
Compositional Quality of Service Semantics

Richard Staehli
Simula Research Laboratory

P.O. Box 134
N-1325 Lysaker, Norway

richard@simula.no

Frank Eliassen
Simula Research Laboratory

P.O. Box 134
N-1325 Lysaker, Norway

frank@simula.no

ABSTRACT
Mapping QoS descriptions between implementation levels
has been a well known problem for many years. In compo-
nent-based software systems, the problem becomes how to
predict the quality of a service from the quality of its com-
ponent services. The weak semantics of many QoS speci-
fication techniques has complicated the solution. This pa-
per describes a model for defining the rigorous QoS seman-
tics needed for component architectures. We give a de-
tailed analysis of compositional QoS relations in a video
Object-Tracker and discuss how the model simplifies the
analysis.

1. INTRODUCTION
The need for QoS management support in component ar-

chitectures is well known [4]. While many aspects of QoS
management have been investigated in the context of dis-
tributed systems, component architectures present new chal-
lenges. One of those new challenges is how to reliably predict
QoS properties for a composition of components.

Component architectures such as the CORBA Compo-
nent Model (CCM) guarantee that applications assembled
from independently developed components will function cor-
rectly when deployed on any sufficiently provisioned imple-
mentation of the component architecture platform. We refer
to this as the safe deployment property. Although current
component standards have had good success in some do-
mains, such as e-business, an application that performs well
in one deployment may be unusable as load scales up or when
connections are re-distributed across low-bandwidth connec-
tions. We use the term QoS-sensitive application to refer to
an application that will commonly perform unacceptably if
platform resources are scarce or if the deployment is not
carefully configured and tuned for the anticipated load.

State-of-the-art middleware and component technologies
provide QoS management APIs that force application de-
velopers to code deployment-specific knowledge into the ap-
plication [1][6][8]. Rather than specifying an assembly of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAVCBS’04,October 31, 2004, Newport Beach, California, USA
Copyright 2004 ACM ...$5.00.

black-box components that will run on any standard plat-
form, developers instead write deployment-specific configu-
ration code that depends on knowledge of component and
platform service implementations. This approach compli-
cates development and fails to preserve the safe deployment
property.

1.1 The QuA Project
The QuA project is investigating how a component archi-

tecture can preserve the safe-deployment property for QoS-
sensitive applications [9]. We believe that platform-managed
QoS is the only general solution that preserves the safe de-
ployment property. This means that applications and appli-
cation components should be written without knowledge of
the runtime platform implementation and resource alloca-
tion decisions. Application specifications for accuracy and
timeliness of outputs must refer only to the logical properties
of the component interfaces.

Platform-managed QoS means that the platform must be
able to reason about how end-to-end QoS depends on the
quality of component services. The composition relationship
is often non-trivial as in the case of a remote video conference
where image quality may depend on both packet transport
loss and video encoding.

We refer to the set of characteristics used to specify QoS as
a quality model and the concepts used to define such char-
acteristics as a QoS meta-model. To enable a component
platform to reason about composition and conformance, we
need a QoS meta-model that allows us to uniformly model
every level of implementation as a service, from the appli-
cation level down to physical resources, and that, for any
service, allows us to define a quality model that does not
depend on implementation. These properties allow the cre-
ation of QoS specification standards and developer provided
mapping functions that can be used to derive composition
QoS properties from independently developed components.

In the next section, we describe how the QuA QoS meta-
model satisfies the above requirements. In Section 3 the
model is applied recursively to define QoS models for a com-
plex real-time video processing application and its compo-
nents. We show how the model permits a precise mapping
of component-composition QoS dependencies. Section 4 dis-
cusses related work and Section 5 presents our conclusions.

2. THE QUA QOS META-MODEL
The QuA QoS Meta-Model (QQMM) defines the seman-

tics of our QoS specifications. It defines a generic model of
a service and defines quality in a way that allows us to cre-

ate precise and practical QoS models for any specific service
type.

To begin, we need to be precise about what a service is. In
common use, the term service means work done for another.
In computing systems, we want the term to apply both to
the work performed by a complex distributed application
for its clients and to the work performed by the simplest of
hardware resources, such as a memory address that stores a
binary value for some computation.

