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ABSTRACT
We present a case study for automatic addition of fault-
tolerance to distributed programs using presynthesized dis-
tributed components. Specifically, we extend the scope of
automatic addition of fault-tolerance using presynthesized
components for the case where we automatically add hier-
archical components to fault-intolerant programs. Towards
this end, we present an automatically generated diffusing
computation program that provides nonmasking
fault-tolerance. Since presynthesized components provide
reuse in the synthesis of fault-tolerant distributed programs,
we expect that our method will pave the way for automatic
addition of fault-tolerance to large-scale programs.

Keywords
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1. INTRODUCTION
In this paper, we present a case study for automatic ad-

dition of presynthesized fault-tolerance components to dis-
tributed programs using a software framework called Fault-
Tolerance Synthesizer (FTSyn) [5]. Specifically, we use FT-
Syn to add distributed components with hierarchical topol-
ogy to a diffusing computation program to provide recov-
ery in the presence of faults. Presynthesized fault-tolerance
components provide reuse in the synthesis of fault-tolerant
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distributed programs from their fault-intolerant version. Such
reuse is particularly beneficial in dealing with the exponen-
tial complexity of synthesis [7]. Also, fault-tolerance com-
ponents provide an abstraction that simplifies the reasoning
about the fault-tolerance and functional concerns.

The FTSyn framework incorporates the results of [9] where
the synthesis algorithm automatically specifies and adds
presynthesized fault-tolerance components, namely detec-
tors and correctors, to fault-intolerant programs during the
synthesis of their fault-tolerant version. It is shown in the
literature [6] that such components are necessary and suffi-
cient for the manual design of fault-tolerant programs. As
a result, we expect to benefit from their generality in auto-
matic addition of fault-tolerance as well.

In [9], the synthesis algorithm is applied to programs where
the underlying communication topology between processes
is linear. In this paper, we show how we add hierarchical
presynthesized components to distributed programs. Specif-
ically, we add tree-like structured components to a diffusing
computation program where processes are arranged in an
out-tree, where the indegree of each node is at most one.

This case study shows that the synthesis method pre-
sented in [9] handles presynthesized components (respec-
tively, distributed programs) with different topologies. Also,
we extend the scope of synthesis for the case where we simul-
taneously add multiple presynthesized components to the
program being synthesized. Moreover, the use of presyn-
thesized components provides a theoretical foundation for
automated development of component-based systems where
we reason about the correctness of each individual compo-
nent and the composition of components.
The organization of the paper. In Section 2, we present
preliminary concepts. In Section 3, we describe how we
formally represent a hierarchical fault-tolerance component.
Subsequently, in Section 4, we show how we automatically
add a hierarchical component to a diffusing computation
program. Finally, we make concluding remarks and discuss
future work in Section 5.

2. PRELIMINARIES
In this section, first, we present basic concepts in Subsec-

tion 2.1. Then, in Subsection 2.2, we represent the formal



problem statement of adding fault-tolerance components to
programs (adapted from [9]). In Subsection 2.3, we give an
informal overview of the synthesis method presented in [9].

2.1 Basic Concepts
We specify programs in terms of their state space and

their transitions. The definition of specifications is adapted
from Alpern and Schneider [1]. The definition of faults and
fault-tolerance is adapted from Arora and Gouda [2] and
Kulkarni and Arora [7]. The issues of modeling distributed
programs is adapted from [7, 4].
Program. A program p is specified by a finite set of vari-

ables, say V = {v0, v2, .., vq}, and a finite set of processes,
say P = {P0, · · · , Pn}, where q and n are positive integers.
Each variable vi is associated with a finite domain of values
Di (1 ≤ i ≤ q). A state of p is of the form: 〈l0, l2, .., lq〉
where ∀i : 0 ≤ i ≤ q : li ∈ Di. The state space of p, Sp, is
the set of all possible states of p.

