Automatic Extraction of Sliced Object State Machines for
Component Interfaces

Tao Xie

David Notkin

Department of Computer Science & Engineering
University of Washington
Seattle, WA 98195, USA

{t aoxi e, not ki n}@s.

ABSTRACT

Component-based software development has increasinghedja
popularity in industry. Although correct component-ifitgee us-
age is critical for successful understanding, testing, @ude of
components, interface usage is rarely specified formallprac-
tice. To tackle this problem, we automatically extractefiobject
state machines (OSM) for component interfaces from thewexec
tion of generated tests. Given a component such as a Jaw clas
we generate a set of tests to exercise the component andt¢bke
concrete object states exercised by the tests. Becauserttizen of
exercised concrete object states and transitions amosg ttates
could be too large to be useful for inspection, we slice cetecob-

ject states by each member field of the component and usé slice
states to construct a set of sliced OSM’s. These sliced Op’s
vide useful state-transition information for helping urgtand be-
havior of component interfaces and also have potential &g
used in component verification and testing.

1. INTRODUCTION

washi ngt on. edu

the form ofobject state maching®©SM) to characterize behavior

of component interfaces and dynamically extract OSMs frain-a
matically generated tests for component interfaces. We pay-
posed OSM in our previous work [27]. A state in an OSM repre-
sents the state that a component object is in at runtime.n&itian

in an OSM represents method calls invoked through the coemon
interface transiting the component object from one stasatiher.
States in an OSM can be concrete or abstract. A concrete state
of a component object is characterized by the values of adisir
tively reachable fields of the component object. A concre&VO

is an OSM with concrete states. Given a component, we gener-
ate a set of tests for the component and then collect all segtc
concrete states of component objects and transitions ¢(dethls
through component interfaces) among states. These callstdtes
and transitions are used to construct a concrete OSM; hoyteee
concrete OSM is often too complicated to be useful for undads

ing. To address this problem, our previous work has proptsed
observer abstractiompproach [27]; the approach uses the return
values of observers (interface methods with non-void resfum-
voked on a component object as an abstract state in an OSKI. Thi

Component-based software development has become an emergpaper proposes a new supplementary approach of slicingcagten

ing discipline that manages the growing complexity of seftsv
systems [18]. In component-based software developmeitiyare
components are the building blocks of a software system. nWhe
component users try to reuse an existing component in tppli-a
cations, they need to understand behavior of the companieir-
face, such as usage rules that they are required to obey ectexp
results of some component usage scenarios. When compasent d
velopers or users test their components before being ezlears
reused, they need to know whether their components behave co
rectly against some usage rules or expectations. Howevprac-
tice, component-interface-usage rules or behavioralifipations
are usually not equipped for many components. Even if usalge r
or behavioral specifications are provided, they are oftésriinally
written in interface documentation such as Java API doctiznen
tion [17], being prone to errors or difficult to be understood

In this work, among a variety of specifications, we proposgsto

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SAVCBS04 , Newport Beach, California USA

state by each member field of the compohemifferent from our
previous observer abstraction approach [27], our new @gpris
not affected by the availability or complexity of observarsom-
ponent interfaces. Our state slicing technique is inspinetiVha-
ley et al's model slicing by member fields in dynamically exting
component interfaces [22]; however, our new approach iracr
curate in characterizing component behavior and does noires
a good set of existing system tests for exercising companéstt
faces. In this work, we focus on components in the form of Java
classes and component interfaces in the form of public nasti
classes; however, we expect the approach could be easiiyded
to components in other forms.

The rest of this paper is organized as follows. Section 2 de-
scribes a nontrivial illustrative example. Section 3 iduoes the
formal definition of an OSM. Section 4 illustrates the auttima
approach of extracting sliced OSM’s. Section 5 discussés ma
sues of the approach and proposes future work. Section érges
related work and Section 7 concludes.

We define state slicing or OSM slicing following the definitiof
model slicing by Whaley et al. [22]. The usediicingin these def-
initions differs from the one in a more common definition: gmam
slicing [21], which is closely related to some notion of degence.

public class LinkedList extends AbstractSequenti al Li st
inplements List, Cloneable, java.io.Serializable {
private transient Entry header
= new Entry(null
private transient int size =0
private static final |ong serial VersionU D
= 876323262645176354L

null, null);

public LinkedList() {...}

public void add(int index, Mylnput elenent) {...}
public bool ean add(MWlnput o) {...}

public bool ean addAl |l (int index, Collectionc) {...}
public void addFirst(Mlnput o) {...}

public void addLast (Ml nput o) {...}

public void clear() {...}

public Object rermove(int index) {...}

public bool ean renove(M/Input o) {...}

public Object renmoveFirst() {...}

public Object renmoveLast() {...}

public Object set(int index, Mylnput elenment) {...}
public Object get(int index) {...}

public Listlterator listlterator(intindex) {...}
public Object getFirst() {...}

Figure 1: A LinkedList implementation

2. ILLUSTRATIVE EXAMPLE

As an illustrative example, we use a nontrivial data stnecta
LinkedList class, which is the implementation of linkeddig the
Java Collections Framework, being a part of the standard liav
braries [17]. Figure 1 shows declarations of LinkedLise$ds and
some public methods that we shall refer to in the rest of this p
per (these public methods either modify object states amthm-
caught exceptiong).This implementation uses doubly-linked, cir-
cular lists that have si ze field and eheader field, which acts as a
sentinel node. In addition, it also has a sta&c¢i al Ver si onUl D
field, which is used during serialization. It inheritavadCount
field from a super classbst r act Li st ; this field records the num-
ber of times the list has been structurally modified. Linkistibas
25 public methods, 321 noncomment, non-blank lines of cadd,
708 lines of code including comments and blank lines.

