

Toward Specification and Composition
 of BoxScript Components

H. Conrad Cunningham
Computer & Information Science

University of Mississippi
(662) 915-5358

cunningham@cs.olemiss.edu

Yi Liu
Computer & Information Science

University of Mississippi
(662) 915-7602

liuyi@cs.olemiss.edu

Pallavi Tadepalli
Computer & Information Science

University of Mississippi
(662) 915-7602

pallavi@cs.olemiss.edu

ABSTRACT
BoxScript is a Java-based, component-oriented programming
language whose design seeks to address the needs of teachers and
students for a clean, simple language. This paper briefly
describes BoxScript and presents the authors’ preliminary ideas
on specification of components and their compositions.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verification –
class invariants, formal methods, programming by contract.

General Terms
Design, Languages, Verification.

Keywords
Component, composition, specification, BoxScript.

1. INTRODUCTION
The goal of component-oriented programming is to enable a
software system to be built quickly and reliably by assembling
separately developed software components to form the system.
The system should be flexible enough to be readily adapted to
changing requirements by replacing, adding, or removing
components. The concepts and languages that support this
approach should be taught to students in computing science and
software engineering programs.
In 2002 the first author taught an advanced software engineering
class focused on Component Software in which the second and
third authors were students [4]. The class used an approach to
design similar to the “UML Components” approach of Cheesman
and Daniels [2]. For the programming projects, the class used the
Enterprise JavaBeans (EJB) component model and technology.
EJB is a component model for building server-side, enterprise-
class applications [11]. The complexity of the EJB technology
meant it was not ideal for use in an academic course. The
technology got in the way of teaching the students how to “think
in components” cleanly. The students had to map their designs
into the EJB technology [2, 7] and struggle to master enough of
the technology to complete their term projects.
As a result, the second author undertook the design of a simple,
component-oriented language with features that support its use in
teaching. This language, called BoxScript, is described in section
2. Section 3 discusses the authors’ preliminary ideas on how to
specify BoxScript components and their composition formally
and section 4 summarizes and identifies areas for further work.

2. BOXSCRIPT
BoxScript is a Java-based, component-oriented programming
language whose design seeks to address the needs of teachers and
students for a clean, simple language. The component concept is
shown in Figure 1 [5].

A component is called a box. A box is a strongly encapsulated
module that hides its internal details while only exposing its
interfaces. There are two types of interfaces. A provided interface
describes the operations that a box implements and that other
boxes may use. A required interface describes the operations that
the box requires and that must be implemented by another box. A
BoxScript interface is represented syntactically by a Java
interface, that is, by a set of related operation signatures. Each
occurrence of an interface in a box has an interface handle, which
identifies that occurrence uniquely within the box, and a type,
which is the Java interface type. Each box has a corresponding
box description (.box) file that gives the needed declarations.
An abstract box is a box that describes the provided and required
interfaces but does not implement the provided interfaces. An
abstract box should be implemented by concrete boxes, i.e.,
atomic or compound boxes. Figure 2a shows an abstract box
description DateAbs. Its provided interface DayCal calculates
the day of the week for a date. Figure 2b shows another abstract
box description CalendarAbs, which has one provided and one
required interface. Its provided interface Display takes the time
range and displays the calendar accordingly.

An atomic box is the basic element in BoxScript. It does not
contain any other boxes. It must supply an implementation for

Component 1 Component 2

interface

inner
component

provided required provided required

Figure 1. Components and Their Interconnections

abstract box DateAbs
{ provided interface DayCal Dc;
 //Dc is handle of interface DayCal
}

Figure 2a. DateAbs.box
abstract box CalendarAbs
{ provided interface Display Dis;
 required interface DayCal DayC;
}

Figure 2b. CalendarAbs.box

each provided interface, that is, a Java class that implements
the interface. The description of an atomic box gives the box
name and, if appropriate, the name of the abstract box it
implements. It also gives its provided and required interfaces by
listing their interface types and handles. Figure 3a and 3b show
atomic box descriptions Date and Calendar. Date implements
DateAbs and Calendar implements CalendarAbs.

A compound box is a box composed from other boxes. It does not
implement its provided interfaces, but uses the implementations
provided by its constituent boxes. Each constituent box is given
an identifier, called its box handle, to enable it to be uniquely
identified as a participant within the composition. The box
description for a compound box not only supplies the information
given in the atomic box, but also specifies (1) the boxes from
which this compound box is composed, (2) the sources of its
provided and required interfaces, and (3) the connection
information that describes how the constituent box interfaces are
“wired” together. To provide flexibility, a compound box can be
declared to be composed from either concrete or abstract boxes.
BuildCalendar (in Figures 4a and 4b) is composed from
abstract boxes DateAbs and CalendarAbs. When we configure
BuildCalendar, we substitute concrete boxes such as Date
and Calendar for the corresponding abstract boxes.

