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ABSTRACT
Component-based software development has increasingly gained
popularity in industry. Although correct component-interface us-
age is critical for successful understanding, testing, andreuse of
components, interface usage is rarely specified formally inprac-
tice. To tackle this problem, we automatically extract sliced object
state machines (OSM) for component interfaces from the execu-
tion of generated tests. Given a component such as a Java class,
we generate a set of tests to exercise the component and collect the
concrete object states exercised by the tests. Because the number of
exercised concrete object states and transitions among these states
could be too large to be useful for inspection, we slice concrete ob-
ject states by each member field of the component and use sliced
states to construct a set of sliced OSM’s. These sliced OSM’spro-
vide useful state-transition information for helping understand be-
havior of component interfaces and also have potential for being
used in component verification and testing.

1. INTRODUCTION
Component-based software development has become an emerg-

ing discipline that manages the growing complexity of software
systems [18]. In component-based software development, software
components are the building blocks of a software system. When
component users try to reuse an existing component in their appli-
cations, they need to understand behavior of the component’s inter-
face, such as usage rules that they are required to obey or expected
results of some component usage scenarios. When component de-
velopers or users test their components before being released or
reused, they need to know whether their components behave cor-
rectly against some usage rules or expectations. However, in prac-
tice, component-interface-usage rules or behavioral specifications
are usually not equipped for many components. Even if usage rules
or behavioral specifications are provided, they are often informally
written in interface documentation such as Java API documenta-
tion [17], being prone to errors or difficult to be understood.

In this work, among a variety of specifications, we propose touse
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the form ofobject state machines(OSM) to characterize behavior
of component interfaces and dynamically extract OSMs from auto-
matically generated tests for component interfaces. We have pro-
posed OSM in our previous work [27]. A state in an OSM repre-
sents the state that a component object is in at runtime. A transition
in an OSM represents method calls invoked through the component
interface transiting the component object from one state toanother.
States in an OSM can be concrete or abstract. A concrete state
of a component object is characterized by the values of all transi-
tively reachable fields of the component object. A concrete OSM
is an OSM with concrete states. Given a component, we gener-
ate a set of tests for the component and then collect all exercised
concrete states of component objects and transitions (method calls
through component interfaces) among states. These collected states
and transitions are used to construct a concrete OSM; however, the
concrete OSM is often too complicated to be useful for understand-
ing. To address this problem, our previous work has proposedthe
observer abstractionapproach [27]; the approach uses the return
values of observers (interface methods with non-void returns) in-
voked on a component object as an abstract state in an OSM. This
paper proposes a new supplementary approach of slicing a concrete
state by each member field of the component1. Different from our
previous observer abstraction approach [27], our new approach is
not affected by the availability or complexity of observersin com-
ponent interfaces. Our state slicing technique is inspiredby Wha-
ley et al’s model slicing by member fields in dynamically extracting
component interfaces [22]; however, our new approach is more ac-
curate in characterizing component behavior and does not require
a good set of existing system tests for exercising componentinter-
faces. In this work, we focus on components in the form of Java
classes and component interfaces in the form of public methods in
classes; however, we expect the approach could be easily extended
to components in other forms.

The rest of this paper is organized as follows. Section 2 de-
scribes a nontrivial illustrative example. Section 3 introduces the
formal definition of an OSM. Section 4 illustrates the automatic
approach of extracting sliced OSM’s. Section 5 discusses main is-
sues of the approach and proposes future work. Section 6 presents
related work and Section 7 concludes.

1We define state slicing or OSM slicing following the definition of
model slicing by Whaley et al. [22]. The use ofslicing in these def-
initions differs from the one in a more common definition: program
slicing [21], which is closely related to some notion of dependence.



public class LinkedList extends AbstractSequentialList
implements List, Cloneable, java.io.Serializable {

private transient Entry header
= new Entry(null, null, null);

private transient int size = 0;
private static final long serialVersionUID

= 876323262645176354L;

public LinkedList() {...}
public void add(int index, MyInput element) {...}
public boolean add(MyInput o) {...}
public boolean addAll(int index, Collection c) {...}
public void addFirst(MyInput o) {...}
public void addLast(MyInput o) {...}
public void clear() {...}
public Object remove(int index) {...}
public boolean remove(MyInput o) {...}
public Object removeFirst() {...}
public Object removeLast() {...}
public Object set(int index, MyInput element) {...}
public Object get(int index) {...}
public ListIterator listIterator(intindex) {...}
public Object getFirst() {...}
...