A process, say Pj (0 ≤ j ≤ n), in p is associated with
a set of program variables, say rj , that Pj can read and a
set of variables, say wj , that Pj can write. Also, process
Pj consists of a set of transitions of the form (s0, s1) where
s0, s1 ∈ Sp.

A state predicate of p is any subset of Sp. A state predi-
cate S is closed in the program p iff (if and only if) ∀s0, s1 :
(s0, s1) ∈ p : (s0 ∈ S ⇒ s1 ∈ S). A sequence of states,
〈s0, s1, ...〉, is a computation of p iff the following two con-
ditions are satisfied: (1) ∀j : j > 0 : (sj−1, sj) ∈ p, and
(2) if 〈s0, s1, ...〉 is finite and terminates in state sl then
there does not exist state s such that (sl, s) ∈ p. A finite
sequence of states, 〈s0, s1, ..., sn〉, is a computation prefix of
p iff ∀j : 0 < j ≤ n : (sj−1, sj) ∈ p ; i.e., a computation
prefix need not be maximal. The projection of program p
on state predicate S, denoted as p|S, consists of transitions
{(s0, s1) : (s0, s1)∈p ∧ s0, s1∈S}.
Distribution issues. We model distribution by identify-
ing how read/write restrictions on a process affect its tran-
sitions. A process Pj cannot include transitions that write a
variable x, where x /∈ wj . Given a single transition (s0, s1),
it appears that all the variables must be read to execute
that transition. For this reason, read restrictions require
us to group transitions and ensure that the entire group is
included or the entire group is excluded. For example, in
a program with two Boolean variables a and b and a pro-
cess Pr that cannot read b, the transition from the state
〈a = 0, b = 0〉 to 〈a = 1, b = 0〉 can be included iff the tran-
sition from 〈a = 0, b = 1〉 to 〈a = 1, b = 1〉 is also included.
The grouping of these two transitions makes the value of b
irrelevant for Pr.
Specification. A specification is a set of infinite sequences
of states that is suffix-closed and fusion-closed. Suffix closure

of the set means that if a state sequence σ is in that set then
so are all the suffixes of σ. Fusion closure of the set means
that if state sequences 〈α, s, γ〉 and 〈β, s, δ〉 are in that set
then so are the state sequences 〈α, s, δ〉 and 〈β, s, γ〉, where
α and β are finite prefixes of state sequences, γ and δ are
suffixes of state sequences, and s is a program state.

Following Alpern and Schneider [1], we let the specifica-
tion consist of a safety specification and a liveness specifica-

tion. For a suffix-closed and fusion-closed specification, the
safety specification can be specified as a set of bad transi-
tions [6] that a program is not allowed to execute, that is,
for program p, its safety specification is a subset of Sp ×Sp.

Given a program p, a state predicate S, and a specification

spec, we say that p satisfies spec from S iff (1) S is closed in
p, and (2) every computation of p that starts in a state in S
is in spec. If p satisfies spec from S and S 6={}, we say that
S is an invariant of p for spec.

We do not explicitly specify the liveness specification in
our algorithm; the liveness requirements for the synthesis
is that the fault-tolerant program eventually recovers to its
invariant from where it satisfies its specification.
Faults. A class of faults f for a program p with state space
Sp, is a subset of the set Sp × Sp. A sequence of states,
σ = 〈s0, s1, ...〉, is a computation of p in the presence of f
(denoted p[]f) iff the following three conditions are satisfied:
(1) every transition t ∈ σ is a fault or program transition;
(2) if σ is finite and terminates in sl then there exists no
program transition originating at sl, and (3) the number of
fault occurrences (i.e., transitions) in σ is finite.

We say that a state predicate T is an f -span (read as
fault-span) of p from S iff the following two conditions are
satisfied: (1) S ⇒ T and (2) T is closed in p[]f .
Nonmasking fault-tolerance. Given a program p, its
invariant, S, its specification, spec, and a class of faults, f ,
we say p is nonmasking f -tolerant for spec from S iff the
following two conditions hold: (i) p satisfies spec from S;
(ii) there exists a state predicate T such that T is an f -span
of p from S, and every computation of p[]f that starts from
a state in T has a state in S.