3. OBJECT STATE MACHINE

Figure 2: An overview of LinkedList concrete OSM (containing
only state-modifying transitions) exercised by generatetests

call on an object throws an uncaught exception, the objdotas
exception state represented by the type name of the exanefitie
exception-throwing method call transits the object from tfbject
state before the method call to the exception state.

An OSM can be deterministic or indeterministic. To help ehar
acterize indeterministic transitions, we have defined ttatistics
in a dynamically extracted OSM: transition counts and eimiss
counts [27]. Assume a transitiantransits state to s’, thetran-
sition countassociated with is the number of concrete states en-
closed ins that are transited te’ by t. Assumem is the method
call associated with, theemission counassociated witls andm
is the number of concrete states enclosed amd being at entries
of m (but not necessarily being transited 49. If the transition
count of a transition is equal to the associated emissiontctiue
transition is deterministic and indeterministic othemvis

The object states in an OSM can be concrete or abstract. A con-
crete OSM is an OSM where all states are concrete objectstate
We have proposed several techniques to represent objées$ gta
our previous work [24]; we use the WholeState technique e re
resent concrete object states in this work. Given an objbet,
WholeState technique collects the values of all fields reblenh
from the object and uses these field values to represent toeate
state of the object. When we encounter a reference-typenidic
non-null value during field-value collection, we use a lirization
algorithm [24] to collect the field value as the field name @f ¢ar-
liest collected aliased field; if we cannot find any earlielteztied
aliased field for the field, we collect its value as “mutll”. Two
concrete object states are nonequivalent if their reptaiens are
different. A set of nonequivalent concrete object statesaio con-

We have defined an object state machine for a component in our o gte object states any two of which are nonequivalent.

previous work [27]:

DEFINITION 1. Anobject state machin®SM)M of a compo-
nentcis a sextupleV = (1,0, S, 5, \, INIT) wherel, O, andS
are nonempty sets of method callscls interface, returns of these
method calls, and states @6 objects, respectivef NIT € S is
the initial state that the machine is in before calling anyisuctor
method of. § : S x I — P(S) is the state transition function and
A: S x I — P(O) isthe output function wherB(S) and P(O)

in a current states and receives a method calfrom I, it moves to
one of the next states specifieddfy,) and produces one of the
method returns given by(s, 7).

For example, there are 11 nonequivalent concrete objdessia
LinkedList exercised by tests generated in our test geioeratep
(Section 4.1). There are 161 transitions among these gtaobsd-
ing both state-modifying and state-preserving transsjorirhere
are two exception stateshdexOut Of BoundsExcept i on and
NoSuchEl ement Except i on. Figure 2 shows a concrete OSM (con-
taining only state-modifying transitions) exercised bpgted tests.
We have observed that the concrete OSM is too complex to be use

. .. ful for inspection.
are the power sets of S and O, respectively. When the machine i

To reduce the complexity of an OSM, we shall extract an ab-
stract OSM containing abstract states instead of conctatess
An abstract stateof an object is defined by aabstraction func-
tion [14]; the abstraction function maps each concrete statato a
abstract state. In this work, for each member field of a corapgn

When a method call in a component interface is executed, @n Un e define an abstraction function that maps each concretetsta

caught exception might be thrown. To represent the stateendre
object is in after an exception-throwing method call, weadtice a
special type of states in an OSMxception statesAfter a method

2We change thosebj ect argument types toy| nput so that we
can guide ParaSoft Jtest 5.1 [15] (being used in our testrgtoe
described in Section 4.1) to generate better argumsntsiput is

a class that contains an integer field

an abstract state characterized by the values of those fiedds-
able from the member field. The next section describes ttalslet
of the state slicing approach.

3We display OSM's by using the Grappa package, which is part of
graphviz [9].

4. SLICED-OSM EXTRACTION

Given a Java class, we automatically generate a set of tsts f
extensively exercising object states within a (small) sc¢pec-
tion 4.1). During the execution of the generated tests, ige shch
exercised concrete object state by member fields and cohstou
stract OSM’s (Section 4.2). For a member field with a refeeenc
type, we additionally conduct structural abstraction oa sliced
state to further abstract primitive field values reachabbenfthe
member field (Section 4.3).