}

Figure 1: A LinkedList implementation

2. ILLUSTRATIVE EXAMPLE
As an illustrative example, we use a nontrivial data structure: a

LinkedList class, which is the implementation of linked lists in the
Java Collections Framework, being a part of the standard Java li-
braries [17]. Figure 1 shows declarations of LinkedList’s fields and
some public methods that we shall refer to in the rest of this pa-
per (these public methods either modify object states or throw un-
caught exceptions).2 This implementation uses doubly-linked, cir-
cular lists that have asize field and aheader field, which acts as a
sentinel node. In addition, it also has a staticserialVersionUID
field, which is used during serialization. It inherits amodCount
field from a super classAbstractList; this field records the num-
ber of times the list has been structurally modified. LinkedList has
25 public methods, 321 noncomment, non-blank lines of code,and
708 lines of code including comments and blank lines.

3. OBJECT STATE MACHINE
We have defined an object state machine for a component in our

previous work [27]:

DEFINITION 1. Anobject state machine(OSM)M of a compo-
nentc is a sextupleM = (I , O, S, δ, λ, INIT ) whereI , O, andS
are nonempty sets of method calls inc’s interface, returns of these
method calls, and states ofc’s objects, respectively.INIT ∈ S is
the initial state that the machine is in before calling any constructor
method ofc. δ : S × I → P (S) is the state transition function and
λ : S × I → P (O) is the output function whereP (S) andP (O)
are the power sets of S and O, respectively. When the machine is
in a current states and receives a method calli fromI , it moves to
one of the next states specified byδ(s, i) and produces one of the
method returns given byλ(s, i).

When a method call in a component interface is executed, an un-
caught exception might be thrown. To represent the state where an
object is in after an exception-throwing method call, we introduce a
special type of states in an OSM:exception states. After a method

2We change thoseObject argument types toMyInput so that we
can guide ParaSoft Jtest 5.1 [15] (being used in our test generation
described in Section 4.1) to generate better arguments;MyInput is
a class that contains an integer fieldv.

Figure 2: An overview of LinkedList concrete OSM (containing
only state-modifying transitions) exercised by generatedtests

call on an object throws an uncaught exception, the object isin an
exception state represented by the type name of the exception. The
exception-throwing method call transits the object from the object
state before the method call to the exception state.

An OSM can be deterministic or indeterministic. To help char-
acterize indeterministic transitions, we have defined two statistics
in a dynamically extracted OSM: transition counts and emission
counts [27]. Assume a transitiont transits states to s′, the tran-
sition countassociated witht is the number of concrete states en-
closed ins that are transited tos′ by t. Assumem is the method
call associated witht, theemission countassociated withs andm
is the number of concrete states enclosed ins and being at entries
of m (but not necessarily being transited tos′). If the transition
count of a transition is equal to the associated emission count, the
transition is deterministic and indeterministic otherwise.

The object states in an OSM can be concrete or abstract. A con-
crete OSM is an OSM where all states are concrete object states.
We have proposed several techniques to represent object states in
our previous work [24]; we use the WholeState technique to rep-
resent concrete object states in this work. Given an object,the
WholeState technique collects the values of all fields reachable
from the object and uses these field values to represent the concrete
state of the object. When we encounter a reference-type fieldwith a
non-null value during field-value collection, we use a linearization
algorithm [24] to collect the field value as the field name of the ear-
liest collected aliased field; if we cannot find any earlier collected
aliased field for the field, we collect its value as “notnull”. Two
concrete object states are nonequivalent if their representations are
different. A set of nonequivalent concrete object states contain con-
crete object states any two of which are nonequivalent.

