by Contract (DBC) software development
principle [3]: JML specifications (pre-conditions, post-conditions,
and class invariants) placed in special comments within Java
source code are transformed by the JML compiler into run-time
checks. Originally that checks were placed directly into Java
program bytecode. It created substantial performance overhead,
so checks were removed before shipping software and did little
for customers.
This paper discusses using JML-based assertion checking
wrappers for verification and specification of Java Beans. The
paper states that for component users this approach adds value to
components by providing the following:

• checking the quality of connections between components;
• saving component user’s time on producing tests;
• distribution checks in binary form alongside beans so that

checks can be included without access to source code;
• run-time enabling or disabling checks on per-class or per-

package basis;
• avoiding performance overhead when checks are excluded.

2. ASSERTION CHECKING WRAPPER
 IMPLEMENTATION
Assertion checking wrapper design for Java classes was proposed
in [4]. The main idea of wrapper design for Java Beans is the
same. Checking code is moved to a separate class, so that there
are two classes extending the same interface: an unwrapped
original class and the wrapper class which only provides assertion
checking and calls methods of the unwrapped class to realize all
other functionality. Objects of either class are created by a class
factory, which allows separating the decision which class to
instantiate from the object requesting the instance. Users can

Figure 1. A fragment of the MyBean bean source code

enable or disable assertions on per-class basis, at run-time.

Wrapper-based design uses a customized version of the JML
compiler jmlc which automatically generates four class files
from the original source code shown in Figure 1. These classes, as
Figure 2 shows, are:

• the implementation class providing original
functionality (MyBeanImplementation);

• the wrapper class containing assertion checks
(MyBeanWrapper);

• an interface that both the classes mentioned above
implement (MyBean);

• a factory class (MyBeanFactory).

Figure 3 shows how inheritance is addressed. If MyBean inherits
from GeneralBean, all the generated classes related to
MyBean inherit from the corresponding classes related to
GeneralBean. It means that if a class has JML specifications,
all its superclasses are to be transformed by the JML compiler
regardless of whether they have specifications or not.
As Figure 4 shows, the interface just re-declares all the public
methods of the original bean class.

MyBeanFactory

MyBeanImplementation MyBeanWrapper

MyBean

Figure 2. Transformation of the original class

GeneralBean

GeneralBeanImplementation GeneralBeanWrapper

MyBeanImplementation MyBeanWrapper

GeneralBeanFactory

MyBeanFactory

MyBean

Figure 3. Inheritance: MyBean inherits from GeneralBean

In Figure 5, the wrapper corresponding to our sample bean is
shown. The wrapper class masks the implementation class and
adds assertion checks before and after every method. To do that, it
holds the reference to the wrapped instance of the implementation
class in the wrappedObject field. All the methods of the
original class have corresponding methods in the wrapper class.
Being called, the wrapper class methods at first perform pre-
condition checks, then call the corresponding methods of the
implementation class to perform core behavior, and after that
make post-condition checks. The isEnabled object defines
whether to perform particular checks at run-time. There is one
such an object for every wrappable class and one similar object
for each Java package. Thanks to these objects, it is possible to
activate and deactivate run-time verification on per-class or per-
package basis without access to source code, using a graphic
control panel displaying the tree which maps the Java package
nesting structure.
Figure 6 shows the factory class code. For every constructor in
the original class, there is a corresponding factory method in the
factory class. The factory queries its isEnabled field to decide
what version of the object, wrapped or unwrapped, to create.
The implementation class has the same code as the original class

Figure 4. The interface that both wrapped and unwrapped
classes implement

public class MyBean implements PropertyChangeListener {
 protected /*@ spec_public @*/ int NonNegativeValue;
 //@ requires newValue >= 0;
 public void setNonNegativeValue(int newValue){
 // implementation goes here …
 }
 // …
}

public interface MyBean {
 public void setNonNegativeValue(int newValue);
 // …
 }

Figure 5. The wrapper class

shown in Figure 1 except it gets another name:

public class MyBeanImplementation {
 // implementation goes here…
 }

When a method returns an object, the object becomes wrapped
when created.
A method of a wrapped object can have an exceptional
postcondition for type T which describes what must hold true for
the method to throw an exception of type of T (or a subtype of T).
After a wrapped object method throws an exception, the wrapper
checks if the corresponding exceptional postcondition is present
and observed, and then the exception is rethrown. Otherwise, the
assertion checking fails.
Non-public method calls and the same class method calls are
checked in the same way as in the case of checking wrappers for
regular Java classes [4].
To enable using wrapped object with existing code which does
not use assertion checking and is probably available in the binary
form only, the authors of [4] are implementing a custom class
loader that can transform bytecode at load time if checking
wrappers are used.

 Figure 6. The factory class

 Figure 7. Original instantiate method

Assertion checking wrappers for Java Beans require less change
in coding practices in comparison with the ones for regular Java
classes. In the latter case, developers have to get used to accessing
attributes of classes through getters and setters that are added into
the interface besides the methods defined in the original class,
whereas properties of Beans can not be accessed other than
through accessors. Also, all Java Beans are usually accessed
through interfaces, not concrete classes.
Nevertheless, certain changes in Java Beans run-time
environment, as well as in coding practice, are required for
assertion checking wrappers implementation. Typically, a user
can instantiate a bean either by using operator new, or by calling
one of the java.beans.Beans.instantiate methods.
The latter variant is equivalent to call of the method

java.beans.Beans.instantiate(ClassLoader
cls, String BeanName, BeanContext
BeanContext, AppletInitializer initializer
),

a fragment of which is shown in Figure 7, with some (or none)
arguments set to null. After wrapper design implementation, an
attempt to instantiate a bean using new will result in a compile-
time error because the name of the unwrapped bean class is now
belongs to the interface. The implementation of the
instantiate method itself is to be changed in the place
responsible for bean instantiation when there is no serialized
object. The changes are shown in bold in Figure 8.