4.1 Test Generation

Given a Java class, we first use Parasoft Jtest 5.1 [15] (a com-

mercial Java testing tool) to generate method argumentsdoh

Set testgen(Set thirdPartyTests,

int maxlterNum {
Set newTests = new Set();
Runtinmel nfo runtinelnfo = runAndCol | ect (thirdPartyTests);
Set nonEgArgLi sts = runti nel nfo. get NonEqAr gsLi sts();
Set frontiers = runtinmelnfo.getAfterlnitNonEqObj States();
for(int i=1;i<=maxlterNum && frontiers.size()>0;i++) {
Set newTestsForCurlter = new Set();
foreach (objState in frontiers) {
foreach (args in nonEgArgLists) {
Test newTest = nmkeTest(obj State, args);
newTest sFor Cur |l t er. add(newTest) ;
newTest s. add(newTest) ;

}

runtimel nfo = runAndCol | ect (newTestsFor Curlter);
frontiers = runtinel nfo.get NewNonEqObj St at es() .
}

return newTests;

public method of the class. Jtest generates a small set dfoehet }
arguments and invoke public methods with these argumetds af
invoking class constructors. For example, Jtest 5.1 geetao

tests for exercisingdd(Myl nput el enent) : Figure 3: Pseudo-code of the test-generation algorithm.

Test 1:
HLEESL tS? THPngwn;Cvait ggéau st(): ous !teratiqns. We continue the iteration; until we ha\{ehled the.
bool ean RETVAL = THI S. add(t0); maximum iteration number or the frontier set contains nacbj
Test 2: st
Myl nput t0 = new Myl nput (7);
Li nkedLi st THI S = new Li nkedList();
bool ean RETVAL = THI S. add(t0);

ates.

For the LinkedList example, we configure the maximum itera-
tion number as two. For illustration purpose, let us assuere h
that third-party tests contain only two tests (Tests 1 anitha&) we
have shown in the beginning of this section. Then in the fiesai
tion, we generate Tests 1 and 2; in the second iteration, nwergee
Tests 3 and 4 shown as below:

Jtest also allows the user to configure whether to generdteatu
ues as method arguments. For the sake of simplicity in ittist
results, we configure Jtest 5.1 not to generate null arguxadnes
for LinkedList.

A list of arguments for a method consists of all arguments re-
quired for invoking the method. Two lists of arguments foretihod
are equivalent if the concrete state of each argument innstdifit
is equivalent to the concrete state of the correspondingnaegt
in the second list. If an argument is of a primitive type, itg¢
crete state is represented by its primitive values. If anrment is
of Java built-inst ri ng, I nt eger, or another primitive-type wrap-
per, the concrete state of the argument is represented bhats
acter strings or corresponding primitive value. If argutseare of ..
other reference types, we use the WholeState techniquerioied 4.2 State Slicing
in Section 3) for comparing their state equivalence. Given a concrete state and a member field of the class, we pro-

We use ine Rosira ool (developed in ou previous viork [23, S0CE 4 abeactsale ehresenled by el o e mimber
24]) to monitor the execution of the test class generatedi®stJ it the member field is of a reference type. For example, in tie e
and generate new tests based on collected method argurfiéets. of Tests 1 and 2, th&Hl S object’s concrete states are represented
pseudo-code of our test-generation algorithm is presenté&iy- by the following object-field values:
ure 3 (adapted from our previous work [23]). The test genamat
algorithm receives a set of third-party generated tests (&est-
generated tests) and a maximum iteration number that sgecifi
how many iterations we shall use to grow concrete objecestat
We first run these third-party generated tests and collectirme
information from their execution; the collected runtimdoima-
tion includes the set of all nonequivalent non-construatethod
argument lists and nonequivalent object states exercisedgithe
execution.

Then in the first iteration, the frontier set (containing tisect
states to be fully exercised) includes those nonequivates at

Test 3:
Myl nput t0 = new Myl nput (0);
Li nkedLi st THI S = new Li nkedList();
bool ean RETVAL = THI S. add(tO0);
M/l nput t1 = new Myl nput(7);
bool ean RETVAL1 = THI S. add(t1);
Test 4:
Myl nput t0 = new Myl nput (7);
Li nkedLi st THI' S = new Li nkedLi st ();
bool ean RETVAL = THI S. add(tO0);
Myl nput t1 = new Myl nput (0);
bool ean RETVAL1 = THI S. add(t1);

Concrete object state at the end of Test 1:
si ze=1;
modCount =1;
seri al Versi onUl D=876323262645176354;
header . el ement =nul | ;
header . next . el enent . v=0;
header . next . next =header ;
header . next. previ ous=header;
header . previ ous=header . next ;

Concrete object state at the end of Test 2:
si ze=1;

modCount =1;

seri al Versi onUl D=876323262645176354;

exits of constructors exercised by the third-party teste it&fate header . el enent =nul | ;

each object state in the frontier set and each argument likeiset header. next . el enent . v=7;

of nonequivalent non-constructor-method argument lis¢saised header . next. next =header ;
header . next. previ ous=header;

by the third-party tests. For each combination of an objetesand
an argument list, we construct a test by invoking the cooeding
method with the argument list on the object state. We exeallite
constructed tests and collect runtime information. In these- alent concrete states are mapped to the same abstract/Aftte.

guent iteration, the frontier set includes those nonedgmisstates we generate abstract states at the entry and exit of a meéiipd ¢
exercised by the new tests but not exercised by any test ui-pre we generate a transition (characterized by the method ftait)

header . previ ous=header . next ;

When we slice these concrete object states bythe field, both
abstract-state representations arieZe=1; " and these two nonequiv-