For example, there are 11 nonequivalent concrete object states of
LinkedList exercised by tests generated in our test generation step
(Section 4.1). There are 161 transitions among these states(includ-
ing both state-modifying and state-preserving transitions). There
are two exception states:IndexOutOfBoundsException and
NoSuchElementException. Figure 2 shows a concrete OSM (con-
taining only state-modifying transitions) exercised by generated tests.3

We have observed that the concrete OSM is too complex to be use-
ful for inspection.

To reduce the complexity of an OSM, we shall extract an ab-
stract OSM containing abstract states instead of concrete states.
An abstract stateof an object is defined by anabstraction func-
tion [14]; the abstraction function maps each concrete state to an
abstract state. In this work, for each member field of a component,
we define an abstraction function that maps each concrete state to
an abstract state characterized by the values of those fieldsreach-
able from the member field. The next section describes the details
of the state slicing approach.

3We display OSM’s by using the Grappa package, which is part of
graphviz [9].



4. SLICED-OSM EXTRACTION
Given a Java class, we automatically generate a set of tests for

extensively exercising object states within a (small) scope (Sec-
tion 4.1). During the execution of the generated tests, we slice each
exercised concrete object state by member fields and construct ab-
stract OSM’s (Section 4.2). For a member field with a reference
type, we additionally conduct structural abstraction on the sliced
state to further abstract primitive field values reachable from the
member field (Section 4.3).

4.1 Test Generation
Given a Java class, we first use Parasoft Jtest 5.1 [15] (a com-

mercial Java testing tool) to generate method arguments foreach
public method of the class. Jtest generates a small set of method
arguments and invoke public methods with these arguments after
invoking class constructors. For example, Jtest 5.1 generates two
tests for exercisingadd(MyInput element):

Test 1:
MyInput t0 = new MyInput(0);
LinkedList THIS = new LinkedList();
boolean RETVAL = THIS.add(t0);

Test 2:
MyInput t0 = new MyInput(7);
LinkedList THIS = new LinkedList();
boolean RETVAL = THIS.add(t0);

Jtest also allows the user to configure whether to generate null val-
ues as method arguments. For the sake of simplicity in illustrative
results, we configure Jtest 5.1 not to generate null argumentvalues
for LinkedList.

A list of arguments for a method consists of all arguments re-
quired for invoking the method. Two lists of arguments for a method
are equivalent if the concrete state of each argument in the first list
is equivalent to the concrete state of the corresponding argument
in the second list. If an argument is of a primitive type, its con-
crete state is represented by its primitive values. If an argument is
of Java built-inString, Integer, or another primitive-type wrap-
per, the concrete state of the argument is represented by itschar-
acter strings or corresponding primitive value. If arguments are of
other reference types, we use the WholeState technique (described
in Section 3) for comparing their state equivalence.

We use the Rostra tool (developed in our previous work [23,
24]) to monitor the execution of the test class generated by Jtest
and generate new tests based on collected method arguments.The
pseudo-code of our test-generation algorithm is presentedin Fig-
ure 3 (adapted from our previous work [23]). The test generation
algorithm receives a set of third-party generated tests (e.g. Jtest-
generated tests) and a maximum iteration number that specifies
how many iterations we shall use to grow concrete object states.
We first run these third-party generated tests and collect run time
information from their execution; the collected runtime informa-
tion includes the set of all nonequivalent non-constructor-method
argument lists and nonequivalent object states exercised during the
execution.

Then in the first iteration, the frontier set (containing theobject
states to be fully exercised) includes those nonequivalentstates at
exits of constructors exercised by the third-party tests. We iterate
each object state in the frontier set and each argument list in the set
of nonequivalent non-constructor-method argument lists exercised
by the third-party tests. For each combination of an object state and
an argument list, we construct a test by invoking the corresponding
method with the argument list on the object state. We executeall
constructed tests and collect runtime information. In the subse-
quent iteration, the frontier set includes those nonequivalent states
exercised by the new tests but not exercised by any test in previ-

Set testgen(Set thirdPartyTests, int maxIterNum) {
Set newTests = new Set();
RuntimeInfo runtimeInfo = runAndCollect(thirdPartyTests);
Set nonEqArgLists = runtimeInfo.getNonEqArgsLists();
Set frontiers = runtimeInfo.getAfterInitNonEqObjStates();
for(int i=1;i<=maxIterNum && frontiers.size()>0;i++) {

Set newTestsForCurIter = new Set();
foreach (objState in frontiers) {

foreach (args in nonEqArgLists) {
Test newTest = makeTest(objState, args);
newTestsForCurIter.add(newTest);
newTests.add(newTest);

}
}
runtimeInfo = runAndCollect(newTestsForCurIter);
frontiers = runtimeInfo.getNewNonEqObjStates().

