
Integration of Legacy Systems in Software Architecture

Maria Wahid Chowdhury
Department of Computer Science

University of Victoria
PO Box 3055, STN CSC

Victoria, BC, Canada V8W 3P6
Email: mwchow@uvic.ca

Phone no: 250-477-9420

Muhammad Zafar Iqbal
Professor & Head,

Computer Science and Engineering Department,
Shah Jalal University of Science and Technology

Sylhet-3114, Bangladesh
Email: i_am_zafar@yahoo.com

Phone: 880-821-713491(Ext: 154)

ABSTRACT
Most Companies have an environment of disparate legacy
systems, applications, processes and data sources. Maintaining
legacy systems is one of the difficult challenges that modern
enterprises are facing today. The commercial market provides a
variety of solutions to this increasingly common problem of
legacy system modernization. However, understanding the
strengths and weaknesses of each modernization technique is
paramount to select the correct solution and the overall success of
a modernization effort. This paper examines the strengths and the
weaknesses of several modernization techniques in order to help
engineers to select the right technique to modernize a legacy
system.

Categories and Subject Descriptors
D.3.3 [Management]: Life Cycle

General Terms
Design.

Keywords
Legacy system, reengineering, integration.

1. INTRODUCTION
Software systems are critical assets for companies and incorporate
key knowledge acquired over the life of an organization.
Companies spend a lot of money on software systems. To get a
return on that investment, these software systems must be usable
for a number of years. The lifetime of software systems is very
variable though many large systems remain in use for many years.
Organizations rely on the services provided by these systems and
any failure of these services would have a serious effect on the
day to day running of business. These old systems have been
given the name legacy systems.

Legacy systems incorporate a large number of changes
continuously to reflect evolving business practices. Repeated
modification has a cumulative effect on system complexity.
Usually, a legacy system has to pass through many developers
evolving over decades to satisfy new requirements. These systems
are matured, heavily used, and constitute massive corporate assets.
Today, legacy systems must be designed to be capable of
integrating with other applications within the enterprise. However,
scrapping legacy systems and replacing them with more modern
software involves significant business risk. Replacing a legacy
system is a risky business strategy for a number of reasons [4]: a)
There is rarely a complete specification of the legacy system.
Therefore, there is no straightforward way of specifying a new
system, which is functionally identical to the system that is in use,
b) Business processes and the ways in which legacy systems
operate are often inextricably inter-twined. If the system is
replaced, these processes will also have to change, with
potentially unpredictable costs and consequences, c) Important
business rules may be embedded in the software and may not be
documented elsewhere, d) New software development is itself
risky because there may be unexpected problems with a new
system. In general, a legacy system has following characteristics:

1. High maintenance cost.
2. Complex structure.
3. Obsolete support software.
4. Obsolete hardware.
5. Lack of technical expertise
6. Business critical.
7. Backlog of change requests.
8. Poorly documented.
9. Embedded business knowledge.
10. Poorly understood.

2. ARCHITECTURE DESIGN
CONSTRAINTS AND ISSUES

A legacy system significantly resists modification and evolution
to meet new and constantly changing business requirements.
Legacy systems have not been designed to accommodate changes
because of the following reasons:

• The Legacy system was designed for the immediate
needs. When constructed, it was not expected that it
would be in service for many years.

• There may be some constraints (as for example: low

cost) that were satisfied by the development of legacy
system.