& Field size sliced OSM of LinkedL ist

<init=()

addFirstim0)
add(m0)
addLastima)

add(id,m1)

remove(ii)
set(io,m1)
get(io)

addiio,m1) listiterator(io)

Add (07 ml v 7)[4
Addi0:1;m1 0744
[2is]

listlterator(io)

IndexOutOfBoundsException

removelast()
getFirst()

removerirst()
getlast()

remaovelast])
clear()
remowverRirst()

remove({m0) remove(il)

NoSuchElementException

addFirst{ma)
add(m0)
addLast{md)

remove(il) add(i,m1)

4]

Figure 4: A LinkedList OSM sliced by the si ze field

the abstract state at the method entry to the abstract dtéie a

(the descriptions of transition counts and emission coargsde-

method exit. Then we can construct an abstract OSM from test scribed in Section 3). In the bottom line of the detailed dgsion,

executions. Figure 4 shows a LinkedList OSM sliced byghee
field (displaying also exception states and transitionkea). Fig-
ure 5 shows a LinkedList OSM sliced by thedcount field (with-

out displaying exception states or transitions to thémje allow
the user to configure whether to display exception statesrand
sitions to them in a sliced OSM. By default, we do not display
state-preserving transitions in a sliced OSM in order ts@né a
succinct view. In Figure 4, the transition starting from tio@
“I NI T state is marked withsi ni t >(), which represents a con-
structor call. In general, each transition edge in an OSMasked
with a simplified representation of the method name and tigea
that correspond to the method calls of the transition. Whenet
are multiple nonequivalent argument lists of the same nuktitam-
siting one state to another, we group them into one singtesitra

we summarize the total number of transition counts and éoniss
counts for all the method calls in the transition. When thé¢hoe
calls in the transition exercise all existing argumentslir the
method, we additionally display “ALILARG”, such as in the details
for arenove(nD) in Figure 5. To present a more succinct view,
we group calls of different methods with the same startiragest
and ending state into a single transition edge if these rdethis
satisfy the following two properties: (1) the calls of eachthod
exercise all existing argument lists for the method (digpthwith
“ALL _ARG"); (2) the calls of each method are deterministic (their
transition counts are equal to their emission counts). Roeter-
ministic transitions, we highlight their simplified methodmes

tion edge. This grouping mechanism can be viewed as a form of and signatures in bold font. For example, one edgeobve(nD)

abstraction on transitions. When the user move the mousercur
over the edge, the details of method calls are displayed.efor
ample, the leftmost edge in Figure 4 shows the simplified oteth
name and signature fardd(i nt index, Ml nput elenent):

is highlighted in central Figure 4. This indeterminism icaties that
invokingr emove(n0) on alinked list containing one element does
not necessarily make the linked list empty. For example,suud

add(i 0, ml), where each parameter is represented as the com-case is to remove an element with the value of 0 from a link&td i

bination of the first letter of its type name and its parameteler
(starting from 0). The details of method calls in this lefoshtran-
sition are:

add(i 0: 7;
add(i 0:1;
[8/8]

mi.v:7;) 2/ -[4] 4]

ml. v: 0;)?/-[4]4]

wherent. v represents the field of the second argument, argu-
ment values or argument’s field values are shown followiedy thr-
gument names or argument’s field names separated’bgarid dif-
ferent arguments or fields are separated 56y For succinctness,
we do not display the “nonull” value for a non-null reference-type
field (“not_null” assignments are described in Section 3). A line
of description for method calls is in the form et?/mr![tc/ec]
wherem is the method call name and argument values,is the
return value if any (if a return is void or the method call theoan
exception, we display the return value as “~" and we do not dis
play “I"), tc is the transition count, anec is the emission count

“We do not show the LinkedList OSM sliced by the
serial VersionU D field in this paper because the class
does not modifyseri al Ver si onUl D and the extracted OSM is
trivial.

containing an element with the value of 7.

Extracted sliced OSM’s provide succinct views for summariz
ing interesting state-transition behavior exhibited bymponent.
For example, by inspecting and exploring Figure 4, we can con
veniently understand the conditions of throwing uncaugitep-
tions, which often indicate the sequencing constraintssirigia
component. For example, amdexQut Of BoundsExcept i on is
thrown when invokingyet (i 0) immediately after invoking a con-
structor. Previous research in inferring sequencing caims [1,
22, 28] could be effective in inferring this simple consttabut
might not be able to infer more complex constraints exthtig
our approach. One such a complex constraint is that if weki&vo
a constructoradd(n0) , r enovelast (), and finallyget (i 0) , an
I ndexQut OFf BoundsExcept i on is thrown. The reasons are that
previous research in inferring sequencing constraints doecon-
sider the internal states of a component but only the seguemier
among method calls invoked through a component interface.