BoxScript uses the box handles to expose and connect the
interfaces of the constituent boxes. The composed from
declaration in BuildCalendar assigns boxD and boxC as the
box handles for DateAbs and CalendarAbs, respectively. The
provided interface and required interface
declarations give the types of the interfaces, their interface
handles, and their sources. The source is a box handle and
interface handle associated with a constituent box. In
BuildCalendar, interface handle D identifies an interface of
type Display that is mapped to interface handle Dis of the box
with box handle boxC (i.e., CalendarAbs). The connect
statement connects a required interface of one box to a provided
interface of another. In BuildCalendar, the required interface
with handle DayC of the box with box handle boxC (i.e.,
boxC.DayC) is connected to the provided interface with handle
Dc of the box with box handle boxD (i.e. boxD.Dc).

The composition of boxes into a compound box hides all provided
interfaces that are not explicitly exposed and must expose every
required interface that is not wired to a provided interface of a
box within the composition. In the example, provided interface
Display is exposed. Figures 5a and 5b illustrate the composition
process.

Atomic and compound boxes may either be standalone or
implementations of abstract boxes. All the implementations of an
abstract box are variants of the abstract box. The intention is that
one variant can be safely substituted for another. When one box
substitutes for another, the substitute must satisfy the specification
of the original box. A variant’s provided interfaces should supply
at least the operations of the abstract box and the variant’s
required operations should be at most those of the abstract box.

3. SPECIFICATION
In BoxScript, as in the Cheesman-Daniels approach [2], one basic
unit for specifying functionality is the interface. An interface is a
set of operation signatures (name, parameter types and order, and
return value types) that are related. BoxScript uses Java interfaces
for its interface types.
In the Cheesman-Daniels approach, the semantics of an interface
is specified in terms of an interface information model [2], which
is expressed graphically as a UML type (class) diagram
augmented by Object Constraint Language (OCL) [12] invariants.
For BoxScript, we simplify the presentation and consider the
information model to consist of a pair (V,I), where V is a set of
abstract variables representing the abstract state of the component
instance associated with the interface and I is an invariant
representing the valid values of the abstract state.
An invariant is an assertion that must be kept true in all states of a
box that are visible to its clients [6]. We attach invariants to an
interface to specify the unchanging properties of the objects that
implement the interface. In the model, symbol I denotes the
conjunction of all the invariants attached to an interface.

DayCal

DateAbs CalendarAbs
provided
interfaces

required
interfaces

DayCal Display
Dc Dis

DayC

Figure 5a. DateAbs and CalendarAbs

provided
interfaces

BuildCalendar

DateAbs CalendarAbs

provided
interfaces

required
interfaces

DayCal Diaplay

DayCal

Dc Dis

DayC

Figure 5b. Composition

provided
interfaces

Display
D

provided
interfaces

boxD boxC

 abstract box BuildCalendarAbs
 { provided interface Display D;}

Figure 4a. BuildCalendarAbs.box
 box BuildCalendar implements

 BuildCalendarAbs
 { composed from DateAbs boxD,

 CalendarAbs boxC;
 // boxD is box handle for DateAbs
 // boxC is box handle for CalendarAbs
 provided interface

 Display D from boxC.Dis;
 connect boxC.DayC to boxD.Dc;
 }

Figure 4b. BuildCalendar.box

box Date implements DateAbs
{ provided interface DayCal Dc; }

Figure 3a. Date.box
box Calendar implements CalendarAbs
{ provided interface Display Dis;
 required interface DayCal DayC;
}

Figure 3b. Calendar.box

We specify the semantics of an individual operation using
precondition and postcondition assertions. A precondition
expresses the requirements that any call of the operation must
satisfy. That is, it gives valid values of the operation arguments
and the interface’s abstract state from which the operation can be
safely called. A postcondition expresses properties that are
ensured in return by the execution of the call. It gives the results
of the operation in terms of the arguments and abstract state. We
require any operation that is called with the precondition true to
terminate eventually with the postcondition true.
To provide precise specification about the relationships of
operations calls to each other, we can include history sequences
[3], which record the sequence of operation calls. This allows
assertions about the sequences to appear in the invariants,
preconditions, and postconditions.
A box interface x extends box interface y (syntactically) if and
only if type(x) = type(y) or type(y) extends type(x) in the Java
type system. That is, all the operation signatures in y also appear
in x, but x may have additional operations. Type extension does
not allow either covariant or contravariant changes to operations.
Box interface x satisfies interface y when x provides at least the
operations required by y and the operations of x have an
equivalent meaning to the matching operations in y. More
formally, box interface x satisfies box interface y if and only if:

• x extends y

• I(x) & C(x,y) ⇒ I(y)
• (∀m : m ∈ y :
 (pre(y,m) & C(x,y)& I(y) ⇒ pre(x,m))
 & (post(x,m)& C(x,y)& I(x) ⇒ post(y,m)))
Above, I(x) refers to the invariant for x and pre(x,m) and
post(x,m) refer to the precondition and postcondition,
respectively, for operation m on interface x. Assertion C(x,y)
is a coupling invariant that relates the equivalent aspects of the
interface information models for x and y.

The above definition of satisfaction is motivated by Meyer’s
treatment of inheritance in the design by contract approach (and
the Eiffel language) [8] and the concept of a coupling invariant in
program and data refinement [9].
The second basic unit of specification is the box. A box is a
program module that encapsulates some functionality behind its
provided interfaces. A client of the box may call an operation on
a provided interface. To carry out this operation, a box may
invoke operations on its required interfaces, each of which is
connected to a provided interface of some box. The specification
for a provided interface must be satisfied by the implementation
of the box; the specification for a required interface must be
satisfied by a provided interface of some box.
A box’s information model is formed by joining the information
models of its provided interfaces. It may have new abstract state
variables and a box invariant that defines the validity of the box’s
state. For a box B, let I(B) be its box invariant, C(B) be the
coupling invariant that ties it to the interface information models,
and prov(B) be the provided interfaces. For any box B, it must
be the case that:

(∀p: p ∈ prov(B): I(p)) & C(B) ⇒ I(B)

An atomic box must supply implementations for its provided
interfaces as a cluster of Java classes. The implementations of the
interfaces within an atomic box may interact directly with each
other and share internal state. A provided interface thus must
preserve the invariants of all the box’s provided interfaces [10]. A
convenient way to achieve this is for all of the provided interfaces
of an atomic box to have the same information model (V,I).
A compound box composes one or more other boxes to form the
“larger” box. As is the case with any box, a compound box has a
specification as described above. It has a box information model
(i.e., abstract state and box invariant) and interface specifications
for the provided and required interfaces. The box invariant ties
together the information models of the provided interfaces to form
the information model for the compound box.
As with the atomic box, a compound box must provide
implementations for its provided interfaces and it may use its
required interfaces in doing so. However, unlike the atomic box,
the compound box defers the implementation of a provided
interface to one of its constituent boxes. The interface handle in
the compound box is either the same as in the constituent box or it
may be an alias that is linked to an interface of the constituent
box. Similarly, a required interface of the compound box may be
a required interface of one or more constituent boxes. A
constituent box may have provided interfaces that are not exposed
by the compound box. However, a required interface of a
constituent box must either be exposed outside the compound box
or be satisfied by some provided interface within the compound
box. Thus the box invariant for a compound box must relate the
properties expected for its interfaces to the related properties of
the corresponding interfaces of constituent boxes.
More formally, for any compound box B, the following must
hold:

• (∀p: p ∈ prov(B): I(p)) & C(B) ⇒ I(B)
• (∀p: p ∈ prov(B):
 (∃D,q: D ∈ const(B) & q ∈ prov(D)
 & q = alias(B,p): q satisfies p))
• (∀D,r: D ∈ const(B) & r ∈ req(D):
 (∃s: s ∈ req(B) & r = alias(B,s):
 s satisfies r) OR
 (∃E,q: E ∈ const(B) & q ∈ prov(E)
 & connected(B,r,q): q satisfies r))
In the above, const(B) denotes the set of boxes that are
composed to form compound box B, alias(B,q) is the function
that maps an interface q of compound box B to an interface in a
constituent box, req(B) is the set of required interfaces of box B
and connected(B,r,p) is an assertion that required interface r
is connected to provided interface p. This information is available
from the box description. The box invariant may be used in
showing that one interface within the box satisfies another.
Consider a valid relationship between a concrete box B and an
abstract box A that it implements. Clearly, if abstract box A
specifies the presence of a provided interface p, then concrete box
B must have a provided interface that satisfies p. If concrete box
B has a required interface r, then abstract box A must specify a
required interface that satisfies r. In terms of operations, the
provided interfaces of B should supply at least the operations of A,
and the required operations of B should be at most those of A. A

similar situation occurs if we consider an abstract box that extends
another abstract box.
More formally, box B satisfies box A if and only if:
• I(B) & C(A,B) ⇒ I(A)
• (∀p: p ∈ prov(A): (∃q: q ∈ prov(B):
 handle(q) = handle(p) & q satisfies p))
• (∀r: r ∈ req(B):(∃s: s ∈ req(A):
 handle(r) = handle(s) & s satisfies r))
Above, C(A,B) denotes a coupling invariant for the refinement
of the information model when replacing A by B. In particular,
C(A,B) serves as the coupling invariant for showing that the
interfaces of B have the needed satisfaction relationship with the
corresponding interfaces of A. The notation handle(p) refers to
the interface handle of interface p.