 Before making any change, it is necessary to assess the feasibility
of making changes and to determine the impact of the changes on
the rest of the system. Due to the complex structure of legacy
systems, they require considerable effort to understand. The
challenge in the integration of legacy systems is to understand the
functionality, design, operation and performance of the system
and to anticipate the types of changes that will be required over
the integration steps. After years of maintaining, upgrading
and enhancing the legacy system, the user manuals and system
design documentation are often out of date, inaccurate, and fail to
reflect the current system's capabilities and operations. As a result
legacy system architectures are often poorly documented. This
emerges as a new kind of problem when integrating a legacy
system into an overall system architecture design and
specification.
Architectural issues include gross organization and global control
structure; protocols for communication, synchronization, and data
access; assignment of functionality to design elements; physical
distribution; composition of design elements; scaling and
performance; and selection among alternatives (an architectural
style). [1]. Some of the constraints found in integrating legacy
system are on how to deal with components, connectors,
semantics or topology.
Perhaps the most obvious component constraint relates to the
component types allowed by the architectural style. There are also
a number of constraints when one component needs or manages to
collaborate with other components. This includes collaborator
location and availability, information such as transfer protocol,
data format, schema and content (including method signatures and
interfaces) as well as architectural assumptions. Furthermore,
there may be constraints on the types of access that the
components must provide, e.g. interface access to the database, to
the application logic, or to internal objects of the component. We
must be careful about incompatible data and file formats,
hardware incompatibility, software dependency on hardware,
proprietary protocols and networks when integrating a legacy
system. Other problems posed by legacy systems are the absence
of clear interfaces, and insufficient encapsulation.
In summary, the most important issues to consider when
integrating a legacy system are:
1. Data: how data is going to be integrated. That is, identify and
link records on the same subject or other entity in disparate
systems. One solution is to use metadata. However, this leads to
one problem; because the same metadata can have different
meanings in different applications, companies must develop
custom interfaces between applications. Another approach is to
perform data integration at the semantic level (based on actual
content, not the metadata).
2. Connectivity to each component in the architecture.
3. Routing of messages between components.
4. Validation and transformation of data into and out of each
application.
5. Interfacing with each application based on its own syntactical
and semantic requirements.
6. There exist some security issues that must be addressed. We
must pay attention to the legacy system's security mechanisms.
7. Conformity to organizational and business process structures.
The legacy system must be adapted to new business policies.
The above issues make us wonder: What is the format in which
data is interchanged? How does the application interpret a

message it receives? What is the impact of changing a message
definition?

3. ARCHITECTURE DESIGN
STRATEGIES

There are basically two approaches to reuse legacy systems:
reengineering and integration. Re-engineering means re-
structuring. Re-structuring a legacy system's code requires that the
system and code are well documented and/or can be automatically
analyzed and transformed by an automatic process. Re-
engineering a system is slow. Integration is faster and cheaper
than re-engineering. To integrate a legacy system, we must define
the role of each subsystem, define interfaces for each subsystem,
and build an object wrapper for each subsystem.
An integration strategy can be intrusive or non-intrusive. An
integration strategy that requires knowledge of the internals of a
legacy system is called intrusive (white box) integration, while
integration strategy that requires the knowledge of external
interfaces of a legacy system is called non-intrusive (black box)
integration. A connection to an application system is considered
non-intrusive if an existing entry or exit point is used. If
application source code is modified, the connection is considered
intrusive. Intrusive connections are used when custom coding is
developed to handle specific application needs or to increase
performance. Non-intrusive connections are recommended for use
if the information required from the application is already
available from an existing interface and the transaction volume is
low to moderate. Intrusive integration requires an initial reverse
engineering process to gain an understanding of the internal
system operation. After the code is analyzed and understood,
intrusive integration often includes some system or code
restructuring. There are two major approaches for legacy systems
integration: application integration and data integration.

3.1. Application integration
 The guiding philosophy behind this approach is that applications
contain the business logic of the enterprise, and the solution lies in
preserving that business logic by extending the application's
interfaces to interoperate with other or sometimes newer
applications. There are some major classes of application
integration solutions given below:

User Interface Modernization: The user interface (UI) is
the most visible part of a system. Modernizing the UI improves
usability and is greatly appreciated by final users. A common
technique for UI modernization is Screen scraping, as shown in
Figure 1, consists of wrapping old, text-based interfaces with new
graphical interfaces. [2]

Figure 1. Legacy System Wrapping Using Screen Scrapping

Point-to-point integration: In Point-to-point integration,
communication channels are developed between each pair of
applications. Such a solution is expensive, because the number of

interfaces required grows exponentially. With n applications, n*(n
- 1) interfaces may be required since each application may need an
interface with other application. The impact of minor changes in
communication requirements and that of adding a new application
is significant. Maintenance is clearly a problem due to the number
of nodes.

Figure 2 (a). point-to-point integration

Message routers: Point-to-point integration exponentially
increases the number of interfaces. This can be reduced to a linear
increase through the use of middleware � message-oriented or
based on the Common Object Request Broker Architecture
(CORBA).

Figure 2(b). message router

The solution requires interfacing each application to the message
bus through an adapter. Each application has only one
programmatic interface, the message bus. Applications
communicate by publishing a message to the bus, which delivers
message to those who subscribe. Subscription topics of queues let
subscribers receive only messages they are interested in. The
Middleware product may also provide value-added services such
as guaranteed delivery, certified delivery, transactional messaging,
message transformation (using brokers) and so on. [1]

CGI integration: The Common Gateway Interface (CGI) is a
standard for interfacing external applications with information
servers, such as HTTP or Web servers. Legacy integration using
the CGI is often used to provide fast web access to existing assets
including mainframes and transaction monitors. [2]

Figure 3. CGI Integration

3.2. Data Integration
 The guiding philosophy behind integration of data is that the real
currency of the enterprise is its data. The implied business logic in
the data and metadata can be easily manipulated directly by
applications in the new architecture of the enterprise. Some data
integration solutions are described below:

XML Integration: The Extensible Markup Language (XML�)
is a broadly adopted format for structured documents and data on
the Web. [2]

Figure 4. XML Wrapping

XML is a simple and flexible text format derived from standard
generalized markup language (SGML) (ISO 8879) and developed
by the World Wide Web Consortium® (W3C). XML is expanding
from its origin in document processing and becoming a solution
for data integration.