2.2 Problem Statement
In this subsection, we adapt the problem statement pre-

sented in [9] where the authors add presynthesized fault-
tolerance components to a program p, with state space Sp,
invariant S ⊆ Sp, specification spec, and faults f , in order
to synthesize a fault-tolerant program p′ with the new in-
variant S′ in the new state space Sp′ . Since each component
has its own set of variables, we expand the state space of p
to Sp′ by adding a fault-tolerance component to it.

To create a projection from the states and the transitions
of p′ to the states and the transitions of p, we define an
onto function H: Sp′ → Sp, which can be applied on the
domain of states, state predicates, transitions, and groups
of transitions.

Now, since we require p′ not to include new behaviors
in the absence of faults, the invariant S′ cannot contain
states s′0 whose image H(s′0) is not in S. Otherwise, in the
absence of faults, p′ will include computations in the new
state space Sp′ that do not have corresponding computations
in p. Hence, we have H(S′) ⊆ S. Likewise, we require p′ not
to contain a transition (s′0, s

′

1) in p′|S′ that does not have a
corresponding transition (s0, s1) in p|H(S′) (where H(s′0) =
s0 and H(s′1) = s1). Otherwise, p′ may create a new way
for satisfying spec in the absence of faults. Therefore, the
problem of adding fault-tolerance components to programs
is as follows:

The Addition Problem.

Given p, S, spec, f , with state space Sp such that
p satisfies spec from S,

Sp′ is the new state space due to adding fault-tolerance
components to p,
H : Sp′ → Sp is an onto function,

Identify p′ and S′ ⊆ Sp′ such that
H(S′) ⊆ S,
H(p′|S′) ⊆ p|H(S′), and
p′ is nonmasking f -tolerant for spec from S′.



2.3 The Synthesis Method
In this subsection, we present an informal overview of the

synthesis method presented in [9]. We note that the presen-
tation of this subsection suffices for this paper, however, the
interested reader may refer to [9] for a formal presentation.

To deal with the exponential complexity [7] of synthesiz-
ing distributed programs, the synthesis algorithm presented
in [9] provides a hybrid approach where it uses heuristics
(developed in [8]) along with presynthesized fault-tolerance
components. Specifically, the algorithm of [9] first uses heuris-
tics under distribution restrictions to add recovery from a
specific deadlock state sd. If the heuristics fail then the
synthesis algorithm adds presynthesized correctors to re-
solve the deadlock state sd (cf. Section 3 for a formal def-
inition of detectors/correctors). To add a presynthesized
component (i.e., detectors/correctors), the synthesis algo-
rithm automatically (i) specifies the required component;
(ii) extracts the necessary component from an existing com-
ponent library; (iii) ensures that the components do not
interfere with the program execution, i.e., the program and
the presynthesized components satisfy their specifications in
the presence of each other, and (iv) adds the components.

To automatically specify and add the required compo-
nents during the synthesis of a distributed program p with
n processes {P1, · · · , Pn}, the synthesis algorithm of [9] in-
troduces a high atomicity processes Phighi

corresponding to
each Pi (1 ≤ i ≤ n). Each Phighi

is allowed to read all
program variables and has the write abilities of Pi. At the
outset of the synthesis, process Phighi

has no actions to exe-
cute, where an action atomically updates program variables
when a specific condition holds. For a specific deadlock state
sd, the synthesis algorithm determines whether there exists a
high atomicity process Phighi

that can add recovery from sd,
given its high atomicity abilities. Since high atomicity pro-
cesses have read access to all program variables, they may
add recovery actions whose guards are global state predi-
cates; i.e., high atomicity actions.