By looking into the details of those transitions leading he t
I ndexQut Of BoundsExcept i on state, we can understand that if a
method argument is an integer index to a linked list, it shelt-
erally fall into the scope between zero and the size of the Biat

& Field modCount sliced OSM of LinkedList

<init=()

modCount=0;

adain,m1)

modCount=1;

clear()
addFirst{m)
add(m)
addLastmi)

remaove(ia) ado(iam1) | remove(mo)

removeFirst(

addFirst{m0
removelasts

clear()

ddfmi)

rermove im0y 0P Aruel 208
rermove (.7 el 208
ALL_ARGE [4/12]

Last(ma)

-

4] B

] v

Figure 5: A LinkedList OSM sliced by the nodCount field

one difference has caught our attentiadd(i 0, nt) in the left-
most of Figure 4 is not grouped with other method calls with in
dex arguments on the second-to-leftmost edge of Figurech, asi
renove(i 0) andset (i 0, ni); this indicates that all argument
lists for methods on the second-to-leftmost edge leadshee=0;
state to the f‘'ndexQut Of BoundsExcept i on” state, but not all ar-
gument lists foradd(i 0, mi) lead to the exception state. By in-
specting their details, we found that, to avoid the exceptibei 0
argument foradd(i 0, ml) should satisfy0 <= i0 & i0 <=

si ze()) but thei 0 argument for the methods on the second-to-
leftmost edge should satisfy0 <= i0 & i 0 < size()). We
also found thati st 1t er at or (i 0) needs to satisfy the same con-
straint asadd(i 0, ni). We have confirmed these small distinc-
tions among exception-throwing conditions by browsingalar|

documentation [17].

4.3 Structural Abstraction

When we slice two concrete object states in the end of Tests 1
and 2 by theneader field, these two nonequivalent concrete ob-
ject states are still mapped to two different abstract sta#éer we
slice all exercised concrete object states bytbeader field, we
reduce 11 concrete object states to 7 abstract states, whose
sponding OSM is still complex. Inspired by Korat's objecaph
isomorphism [3], we conducstructural abstractionby keeping
only structural information among object fields but igngrihose
primitive field values in a sliced state. The underlyingaatile for
this technique is that object states sharing the same oiaph
structure often exhibit certain common behavior. For eXemmgf-
ter we apply structural abstraction aeader -sliced states in the
end of Tests 1 and 2, we produce the same abstract state as belo

header. el ement =nul | ;

header. next . el enent . v=-;
header . next . next =header ;
header . next. previ ous=header;
header . previ ous=header . next ;

In the representation of abstract states, we replace ahfalies of
primitive types with “~". In fact, we have found that the gesited
abstract states have a one-to-one correspondence withaties s
sliced by thesi ze field. For example, thaeader -sliced state af-
ter structural abstraction in the end of Tests 1 and 2 cooredp
to the “si ze=1; ” state. Figure 6 shows a LinkedList OSM sliced
by theheader field after structural abstraction (without display-

& Field header sliced OSM of LinkedList

<init=()

header.element=null;
header.next=header;
header previous=header,

adcFirst{mn)
add(m0)
addLast{mD)

removelast()
clear()
removeFirst()

add(iom1) remove(mo) remove(io)

rermove io:0;) ety 7,11 2/24]
rerovein: o) ety ;I 2/24]
[24r24]

header.element=null;
header next element w=-,

header next.next=header,
header next.previous=header,
neader previous=header nex,

addFirstm)
add(m0}
addLast(m0)

add(i0,m1})

header.element=null;
header next element w=-,
header next.next.element.v=-;
header.next.next.next=header;
header next next.previous=header next;
header next.previous=header,
header previous=header next.next;

Figure 6: A LinkedList OSM sliced by the header field after
structural abstraction

ing exception states or transitions to them). This OSM igeisily
useful for another implementation of a linked list that dneshave
asi ze field but computes the size on the fly from theader field
when the size’s value is needed. For other data structuoksasua
binary tree, onai ze-sliced abstract state might map to more than
one sentinel-node-sliced abstract states after struetostraction.

5. DISCUSSION AND FUTURE WORK

There are two main factors that affect our approach’s usgbil
in practice: member fields and generated tests. In our agproa
member fields take the role of abstraction functions [14]civlare
used to specify state abstractions. In addition, like otlygramic
inference techniques [1,7,11, 22,27, 28], the quality anglexity
of an extracted sliced OSM depends on the executed testielesi
the characteristics of the used member field. Section 5.15ghd
further discuss the factors of member fields and generasid, te
respectively. Section 5.3 discusses other potential eguins of
our approach than the task of understanding component foehav

5.1 Member Fields

Our approach uses a single member field as an abstraction func
tion: different concrete states with the same value for tkeenm
ber field are abstracted to the same abstract state. Althaegh
construct a sliced OSM for each member field, we might ahistrac
away some aspects of concrete states that are central irstenui
ing the behavior of a method in a sliced OSM. For example, in
some classes, some member fields might be closely coupled and
we might prefer to slice states by multiple member fieldseadt
of a single member field. To provide tool supports for thesesa
we can categorize member fields into groups based on fielsacc
patterns by member methods using concept analysis [5]. Ween
can slice states by these field groups and use sliced statesito
struct sliced OSM's. On the other hand, the state abstrabased
on state slicing might not be high level enough; therefdue, re-
sulting OSM’s might be still too complicated for inspection

In some cases, it might be difficult to infer a good abstrarctio

function from the code itself by using various heuristicdief in
order to get satisfactory OSM’s, we might need human inpuoits f
defining indistinguishability properties [10] or other fias of ab-
straction functions to further abstract states. We exgeat this
way of getting human inputs in our approach shall be better fo
many types of programs than requiring upfront human inputsa-
ditional formal methods. First, we expect that programmesald

be more willing to provide their inputs of abstraction fupas af-

ter they have already seen OSM'’s extracted without theirompf

ited to observed one. For example, in Figure 4, we can préulict
structure of transitions around the unseenZe=3; " state or other
unseen states.