Definition 1 A service is a subset of output messages and
causally related inputs to some composition of objects.

This is consistent with the common definition, since the
output messages represent the ”work done” and the inputs
represent the work request. An object’s type semantics de-
fine which inputs cause which outputs.

Since network packet delivery is a service that is well
known in the QoS literature, we will use it to illustrate
our definitions. We can model an IP network port as a
distributed port object that can accept send(packet) mes-
sages at multiple locations and emit deliver(packet) mes-
sages at an endpoint identified by the host and port num-
ber. This service is illustrated in Figure 1. We can de-
fine a service provided by this port object as consisting of
only the deliver(packet) output events and causally re-
lated send(packet) input events for which the input came
from source A. These packets are colored black in Figure 1.

send(packet)

PortProxy

Distributed Port Object

send(packet)

PortProxy

send(host,port,packet)

Network

Source A

signal

Port

deliver(packet)

Endpoint

Source B

Figure 1: Example packet transport service.

In the QQMM definition of a service, we assume the most
basic model of object-oriented analysis, where objects in
some platform-defined identity space communicate by send-
ing messages. The sending of a message is both an input
event for the receiver and an output event for the sender.
In the packet service, we can define the occurrence of the
send event as precisely the moment when the send func-
tion is invoked and the occurrence of the deliver event as
the precise moment when the received packet is made avail-
able in the output buffer. The QQMM makes no assump-
tions about object implementations and so we must allow
that objects may receive input messages concurrently from
multiple senders and send output messages concurrently to
multiple receivers. This suits a general model of distributed
computation.

As in the packet service example, other services may share
the same object and even the same interface to that object,
so long as they have a disjoint set of output events.

A service specification can be as simple as identifying an
output interface for an object; the causally related inputs
are implied by the semantics for the object type. For ex-
ample, the semantics of the distributed port object dictate
that every packet delivered has exactly one send event that
caused it. The semantics also dictates that the value of the

packet delivered should be the same as the packet that was
sent.

Now, to reason about the behavior of a service, we need
to talk about the history of input and output events.

Definition 2 A message event trace is a set of message val-
ues associated with the sending interface and the time
it was sent.

A message value represents all content of the message,
including its type or signature. The sending interface is the
location of the mechanism used to send the message. In the
packet service example, the sending interface used by Source

A is the first PortProxy object, while the sending interface
for packet service outputs is the Endpoint object. The time
associated with an event comes from a local clock at the
sending interface. We assume that clocks are synchronized,
but acknowledge that when times from remote clocks are
compared there will always be some uncertainty about how
well they were synchronized.

The QQMM defines a message send to be a local and
instantaneous event. All preparation for a message send is
done in the sender and all processing of a message after the
send event is done in the receiver. This property assures us
that end-to-end processing time is consistently and properly
accounted for. In the packet service example, all real delay
occurs within one of the service components, including the
Network object that encapsulates physical network access.

We use the term input trace to refer to the message event
trace with all input events for a service, and output trace to
refer to the message event trace with all output events for a
service. The behavior of a service implementation is deter-
mined not only by the semantics of its declared interfaces,
but also by the availability and scheduling of resources in
the underlying platform. To define quality of service, we
need to ask what is the ideal behavior of a service.

Definition 3 For a given input trace, the ideal output trace
is generated when the service executes completely and
correctly on an infinitely fast platform with unlimited
resources.

That is, computation takes no time and results are ob-
tained at the same time they are requested. Of course,
events in an ideal output trace still only occur as frequently
as the inputs that cause them!

Although we believe the QQMM can model QoS for non-
deterministic computations, we ignore them for now to sim-
plify the presentation. For deterministic computations, the
semantics of a service’s interfaces defines the ideal output
trace as a function of an input trace. This means that the
best possible quality for a service is always well defined.

In a real implementation of a service, the actual output
trace will differ from the ideal in both the timing and value
of message events. The causes for this deviation from ideal
include finite CPU speed, queueing delays, and bandwidth
reduction strategies. This is the stuff of QoS management.