If Phighk
, for some 1 ≤ k ≤ n, succeeds in adding high

atomicity recovery from sd then the synthesis algorithm au-
tomatically specifies and extracts the desired detectors for
the refinement of the added high atomicity recovery actions.
If the presynthesized detectors do not interfere with program
execution then the refinement will be successful. Otherwise,
the synthesis algorithm of [9] fails to add recovery to sd.

3. SPECIFYING HIERARCHICAL COMPO-
NENTS

In this section, we describe the specification and the rep-
resentation of hierarchical fault-tolerance components (i.e.,
detectors and correctors). Specifically, we concentrate on
detectors and we consider a special subclass of correctors
where a corrector consists of a detector and a write action
on the local variables of a process. We have adapted the
specification of detectors from [6].
Specification. Let X and Z be state predicates. Let ‘Z
detects X’ be the problem specification. Then, ‘Z detects
X’ stipulates that

• (Safety) When Z holds, X must hold as well.
• (Liveness) When the predicate X holds and continu-

ously remains true, Z will eventually hold and contin-
uously remain true.

We represent the safety specification specd of a detector as
a set of transitions that a detector is not allowed to execute.

specd = {(s0, s1) : (Z(s1) ∧ ¬X(s1))}

The Representation of Hierarchical Detectors. We
focus on the representation of a detector with a tree-like
structure as a special case of hierarchical detectors. The
hierarchical detector d consists of n elements di (0 ≤ i < n),
its safety specification specd, its variables, and its invariant
U . The element d0 is placed at the root of the tree and
other elements of the detector are placed in other nodes of
the tree. Let i � j denote the parenting relation between
nodes di and dj , where di is the parent of dj . Each node di

has its own detection predicate Xi and witness predicate Zi

represented by a Boolean variable yi. The siblings of a node
can detect their detection predicate in parallel. However, the
truth-value of the detection predicate of each node depends
on the truth-value of its children. In other words, node di

can witness if all its children have already witnessed. The
element di can read/write the y values of its children and its
parent (0 ≤ i < n). Moreover, each element di is allowed to
read the variables that Pi can read. We present the template
action of the detector di as follows ((0 ≤ i, j, k < n) ∧ (∀r :
j ≤ r ≤ k : i � r)):

DAi : (LCi) ∧ (yj ∧ · · · ∧ yk) ∧ (yi = false)
−→ yi := true;

Using action DAi (0 ≤ i < n), each element di of the hier-
archical detector witnesses (i.e., sets the value of yi to true)
whenever (i) the condition LCi becomes true, where LCi

represents a local condition that di atomically checks (by
reading the variables of Pi), and (ii) its children dj , · · · , dk

have already witnessed. The above action is an abstract ac-
tion that should be instantiated by the synthesis algorithm
during the synthesis of a specific program in such a way that
the program and the detector do not interfere. We represent
the invariant of the hierarchical detector by the predicate U ,
where

U = {s : (∀i : (0 ≤ i < n) : (yi(s) ⇒ (∀j : i � j : LCj))}

Note that yi(s) represents the value of yi at the state s.

4. CASE STUDY: DIFFUSING COMPUTA-
TION

In this section, we present an overview of synthesizing a
nonmasking diffusing computation program by adding presyn-
thesized components. The synthesized program provides the
same behavior as the nonmasking diffusing computation pro-
gram manually designed in [3]. For reasons of space, we omit
the actions of the synthesized program and refer the reader
to [10].

The diffusing computation (DC) program (adapted from
[3]) consists of four processes {P0, P1, P2, P3} whose underly-
ing communication is based on a tree topology. The process
P0 is the root of the tree. Processes P1 and P2 are the chil-
dren of P0 (i.e., (0 � 1) ∧ (0 � 2)) and P3 is the child of P2

(i.e., 2 � 3). Starting from a state where every process is
green, P0 initiates a diffusing computation throughout the
tree by propagating the red color towards the leaves. The
leaves reflect the diffusing computation back to the root by
coloring the nodes green. Afterwards, when all processes
become green again, the cycle of diffusing computation re-
peats.