After we have extrapolated initial sliced OSM’s, we can parf
conformance checking between OSM'’s and the implementation
which is similar to conformance checking between abstrates
machines and an implementation [8]. We can also explore whys
translating properties captured by OSM's to the forms ustded
by existing software model checking tools [4, 20] and usst&g

inputs (some OSM'’s could have already been useful for them to tools to verify programs against their extracted OSM'’s. eNibtat

understand parts of the component behavior). Second, wecexp
that it would be easier for programmers to formulate abstrac
functions based on the crude OSM'’s extracted by our approach

5.2 Generated Tests

There are two controllable configurations on the tests geedr

finding counterexamples does not necessarily expose byge-in
grams but might expose insufficiency of originally genedatests
for OSM extraction. These counterexamples can help genpesi
tests to augment existing generated tests.

Because we extract sliced OSM'’s from an implementatiomgf t
implementation is faulty and the initial sliced OSM'’s exhilrong

by our approach: method arguments and the maximum iteration P€havior, we might not expose faults by performing confarcea

number. When we use another third-party tool to generateemor

method arguments for a method but keep the same maximum it-

eration number as two, the sliced OSM’s for LinkedList in +ig
ure 4, 5, and 6 would be kept mostly the same (details assdciat
with transitions might grow though) but theader -sliced OSM
before structural abstraction would grow rapidly. When ek
the same method arguments but increase the maximum iteratio
number, the sliced OSM’s in Figure 4, 5, and 6 would grow lihea
For example, in Figure 4, there will be new transitions stgrfrom

the bottom-right i ze=2; " state similar to the ones starting from
the “si ze=1; " state. In general, when there are more method ar-
guments or higher maximum iteration numbers, the space tbf bo
concrete states and sliced states could grow. To addrescdhe
ability of the approach, programmers can configure fewehotet
arguments or lower maximum iteration numbers, or specigr-us
defined abstraction functions to further abstract statssidsed in
Section 5.1).

checking between OSM'’s and the implementation. Therefoge,
fore we extrapolate initial sliced OSM'’s, we might prefemian
inspection on the initial sliced OSM'’s to make sure that thigal

sliced OSM’s exhibit expected behavior.

6. RELATED WORK

Our previous work develops the observer abstraction approa
for extracting OSM’s (called observer abstractions) fromit-test
executions [27]. The observer abstraction approach usegtarn
values of observers invoked on a concrete object state asetbs
state representation, whereas our new approach in this paps
the values of a member field in a concrete object state asaabstr
state representation. Unlike the observer abstractioroaph, our
new approach does not require the availability of (goodeoless.
The complexity of an observer abstraction depends on thexcha
teristics of its corresponding observers, whereas the 4ty of
a sliced OSM depends on the characteristics of its correpgn

If the generated tests used for OSM extraction are not of good member field. Observer abstractions help investigate liethea

quality, the quality of extracted sliced OSM’s can be compisezd.
Static analysis techniques can be used to identify somdfinsu
ciency of generated tests for extracting sliced OSM’s. Faine
ple, because Jtest 5.1 generates only an empty collectiomant
for addAl | (i nt index, Collection c),theaddAl I method
is dynamically identified as a state-preserving method foexa
tracted sliced OSM’s. Existing static techniques for mdtparity
analysis [2,16] can identifgddAl | not to be state preserving; then
we can augment Jtest-generated tests with non-emptyetiotiear-
guments formddAl | .

5.3 Other Applications

Although in this paper we primarily investigate the extraict
of sliced OSM'’s to help understand component behaviorgthee
other promising applications of extracted OSM’s. For exknwe
can extract sliced OSM’s from existing generated tests se ¢ae
task of test inspection. We can use extracted OSM’s to gaiste t
generation using existing finite-state-machine-basetintesech-
niques [13], use new generated tests to further improveaeed

lated to the return values of observers and this type of behés/
not explored in our new approach. In the LinkedList examisle,
contrast to four sliced OSM'’s generated by our new approdeh,
observer abstraction approach generates 18 observeactisis.
One observer isnt si ze() ; therefore, the extracted ze() ob-
server abstraction is exactly the same assoure-sliced OSM.
From system-test executions, Whaley et al. dynamicallyaext
Java component-interface models, each of which accesseartte
field [22]. They statically determine whether a method isadest
modifying one. In their extracted models, they assume theat t
same state-modifying method transits an object to the sastesat
state. This assumption makes the extracted models lessatecu
than our approach. Ammons et al. mine protocol specification
the form of a finite state machine from system-test execsatjah
Although their approach uses data dependence to extraviargl
API method calls, it does not use component internal statesde
the sequence order among API method calls for learning reodel
Both Whaley et al. and Ammons et al.’s approaches usuallyireq
a good set of system tests for exercising component in&sfac

OSM's, and then use new improved OSM'’s to generate more new whereas our approach receives a given component and geserat

tests and so forth. During iterations, any new generated tés
olating existing inferred properties (e.g. OSM'’s) can blected
for inspection [26]. These iterations form a feedback loeween
test generation and specification inference proposed iprewious
work [25].
We can apply sliced OSM’s in testing and verification by gxtra

olating unseen states and transitions based on observed atal
transitions. Then the prescribed component behavior idimet

a set of tests to exercise component’s object states in d scoale.
Because their approaches do not consider object stateriafum
but just sequence order among API method calls, applyingl®/ha
et al.'s approach on our generated unit tests would yielchapbete
graph of methods that modify the same object field and apglyin
Ammons et al.'s approach on our generated unit tests woeld gi
complete graph of all methods in the component interface.