public class MyBeanWrapper implements MyBean {
 MyBeanImplementation wrappedObject;
 public static CheckingPrefs isEnabled = null;
 public void setNonNegativeValue(int newValue) {
 if(isEnabled.precondition()) {
 // the actual precondition check
 checkPre$setNonNegativeValue$MyBean(newValue);
 }
 wrappedObject.setNonNegativeValue(newValue);
 }
 // … }

public class MyBeanFactory {
 public static CheckingPrefs isEnabled = null;

public static MyBean instantiate() {
 MyBean result = new MyBeanImplementation();
 if (isEnabled != null && isEnabled.wrap()) {
 result = new MyBeanWrapper(result, isEnabled);
 }
 return result;
 }
}

public static Object instantiate(ClassLoader cls, String
beanName, BeanContext beanContext, AppletInitializer
initializer) throws java.io.IOException,
ClassNotFoundException {
 // …

if(result == null) {
 // No serialized object, try just instantiating the class
 Class cl;
 try {
 if(cls == null) {
 cl = Class.forName(beanName);
 }
 else {
 cl = cls.loadClass(beanName);
 }
 }
 catch (ClassNotFoundException ex) {
 if (serex != null) {
 throw serex;
 }
 throw ex;
 }
 }
}

 Figure 8. The modified version of the instantiate method

3. TOWARDS SPECIFICATION OF
JAVABEANS BEHAVIOR

The most substantial problem on the way of using design-by-
contract tools for software components specification is dealing
with concurrency, callbacks, and event handling. In this paper, we
will describe how to use JML to check contracts on events a Java
Bean is registered for.
As an example, let us suppose that there is a bean called
TickGenerator which models a generator of electric
impulses. For us it is enough to know this bean has the following
properties: IsPowerOn of type boolean and
NumberOfTicks of type int. When IsPowerOn == true,
NumberOfTicks periodically increases. A bean user can revert
the IsPowerOn value by clicking the corresponding button on
the bean graphical interface. IsPowerOn and
NumberOfTicks are bounded properties. The MyBean bean
we dealt with at the beginning of the paper has registered itself
with TickGenerator to be notified about changes of the
properties values. The events handling logic of MyBean and the
corresponding JML specifications are shown in Figure 9.
Of course, MyBean has very artificial events handling that is easy
to describe. Nevertheless, it shows that JML specifications can be
of benefit for events handling verification. The future work

Figure 9. Specification of the Bean event handling

includes specifying event broadcasting, interaction of a group of
components where one of them is listening for others, and beans
serving in complicated environments that are hard to formalize
(for instance, beans working with the FTP protocol).

4. ACKNOWLEDGMENTS
Our thanks to ACM SIGCHI for allowing us to modify templates
they had developed.

5. REFERENCES
[1] Beydeda, S., and Gruhn, V. The Self-Testing COTS
 components (STECC) Strategy – a new form of improving
 component testability. Proceedings of the 29th Euromicro
 Conference(EUROMICRO’03) (Belek-Antalya, Turkey,
 September 1-6, 2003). IEEE Computer Society, Los
 Alamitos, CA, 2003, 107 – 114.
[2] J.M.Voas. Quality time: How assertions can increase test
 effectiveness. IEEE Software, 14, 2 (Feb. 1997), 118-119.
[3] G.Leavens, Y.Cheon. Design by Contract with JML.
 ftp://ftp.cs.iastate.edu/pub/leavens/JML/jmldbc.pdf,
 draft, 2004.
[4] Tan, R., Edwards, S., “An Assertion Checking Wrapper
 Design for Java”, Proceedings of the Specification and
 Verification of Component-Based Systems workshop
 (SAVCBS’03), (Helsinki, Finland, September 1-2, 2003).
 Technical Report #03-11, Dept. of Computer Science, Iowa
 State University Ames, IA, 2003, 29-34.

public static Object instantiate(ClassLoader cls, String
beanName, BeanContext beanContext, AppletInitializer
initializer) throws java.io.IOException,
ClassNotFoundException {
 //…
 if(result == null) {
 Class cl;
 String factoryName = beanName.concat("Factory");
 try {
 if(cls == null) {
 cl = Class.forName(factoryName);
 }
 else {
 cl = cls.loadClass(factoryName);
 }
 Method instantiation = cl.getMethod("instantiate",
 null);
 result = instantiation.invoke(cl, null);
 }
 catch(ClassNotFoundException ex) {
 if (serex != null) {
 throw serex;
 }
 throw ex;
 }
}

public class MyBean implements PropertyChangeListener {
protected /*@ spec_public @*/ int NonNegativeValue;
 // …
 /*@ requires evt.getPropertyName() == “isPowerOn”;
 @ ensures NonNegativeValue == 0;
 @ also
 @ requires evt.getPropertyName() == “numberOfTicks”;
 @ ensures NonNegativeValue % 2 == 1;
 @*/
 public void propertyChange(PropertyChangeEvent evt) {
 int n;
 if(evt.getPropertyName().equals(“isPowerOn”) {
 n = 0;
 }
 else {
 if(evt.getPropertyName().equals(“numberOfTicks”) {
 n = 4 * n + 1;
 }
 }
 setNonNegativeValue(n);
 }
}