}
return newTests;

}

Figure 3: Pseudo-code of the test-generation algorithm.

ous iterations. We continue the iterations until we have reached the
maximum iteration number or the frontier set contains no object
states.

For the LinkedList example, we configure the maximum itera-
tion number as two. For illustration purpose, let us assume here
that third-party tests contain only two tests (Tests 1 and 2)that we
have shown in the beginning of this section. Then in the first itera-
tion, we generate Tests 1 and 2; in the second iteration, we generate
Tests 3 and 4 shown as below:

Test 3:
MyInput t0 = new MyInput(0);
LinkedList THIS = new LinkedList();
boolean RETVAL = THIS.add(t0);
MyInput t1 = new MyInput(7);
boolean RETVAL1 = THIS.add(t1);

Test 4:
MyInput t0 = new MyInput(7);
LinkedList THIS = new LinkedList();
boolean RETVAL = THIS.add(t0);
MyInput t1 = new MyInput(0);
boolean RETVAL1 = THIS.add(t1);

4.2 State Slicing
Given a concrete state and a member field of the class, we pro-

duce an abstract state represented by the value of the memberfield
and the values of all those fields reachable from the member field
if the member field is of a reference type. For example, in the end
of Tests 1 and 2, theTHIS object’s concrete states are represented
by the following object-field values:

Concrete object state at the end of Test 1:
size=1;
modCount=1;
serialVersionUID=876323262645176354;
header.element=null;
header.next.element.v=0;
header.next.next=header;
header.next.previous=header;
header.previous=header.next;

Concrete object state at the end of Test 2:
size=1;
modCount=1;
serialVersionUID=876323262645176354;
header.element=null;
header.next.element.v=7;
header.next.next=header;
header.next.previous=header;
header.previous=header.next;

When we slice these concrete object states by thesize field, both
abstract-state representations are “size=1;” and these two nonequiv-
alent concrete states are mapped to the same abstract state.After
we generate abstract states at the entry and exit of a method call,
we generate a transition (characterized by the method call)from



Figure 4: A LinkedList OSM sliced by the size field

the abstract state at the method entry to the abstract state at the
method exit. Then we can construct an abstract OSM from test
executions. Figure 4 shows a LinkedList OSM sliced by thesize
field (displaying also exception states and transitions to them). Fig-
ure 5 shows a LinkedList OSM sliced by themodcount field (with-
out displaying exception states or transitions to them).4 We allow
the user to configure whether to display exception states andtran-
sitions to them in a sliced OSM. By default, we do not display
state-preserving transitions in a sliced OSM in order to present a
succinct view. In Figure 4, the transition starting from thetop
“INIT” state is marked with<init>(), which represents a con-
structor call. In general, each transition edge in an OSM is marked
with a simplified representation of the method name and signature
that correspond to the method calls of the transition. When there
are multiple nonequivalent argument lists of the same method tran-
siting one state to another, we group them into one single transi-
tion edge. This grouping mechanism can be viewed as a form of
abstraction on transitions. When the user move the mouse cursor
over the edge, the details of method calls are displayed. Forex-
ample, the leftmost edge in Figure 4 shows the simplified method
name and signature foradd(int index, MyInput element):
add(i0, m1), where each parameter is represented as the com-
bination of the first letter of its type name and its parameterorder
(starting from 0). The details of method calls in this left-most tran-
sition are:

add(i0:7;m1.v:7;)?/-[4/4]
add(i0:1;m1.v:0;)?/-[4/4]
[8/8]

wherem1.v represents thev field of the second argument, argu-
ment values or argument’s field values are shown following their ar-
gument names or argument’s field names separated by “:”, and dif-
ferent arguments or fields are separated by “;”. For succinctness,
we do not display the “notnull” value for a non-null reference-type
field (“not null” assignments are described in Section 3). A line
of description for method calls is in the form ofm?/mr![tc/ec]
wherem is the method call name and argument values,mr is the
return value if any (if a return is void or the method call throws an
exception, we display the return value as “–” and we do not dis-
play “!”), tc is the transition count, andec is the emission count
4We do not show the LinkedList OSM sliced by the
serialVersionUID field in this paper because the class
does not modifyserialVersionUID and the extracted OSM is
trivial.