When the root process (i.e., the node whose parent is it-
self) is green, it starts a session of diffusing computation



by changing its color to red and toggling its session num-
ber, which is a binary value. If a process Pj (0 ≤ j ≤ 3)
is green and its parent is red and its session number is not
the same as its parent then it copies the color and the ses-
sion number of its parent to propagate the wave of diffusing
computation. If a process Pj (0 ≤ j ≤ 3) is red and all its
children are green and have the same session number as Pj

then Pj changes its color to green to reflect back the wave
of diffusing computation.

In each session of diffusing computation, every process Pj

meets one of the following requirements: (i) Pj and its par-
ent have both started participating; (ii) Pj and its parent
have both completed the current session of diffusing compu-
tation; (iii) Pj has not started participating in the current
session whereas its parent has, and (iv) Pj has completed
participating in the current session whereas its parent has
not. These requirements identify the program invariant.

Fault transitions can perturb the color and the session
number of the processes. Also, faults may perturb the un-
derlying communication topology of the program by chang-
ing the parenting relationship in the tree.
Intermediate Nonmasking Program. The faults may
perturb the state of the DC program to the states where the
program may fall in a non-progress cycle or reach a dead-
lock state. For example, faults may perturb the program
to states where all processes are green and P0 is no longer
the root process. No program action will be enabled from
such states; i.e., deadlock states. To add recovery from such
states, FTSyn assigns a high atomicity process Phighj

to
each process Pj (0 ≤ j < 4). A process Phighj

may add high
atomicity recovery actions to resolve some deadlock states.
Adding Presynthesized Detectors. To refine the guard
of high atomicity actions, FTSyn automatically identifies
the interface of the required component. The component
interface is a triple 〈X, R, i〉, where X is the detection pred-
icate of the required component, R is a relation that repre-
sents the topology of the required component, and i is the
index of the process that performs the local write action af-
ter the detection of X. Using the interface of the required
presynthesized component, the synthesis algorithm queries
an existing library of presynthesized components. The syn-
thesis algorithm automatically instantiates an instance of
the template action presented in Section 3 with the appro-
priate local condition. The local conditions are automat-
ically identified based on the set of readable variables of
each process.
Interference-freedom. The interference-freedom requires
the synthesized program to provide recovery in the pres-
ence of faults, and satisfy the specification of the DC pro-
gram in the absence of faults. Currently, FTSyn reduces
the interference-freedom requirements to the satisfiability
problem and automatically verifies them using SAT solvers.
Although the synthesized nonmasking program is correct by
construction, we verified the synthesized program using the
SPIN model checker to gain more confidence on the imple-
mentation of FTSyn.
Complexity. The verification of interference-freedom and
the addition of presynthesized components can be done in
polynomial time in the state space of program-component
composition (cf. [9] for proof).

5. CONCLUSION AND FUTURE WORK
In this paper, we presented a case study for adding presyn-

thesized fault-tolerance components to programs using a
hybrid synthesis method (presented in [9]) that combines
heuristics presented in [8] with pre-synthesized detectors
and correctors. Specifically, we showed how we add presyn-
thesized detectors and correctors [6] to fault-intolerant dis-
tributed programs that have hierarchical topology. This case
study extends the scope of synthesis using presynthesized
components to the cases where we (i) use hierarchical com-
ponents, and (ii) simultaneously add multiple components.
Currently, except the extraction of the components from
an existing library of presynthesized components, we auto-
matically perform other steps of the synthesis (e.g., com-
ponent specification, interference-freedom verification). As
an extension to this work, we plan to apply efficient compo-
nent extraction techniques where we identify the appropriate
components during synthesis. Also, we plan to extend this
work to programs with higher number of processes and more
complicated topologies.
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