Yang and Evans infer temporal properties in the form of the

strictest pattern any two methods can have in executioesrgs].
Similar to Whaley et al. and Ammons et al.'s approachesr tqei

proach considers only sequence order among method cafiewtit

considering internal states of a component, whereas ouoagip
use sliced states to construct OSM'’s, which encoded more atec
sequencing constraints. In addition, their approach densise-
quencing relationship between two methods, whereas ouoapip
considers state-transition relationship among multipé¢hods.
Ernst et al. develop Daikon to dynamically infer likely imants

from test executions [7]. These invariants describe theresl
relationships among the values of object fields, argumanis re-

turns of a single method in a component interface, whereas ou

sliced OSM’s describe state-transition relationships rgnmulti-

ple methods in a component interface and use the values @ fiel
reachable from a member field to represent object stateskdHen

and Diwan discover algebraic specifications from the execudf
automatically generated unit tests [11]. Their discoveslggbraic
specifications usually present a local view of relationshiptween

two methods, whereas our sliced OSM’s present a global view o

relationships among multiple methods.

Corbett et al. develop Bandera to extract finite-state nsodel
from Java source code for model checking [4]. Given a prop-

erty, Bandera’s slicing component removes control poiusi-
ables, and data structures that are irrelevant for checkimgrop-

erty. For each member field of a component, our approach dynam

ically slices object states that are reachable from the neeffiid

and constructs a sliced OSM. Given a definition of an abstmact

Bandera’s abstraction-based specializer transformstires code

into a specialized version by replacing concrete operatioml tests

on relevant concrete data with abstracted versions onaatbstal-
ues. Our approach conducts structural abstraction onedstimte

by mapping all primitive values in the state to the same abstr

value.

Grieskamp et al. allow the user to define indistinguishsbili

properties to group infinite states in abstract state mashinto
equivalence classes, called hyperstates [10]. Their tmoemen-
tally produces finite state machines by executing absttats ma-

chines. Our approach use the values of a member field to group

concrete object states into abstract states in a sliced OSM.

Kung et al. statically extract object state models fromskmirce
code and use them to guide test generation [12]. An objets sta
model is in the form of a finite state machine: the states are de

fined by value intervals over object fields, which are derifrecth
path conditions of method source; the transitions are eérlwy
symbolically executing methods. Our approach dynamicely
tracts sliced OSM'’s from test executions and supports a miebér

range of classes than Kung et al's approach. For exampleg Ktn

al.’s approach could not extract any state models forhdwder

field becauséeader 's values cannot be characterized by value in-

tervals, which are usually applicable for primitive nuneefields.
Their approach could not extract any model for theleCount
field because there is no usable path condition for this entégld
in the source code. Because of the code complexity, theioaph
would have difficulties in symbolically deriving transitis for the
states extracted from the only path condition usable foir tye-
proach:(si ze==0) .

Turner and Robson use finite state machines to specify the be-
havior of a class [19]. The states in a state machine are define
the values of a subset or complete set of object fields. Timsitra
tions are method names. Although both their specified fitiites
machines and our sliced OSM'’s are in a similar form, we auto-

matically extract state machines from test executionsredsthey
manually specify state machines for a class. Edwards develn

approach of generating tests based on flowgraphs extracied f

a component’s specifications [6]. A flowgraph is a directeapbr
where each node represents one method provided by the compo-
nent and a directed edge from a nadéo noden’ represents the
possibility that control may flow from ton’ . Our approach auto-
matically extracts OSM’s from test executions without liegg a

priori specifications and our OSM’s capture actual-statedition.

7. CONCLUSION

Lack of specifications for a component has posed the baaier t
the reuse of the component in component-based softwaréogeve
ment. In this paper, we have proposed a new approach for attom
ically extracting sliced OSM's for component interfacesves a
component such as a Java class, we generate a set of tests for t
component. Then we slice exercised concrete object stateadh
member field of the component and construct OSM’s based on the
sliced states. These sliced OSM's provide useful statesitian
information for inspection. These OSM'’s also have potéritia
component verification and testing.

Acknowledgments

We thank the anonymous reviewers for their valuable feddbac
an earlier version of this paper. This work was supportedairt p
by the National Science Foundation under grant ITR 00860@¢s3.
acknowledge support through the High Dependability Coimgut
Program from NASA Ames cooperative agreement NCC-2-1298.

8. REFERENCES

[1] G. Ammons, R. Bodik, and J. R. Larus. Mining
specifications. IfProc. 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languageges
4-16, 2002.