(the descriptions of transition counts and emission countsare de-
scribed in Section 3). In the bottom line of the detailed description,
we summarize the total number of transition counts and emission
counts for all the method calls in the transition. When the method
calls in the transition exercise all existing argument lists for the
method, we additionally display “ALLARG”, such as in the details
for a remove(m0) in Figure 5. To present a more succinct view,
we group calls of different methods with the same starting state
and ending state into a single transition edge if these method calls
satisfy the following two properties: (1) the calls of each method
exercise all existing argument lists for the method (displayed with
“ALL ARG”); (2) the calls of each method are deterministic (their
transition counts are equal to their emission counts). For indeter-
ministic transitions, we highlight their simplified methodnames
and signatures in bold font. For example, one edge ofremove(m0)
is highlighted in central Figure 4. This indeterminism indicates that
invokingremove(m0) on a linked list containing one element does
not necessarily make the linked list empty. For example, onesuch
case is to remove an element with the value of 0 from a linked list
containing an element with the value of 7.

Extracted sliced OSM’s provide succinct views for summariz-
ing interesting state-transition behavior exhibited by a component.
For example, by inspecting and exploring Figure 4, we can con-
veniently understand the conditions of throwing uncaught excep-
tions, which often indicate the sequencing constraints of using a
component. For example, anIndexOutOfBoundsException is
thrown when invokingget(i0) immediately after invoking a con-
structor. Previous research in inferring sequencing constraints [1,
22, 28] could be effective in inferring this simple constraint but
might not be able to infer more complex constraints extracted by
our approach. One such a complex constraint is that if we invoke
a constructor,add(m0), removeLast(), and finallyget(i0), an
IndexOutOfBoundsException is thrown. The reasons are that
previous research in inferring sequencing constraints does not con-
sider the internal states of a component but only the sequence order
among method calls invoked through a component interface.

By looking into the details of those transitions leading to the
IndexOutOfBoundsException state, we can understand that if a
method argument is an integer index to a linked list, it shallgen-
erally fall into the scope between zero and the size of the list. But



Figure 5: A LinkedList OSM sliced by the modCount field

one difference has caught our attention:add(i0, m1) in the left-
most of Figure 4 is not grouped with other method calls with in-
dex arguments on the second-to-leftmost edge of Figure 4, such as
remove(i0) andset(i0, m1); this indicates that all argument
lists for methods on the second-to-leftmost edge lead the “size=0;”
state to the “IndexOutOfBoundsException” state, but not all ar-
gument lists foradd(i0, m1) lead to the exception state. By in-
specting their details, we found that, to avoid the exception, thei0
argument foradd(i0, m1) should satisfy(0 <= i0 && i0 <=
size()) but thei0 argument for the methods on the second-to-
leftmost edge should satisfy(0 <= i0 && i0 < size()). We
also found thatlistIterator(i0) needs to satisfy the same con-
straint asadd(i0, m1). We have confirmed these small distinc-
tions among exception-throwing conditions by browsing Java API
documentation [17].

4.3 Structural Abstraction
When we slice two concrete object states in the end of Tests 1

and 2 by theheader field, these two nonequivalent concrete ob-
ject states are still mapped to two different abstract states. After we
slice all exercised concrete object states by theheader field, we
reduce 11 concrete object states to 7 abstract states, whosecorre-
sponding OSM is still complex. Inspired by Korat’s object graph
isomorphism [3], we conductstructural abstractionby keeping
only structural information among object fields but ignoring those
primitive field values in a sliced state. The underlying rationale for
this technique is that object states sharing the same objectgraph
structure often exhibit certain common behavior. For example, af-
ter we apply structural abstraction onheader-sliced states in the
end of Tests 1 and 2, we produce the same abstract state as below:

header.element=null;
header.next.element.v=-;
header.next.next=header;
header.next.previous=header;
header.previous=header.next;