A compound box may be composed of abstract boxes. At runtime,
an instance of a variant of the abstract box is configured into the
instance of the compound box. As noted above, the variant must
satisfy the specification for the abstract box it implements. That
is, the variant is the same as the abstract box from the perspective
of its specification. Thus the box invariant of the compound box
can transparently address the different variants.

4. CONCLUSION
BoxScript is a Java-based, component-oriented programming
language that is under development by the authors. Its design
seeks to address the needs of teachers and students by providing a
simple and clean language, yet one that can be used to solve
practical problems. It introduces a notation for components and
their composition but uses the Java language (which is familiar to
most students) to express the internal details of components.
This paper briefly describes the concepts of BoxScript and
presents the authors’ preliminary ideas on formal specification of
BoxScript components and their compositions. Although formal
specification and verification were not design goals for BoxScript,
its relatively simple design, which is based on strongly
encapsulated modular units, seems to be amenable to the
application of formal techniques. The ideas outlined in this paper
do seem promising, but considerable work is needed to elaborate
the formalism and experiment with the pragmatics of the
approach. In particular, several examples need to be worked out
to demonstrate the concepts and techniques. It will also be helpful
to adapt the BoxScript approach to enable use of techniques and
tools such as those associated with the Java Modeling Language
(JML) [6].
The approach sketched in this paper is likely insufficient to
capture the full semantics of calls to the required interfaces, in
particular, calls that may lead to reentrance into the calling box
(e.g., call-backs). The greybox approach [1] or a similar technique
may be needed to enable verification of compound boxes.
This paper approaches specification of program semantics in a
manner that is language-oriented, that is, somewhat bottom-up
and compositional. The ideas should also be addressed from a
software engineering perspective, seeking techniques that can be
applied effectively in a more top-down, decompositional manner.

5. ACKNOWLEDGMENTS
This work was supported, in part, by a grant from Acxiom
Corporation titled “The Acxiom Laboratory for Software
Architecture and Component Engineering (ALSACE).” The
design and implementation of BoxScript is part of a Liu’s
dissertation project under the direction of Cunningham. We thank
the reviewers for their many helpful comments on this paper.

6. REFERENCES
[1] M. Büchi and W. Weck. The Greybox Approach: When

Blackbox Specifications Hide Too Much, Technical Report
No. 297a, Turku Centre for Computer Science, Finland,
August 1999.

[2] J. Cheesman and J. Daniels. UML Components: A Simple
Process for Specifying Component-Based Software, Addison
Wesley, 2001.

[3] H. C. Cunningham and Y. Cai. “Specification and
Refinement of a Message Router,” In Proceedings of the
Seventh International Workshop on Software Specification
and Design, IEEE, December 1993.

[4] H. C. Cunningham, Y. Liu, P. Tadepalli, and M. Fu.
“Component Software: A New Software Engineering
Course,” Journal of Computing Sciences in Colleges, Vol.
18, No. 6, pp. 10-21, June 2003.

[5] W. Fleisch. “Applying Use Cases for the Requirements
Validation of Component-Based Real Time Software,” In
Proceedings of the Second IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing, p. 75,
IEEE, 1999.

[6] G. T. Leavens and Y. Cheon. “Design by Contract with
JML,” draft paper, Iowa State University, August 2004.

[7] Y. Liu and H. C. Cunningham. “Mapping Component
Specifications to Enterprise JavaBeans Implementations,” In
Proceedings of the ACM Southeast Conference, pp. 177-181,
April 2004.

[8] B. Meyer. Object-Oriented Software Construction, Second
Edition, Prentice Hall, 1997.

[9] C. Morgan. Programming from Specifications, Prentice Hall
International, 1994.

[10] P. Müller. Modular Specification and Verification of Object-
Oriented Programs, Lecture Notes in Computer Science
2262, Springer-Verlag, 2002.

[11] I. Singh, B. Stearns, M. Johnson, and the Enterprise Team.
Designing Enterprise Applications with the J2EETM
Platform, Second Edition. Addison Wesley, 2002.

[12] J. Warmer and A. Kleppe. The Object Constraint Language:
Precise Modeling with UML, Addison-Wesley, 1999.