[2] M. Barnett, D. A. Naumann, W. Schulte, and Q. Sun. 99.44%
pure: Useful abstractions in specificationsPlioc. 6th
Workshop on Formal Techniques for Java-like Programs
June 2004.

[3] C. Boyapati, S. Khurshid, and D. Marinov. Korat: autostat
testing based on Java predicatesPioc. International
Symposium on Software Testing and Analysages
123-133, 2002.

[4] J. C. Corbett, M. B. Dwyer, J. Hatcliff, S. Laubach, C. S.
Pasareanu, Robby, and H. Zheng. Bandera: extracting
finite-state models from java source codePhoc. the 22nd
International Conference on Software Engineeripgges
439-448, 2000.

[5] U. Dekel and Y. Gil. Revealing class structure with captce
lattices. InProc. 10th IEEE Working Conference on Reverse
Engineering pages 353—-365, 2003.

[6] S. H. Edwards. Black-box testing using flowgraphs: an
experimental assessment of effectiveness and automation
potential.Software Testing, Verification and Reliability
10(4):249-262, 2000.

[7] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to
support program evolutiohEEE Trans. Softw. Eng.
27(2):99-123, 2001.

[8] Foundations of Software Engineering, Microsoft Resbhar
Abstract state machine language.
http://research. mcrosoft.com fse/ Asni.

[9] E. R. Gansner and S. C. North. An open graph visualization
system and its applications to software engineering.

Software: Practice and Experiencg0(11):1203-1233, Sept.
2000.

[10] W. Grieskamp, Y. Gurevich, W. Schulte, and M. Veanes.
Generating finite state machines from abstract state
machines. IrProc. International Symposium on Software
Testing and Analysjpages 112-122, 2002.

[11] J. Henkel and A. Diwan. Discovering algebraic spectfass
from Java classes. Broc. 17th European Conference on
Object-Oriented Programmingages 431-456, 2003.

[12] D. Kung, N. Suchak, J. Gao, and P. Hsia. On object state
testing. InProc. 18th International Computer Software and
Applications Conferencgages 222—-227, 1994.

[13] D. Lee and M. Yannakakis. Principles and methods ofrigst
finite state machines - A survey. Rroc. The IEEE
volume 84, pages 1090-1123, Aug. 1996.

[14] B. Liskov and J. Guttag?rogram Development in Java:
Abstraction, Specification, and Object-Oriented Design
Addison-Wesley, 2000.

[15] Parasoft. Jtest manuals version 5.1. Online manulsd, Ju
2004.ht t p: / / www. par asoft. com .

[16] A. Rountev. Precise identification of side-effectefnmethods

in Java. InProc. 20th IEEE International Conference on

Software Maintenancgages 82-91, Sept. 2004.

Sun Microsystems. Java 2 Platform, Standard Edition, v

1.4.2, API Specification. Online documentation, Nov. 2003.

http://java. sun. conlj2se/ 1. 4. 2/ docs/ api /.

C. SzyperskiComponent Software: Beyond Object-Oriented

Programming ACM Press and Addison-Wesley, New York,

NY, 1998.

C. D. Turner and D. J. Robson. The state-based testing of

object-oriented programs. Proc. International Conference

on Software Maintenan¢@ages 302—-310, 1993.

[20] W. Visser, K. Havelund, G. Brat, and S. Park. Model

checking programs. IRroc. 15th IEEE International

Conference on Automated Software Engineering (ASE)

pages 3-12, 2000.

M. Weiser. Program slicing. IRroc. 5th International

Conference on Software Engineerjpgges 439-449, 1981.

[22] J. Whaley, M. C. Martin, and M. S. Lam. Automatic

extraction of object-oriented component interfaceR1oc.

the International Symposium on Software Testing and

Analysis pages 218-228, 2002.

T. Xie, D. Marinov, and D. Notkin. Improving generatio

object-oriented test suites by avoiding redundant tests.

Technical Report UW-CSE-04-01-05, University of

Washington Department of Computer Science and

Engineering, Seattle, WA, Jan. 2004.

T. Xie, D. Marinov, and D. Notkin. Rostra: A frameworkrfo

detecting redundant object-oriented unit test®idoc. 19th

IEEE International Conference on Automated Software

Engineering pages 196—-205, Sept. 2004.

T. Xie and D. Notkin. Mutually enhancing test generatio

and specification inference. FProc. 3rd International

Workshop on Formal Approaches to Testing of Software

volume 2931 oLNCS pages 60-69, 2003.

T. Xie and D. Notkin. Tool-assisted unit test selectiased

on operational violations. IRroc. 18th IEEE International

Conference on Automated Software Engineerpages

40-48, 2003.

T. Xie and D. Notkin. Automatic extraction of

object-oriented observer abstractions from unit-test

[17]

[18]

[19]

[21]

(23]

[24]

[25]

[26]

[27]

executions. IrProc. 6th International Conference on Formal
Engineering MethodsNov. 2004.

[28] J. Yang and D. Evans. Dynamically inferring temporal
properties. IrProc. the ACM-SIGPLAN-SIGSOFT Workshop
on Program Analysis for Software Tools and Engineering
pages 23-28, 2004.