In the representation of abstract states, we replace all field values of
primitive types with “–”. In fact, we have found that the generated
abstract states have a one-to-one correspondence with the states
sliced by thesize field. For example, theheader-sliced state af-
ter structural abstraction in the end of Tests 1 and 2 corresponds
to the “size=1;” state. Figure 6 shows a LinkedList OSM sliced
by theheader field after structural abstraction (without display-

Figure 6: A LinkedList OSM sliced by the header field after
structural abstraction

ing exception states or transitions to them). This OSM is especially
useful for another implementation of a linked list that doesnot have
asize field but computes the size on the fly from theheader field
when the size’s value is needed. For other data structures such as a
binary tree, onesize-sliced abstract state might map to more than
one sentinel-node-sliced abstract states after structural abstraction.

5. DISCUSSION AND FUTURE WORK
There are two main factors that affect our approach’s usability

in practice: member fields and generated tests. In our approach,
member fields take the role of abstraction functions [14], which are
used to specify state abstractions. In addition, like otherdynamic
inference techniques [1,7,11,22,27,28], the quality or complexity
of an extracted sliced OSM depends on the executed tests besides
the characteristics of the used member field. Section 5.1 and5.2
further discuss the factors of member fields and generated tests,
respectively. Section 5.3 discusses other potential applications of
our approach than the task of understanding component behavior.

5.1 Member Fields
Our approach uses a single member field as an abstraction func-

tion: different concrete states with the same value for the mem-
ber field are abstracted to the same abstract state. Althoughwe
construct a sliced OSM for each member field, we might abstract
away some aspects of concrete states that are central in understand-
ing the behavior of a method in a sliced OSM. For example, in
some classes, some member fields might be closely coupled and
we might prefer to slice states by multiple member fields instead
of a single member field. To provide tool supports for these cases,
we can categorize member fields into groups based on field-access
patterns by member methods using concept analysis [5]. Thenwe
can slice states by these field groups and use sliced states tocon-
struct sliced OSM’s. On the other hand, the state abstraction based
on state slicing might not be high level enough; therefore, the re-
sulting OSM’s might be still too complicated for inspection.

In some cases, it might be difficult to infer a good abstraction



function from the code itself by using various heuristics. Then in
order to get satisfactory OSM’s, we might need human inputs for
defining indistinguishability properties [10] or other forms of ab-
straction functions to further abstract states. We expect that this
way of getting human inputs in our approach shall be better for
many types of programs than requiring upfront human inputs in tra-
ditional formal methods. First, we expect that programmerswould
be more willing to provide their inputs of abstraction functions af-
ter they have already seen OSM’s extracted without their upfront
inputs (some OSM’s could have already been useful for them to
understand parts of the component behavior). Second, we expect
that it would be easier for programmers to formulate abstraction
functions based on the crude OSM’s extracted by our approach.

5.2 Generated Tests
There are two controllable configurations on the tests generated

by our approach: method arguments and the maximum iteration
number. When we use another third-party tool to generate more
method arguments for a method but keep the same maximum it-
eration number as two, the sliced OSM’s for LinkedList in Fig-
ure 4, 5, and 6 would be kept mostly the same (details associated
with transitions might grow though) but theheader-sliced OSM
before structural abstraction would grow rapidly. When we keep
the same method arguments but increase the maximum iteration
number, the sliced OSM’s in Figure 4, 5, and 6 would grow linearly.
For example, in Figure 4, there will be new transitions starting from
the bottom-right “size=2;” state similar to the ones starting from
the “size=1;” state. In general, when there are more method ar-
guments or higher maximum iteration numbers, the space of both
concrete states and sliced states could grow. To address thescal-
ability of the approach, programmers can configure fewer method
arguments or lower maximum iteration numbers, or specify user-
defined abstraction functions to further abstract states (discussed in
Section 5.1).