Data replication: Database replication is the process of
copying and maintaining database objects in multiple databases
that make up a distributed database system.

Figure 5. Data Replication

Replication provides users with fast, local access to shared data
and greater availability to applications because alternative data
access options exist. Even if one site becomes unavailable, users
can continue to query, or even update, data at other locations.
Database replication is often used to enable decentralized access
to legacy data stored in mainframes.

4. EXAMPLE OF GENERIC
ARCHITECTURES

Java J2EE Connector architecture: Java J2EE Connector
architecture defines a standard set of services that allow
developers to quickly connect and integrate their applications with
virtually any back-end enterprise information system. These
services are supplied as "plug-in" connectors.

Sun ONE: Sun Open Net Environment (Sun ONE) is Sun's
standards-based software vision, architecture, platform, and

expertise for building and deploying Services on Demand. The
network is all about servicing the communities, stockholders,
customers, and employees.

OMG MDA: Computing infrastructures are expanding their
reach in every dimension. New platforms and applications must
interoperate with legacy systems. MDA is a new architectural
approach that provides companies with the tools necessary to
integrate all the various middleware technologies (such as
CORBA, EJB, XML, SOAP and .NET). MDA addresses the
complete life cycle of designing, implementing, integrating and
managing applications and data using open standards. MDA
provides an architecture that assures portability, cross platform
interoperability, platform independence, domain specificity, and
productivity.

B2B: B2B integration or B2Bi is basically about the secured
coordination of information among businesses and their
information systems.

EAI: As the need to meet increasing customer and business
partner expectations for real-time information continued to rise,

Figure 6. Enterprise Application Integration

companies are forced to link their disparate systems to improve
productivity, efficiency, and, ultimately, customer satisfaction.
EAI is the process of creating an integrated infrastructure for
linking disparate systems, applications, and data sources across
the corporate enterprise.

CORBA: CORBA allows applications to communicate with one
another no matter where they are located or who has designed
them. With CORBA, users gain access to information
transparently, without them having to know what software or
hardware platform it resides on or where it is located on an
enterprises� network. This characteristic makes CORBA an
excellent technology to integrate legacy systems.

XML: XML improves the web functionality by providing more
flexible and adaptable information identification (tags).

SOAP: The Simple Object Access Protocol (SOAP) is a standard
that specifies how two applications can exchange XML
documents over HTTP.

Java RMI: Java Remote Method Invocation (RMI) enables the
programmer to create distributed Java technology-based
applications in which methods of remote java objects can be
invoked from other Java virtual machines, possibly on different
hosts. Java RMI is well suited to be used in the application level
of integration.

JDBC: JDBC technology is an API that lets user access to
virtually any tabular data source from the Java programming
language. The JDBC API allows developers to take advantage of
the Java platform's "Write Once, Run AnywhereTM" capabilities
for industrial strength, cross-platform applications that require
access to enterprise data.

DCOM: The Distributed Component Object Model (DCOM) is
a protocol that enables software components to communicate
directly over a network in a reliable, secure, and efficient manner.

5. CONCLUSION
There are different approaches to the modernization of legacy
assets including reengineering (white-box) and wrapping (black-
box). Before starting any legacy modernization effort, every
possible option should be considered and business and strategic
factors also need to be considered for ensuring long-term success.
Present-day systems are the potential source of future legacy
problems. To eliminate future legacy problems from present-day
systems, systems should be built by using modular engineering
and configurable infrastructure.

6. REFERENCES
[1] Architectural Integration Styles for Large-Scale Enterprise
Software system, By Jonas Anderson, Pontus Johnson,
Department of industrial and Control Systems. Royal Institute of
Technology, Sweden.

[2] A Survey of Legacy System Modernization Approaches:
http://www.sei.cmu.edu/publications/documents/00.reports/00tn0
03.html
[3] OMG Model Driven Architecture, http://www.omg.org/mda/
[4] Software Engineering, Sixth Edition, By: Ian Sommervile.