If the generated tests used for OSM extraction are not of good
quality, the quality of extracted sliced OSM’s can be compromised.
Static analysis techniques can be used to identify some insuffi-
ciency of generated tests for extracting sliced OSM’s. For exam-
ple, because Jtest 5.1 generates only an empty collection argument
for addAll(int index, Collection c), theaddAll method
is dynamically identified as a state-preserving method for all ex-
tracted sliced OSM’s. Existing static techniques for method-purity
analysis [2,16] can identifyaddAll not to be state preserving; then
we can augment Jtest-generated tests with non-empty-collection ar-
guments foraddAll.

5.3 Other Applications
Although in this paper we primarily investigate the extraction

of sliced OSM’s to help understand component behavior, there are
other promising applications of extracted OSM’s. For example, we
can extract sliced OSM’s from existing generated tests to ease the
task of test inspection. We can use extracted OSM’s to guide test
generation using existing finite-state-machine-based testing tech-
niques [13], use new generated tests to further improve extracted
OSM’s, and then use new improved OSM’s to generate more new
tests and so forth. During iterations, any new generated tests vi-
olating existing inferred properties (e.g. OSM’s) can be selected
for inspection [26]. These iterations form a feedback loop between
test generation and specification inference proposed in ourprevious
work [25].

We can apply sliced OSM’s in testing and verification by extrap-
olating unseen states and transitions based on observed states and
transitions. Then the prescribed component behavior is notlim-

ited to observed one. For example, in Figure 4, we can predictthe
structure of transitions around the unseen “size=3;” state or other
unseen states.

After we have extrapolated initial sliced OSM’s, we can perform
conformance checking between OSM’s and the implementation,
which is similar to conformance checking between abstract state
machines and an implementation [8]. We can also explore waysof
translating properties captured by OSM’s to the forms understood
by existing software model checking tools [4, 20] and use existing
tools to verify programs against their extracted OSM’s. Note that
finding counterexamples does not necessarily expose bugs inpro-
grams but might expose insufficiency of originally generated tests
for OSM extraction. These counterexamples can help generate new
tests to augment existing generated tests.

Because we extract sliced OSM’s from an implementation, if the
implementation is faulty and the initial sliced OSM’s exhibit wrong
behavior, we might not expose faults by performing conformance
checking between OSM’s and the implementation. Therefore,be-
fore we extrapolate initial sliced OSM’s, we might prefer human
inspection on the initial sliced OSM’s to make sure that the initial
sliced OSM’s exhibit expected behavior.

6. RELATED WORK
Our previous work develops the observer abstraction approach

for extracting OSM’s (called observer abstractions) from unit-test
executions [27]. The observer abstraction approach uses the return
values of observers invoked on a concrete object state as abstract
state representation, whereas our new approach in this paper uses
the values of a member field in a concrete object state as abstract
state representation. Unlike the observer abstraction approach, our
new approach does not require the availability of (good) observers.
The complexity of an observer abstraction depends on the charac-
teristics of its corresponding observers, whereas the complexity of
a sliced OSM depends on the characteristics of its corresponding
member field. Observer abstractions help investigate behavior re-
lated to the return values of observers and this type of behavior is
not explored in our new approach. In the LinkedList example,in
contrast to four sliced OSM’s generated by our new approach,the
observer abstraction approach generates 18 observer abstractions.
One observer isint size(); therefore, the extractedsize() ob-
server abstraction is exactly the same as oursize-sliced OSM.

From system-test executions, Whaley et al. dynamically extract
Java component-interface models, each of which accesses the same
field [22]. They statically determine whether a method is a state-
modifying one. In their extracted models, they assume that the
same state-modifying method transits an object to the same abstract
state. This assumption makes the extracted models less accurate
than our approach. Ammons et al. mine protocol specifications in
the form of a finite state machine from system-test executions [1].
Although their approach uses data dependence to extract relevant
API method calls, it does not use component internal states but use
the sequence order among API method calls for learning models.
Both Whaley et al. and Ammons et al.’s approaches usually require
a good set of system tests for exercising component interfaces,
whereas our approach receives a given component and generates
a set of tests to exercise component’s object states in a small scope.
Because their approaches do not consider object state information
but just sequence order among API method calls, applying Whaley
et al.’s approach on our generated unit tests would yield a complete
graph of methods that modify the same object field and applying
Ammons et al.’s approach on our generated unit tests would yield a
complete graph of all methods in the component interface.

Yang and Evans infer temporal properties in the form of the



strictest pattern any two methods can have in execution traces [28].
Similar to Whaley et al. and Ammons et al.’s approaches, their ap-
proach considers only sequence order among method calls without
considering internal states of a component, whereas our approach
use sliced states to construct OSM’s, which encoded more accurate
sequencing constraints. In addition, their approach considers se-
quencing relationship between two methods, whereas our approach
considers state-transition relationship among multiple methods.

Ernst et al. develop Daikon to dynamically infer likely invariants
from test executions [7]. These invariants describe the observed
relationships among the values of object fields, arguments,and re-
turns of a single method in a component interface, whereas our
sliced OSM’s describe state-transition relationships among multi-
ple methods in a component interface and use the values of fields
reachable from a member field to represent object states. Henkel
and Diwan discover algebraic specifications from the execution of
automatically generated unit tests [11]. Their discoveredalgebraic
specifications usually present a local view of relationships between
two methods, whereas our sliced OSM’s present a global view of
relationships among multiple methods.

Corbett et al. develop Bandera to extract finite-state models
from Java source code for model checking [4]. Given a prop-
erty, Bandera’s slicing component removes control points,vari-
ables, and data structures that are irrelevant for checkingthe prop-
erty. For each member field of a component, our approach dynam-
ically slices object states that are reachable from the member field
and constructs a sliced OSM. Given a definition of an abstraction,
Bandera’s abstraction-based specializer transforms the source code
into a specialized version by replacing concrete operations and tests
on relevant concrete data with abstracted versions on abstract val-
ues. Our approach conducts structural abstraction on a sliced state
by mapping all primitive values in the state to the same abstract
value.

Grieskamp et al. allow the user to define indistinguishability
properties to group infinite states in abstract state machines into
equivalence classes, called hyperstates [10]. Their tool incremen-
tally produces finite state machines by executing abstract state ma-
chines. Our approach use the values of a member field to group
concrete object states into abstract states in a sliced OSM.

Kung et al. statically extract object state models from class source
code and use them to guide test generation [12]. An object state
model is in the form of a finite state machine: the states are de-
fined by value intervals over object fields, which are derivedfrom
path conditions of method source; the transitions are derived by
symbolically executing methods. Our approach dynamicallyex-
tracts sliced OSM’s from test executions and supports a muchwider
range of classes than Kung et al’s approach. For example, Kung et
al.’s approach could not extract any state models for theheader

field becauseheader’s values cannot be characterized by value in-
tervals, which are usually applicable for primitive numeric fields.
Their approach could not extract any model for themodeCount
field because there is no usable path condition for this integer field
in the source code. Because of the code complexity, their approach
would have difficulties in symbolically deriving transitions for the
states extracted from the only path condition usable for their ap-
proach:(size==0).

Turner and Robson use finite state machines to specify the be-
havior of a class [19]. The states in a state machine are defined by
the values of a subset or complete set of object fields. The transi-
tions are method names. Although both their specified finite state
machines and our sliced OSM’s are in a similar form, we auto-
matically extract state machines from test executions, whereas they
manually specify state machines for a class. Edwards develops an

approach of generating tests based on flowgraphs extracted from
a component’s specifications [6]. A flowgraph is a directed graph
where each node represents one method provided by the compo-
nent and a directed edge from a noden to noden’ represents the
possibility that control may flow fromn to n’. Our approach auto-
matically extracts OSM’s from test executions without requiring a
priori specifications and our OSM’s capture actual-state transition.

7. CONCLUSION
Lack of specifications for a component has posed the barrier to

the reuse of the component in component-based software develop-
ment. In this paper, we have proposed a new approach for automat-
ically extracting sliced OSM’s for component interfaces. Given a
component such as a Java class, we generate a set of tests for the
component. Then we slice exercised concrete object states by each
member field of the component and construct OSM’s based on the
sliced states. These sliced OSM’s provide useful state-transition
information for inspection. These OSM’s also have potential for
component verification and testing.
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