We would like to view the possible output traces for a
service as points in a behavioral space and consider distance
from the ideal output trace as an error measurement, but to
use this concept in QoS specifications, we must first define
the dimensions of this behavioral space.

Consider again, the packet service example. Figure 2
shows the input trace as incoming messages on the left side

Distributed Port Object

 send(1)
0

 send(2)
10

 send(3)
20

 send(4)
30

deliver(1)

deliver(9)

deliver(9)

Figure 2: Ideal (shown in grey) versus actual (black)
behavior.

of the service’s timeline and the actual output trace as out-
going messages on the right. The ideal output trace is shown
in grey. Assuming that this trace shows the entire lifetime
of the service, we can see that each event in the ideal out-
put trace can occur at a later time in the actual trace and
may have its packet value corrupted or degraded in some
way. The second and third packets have apparently been
corrupted and it is not possible to be certain which is which
without some knowledge of the service implementation. The
fourth packet sent had not been delivered at the time of
reckoning and may be considered lost.

The important point to observe about the packet service
output is that every event can vary independently from the
others in its delay from the ideal and in the change to its
packet value. The QQMM generalizes from this example to
make the assumption that the only possible values in an ac-
tual output trace that can differ from the ideal are the time
of the output event and the values of message arguments.
Each of these variables in the output trace represents an
independent dimension of the behavioral space.

Let ~X be the vector of values that may differ in a trace
X, ordered by event order in the ideal trace and by the
order they occur in the message value. Then the difference
between an actual output trace A and the ideal trace I is

the difference vector ~δ = ~A− ~I.
For the packet service example, the values that may differ

in the actual output trace are the event times and the packet
values. If I is the ideal output trace for the example, the
order of values in ~I is packet value followed by time for the
first output, then for the second and so forth as shown in
Equation 1.

~I = (1, 0, 2, 10, 3, 20, 4, 30) (1)

If A is the actual output trace for the example, then the
first two values of ~A are 1 and 5.

~A = (1, 5, 9, 21, 9, 24, 0,∞) (2)

As noted above, it is not possible to be certain which of
the next two packets delivered corresponds to the second
event in the ideal trace. This is an inescapable problem in
QoS management: unreliable systems cannot be relied on
to communicate enough information to unambiguously de-
termine error. Instead, the difference vector can have many
possible values depending on different interpretations of the
correspondence between actual and ideal events [11]. Fortu-

nately, it is usually safe to consider only the interpretation
corresponding to the least error as it is unlikely that random
faults would yield better service. So, we choose the following

interpretation of ~A and the difference vector ~δ:

~δ = (0, 5, 7, 11, 6, 4,−4,∞) (3)

Although this definition of the difference between actual
and ideal allows us to define quality in a weak sense, i.e.,
actual traces in which every vector component is below a
corresponding threshold value, it fails to tell us which of
two output traces is better when each contain some com-
ponents that are worse than the other. Another problem is
that as the complexity of an ideal trace increases, through
additional messages and more complex message structure,
the number of ways in which actual traces may differ ex-
plodes. Fortunately, we frequently are concerned only with
an overall measure of distance from the ideal. For exam-
ple, we can ignore the individual values for event delay and
instead monitor aggregate statistics such as maximum and
median.

The QQMM concept of an error model provides a rigorous
way to define the type of quality characteristics that are
most useful for QoS management.

Definition 4 An error model ~ε =
`
ε1(~δ), ..., εn(~δ)

´
is a vec-

tor of n functions that each map from a difference vec-

tor ~δ to a real number such that ||~ε(~δ)|| = 0 when

||~δ|| = 0.

The notation ||~δ|| represents the magnitude of the vec-

tor ~δ. According to this definition, a function in an error
model (error function) must be zero if there are no differ-
ences between the actual and the ideal. We also expect that
the magnitude of an error model will generally increase as
the difference from ideal grows larger, but we have found it
difficult to formalize this requirement without being overly
restrictive.

One trivial error model is the set of projection functions

πi(~δ) = δi; these are zero when ||~δ|| = 0 and increase as

the respective component of ~δ increases. But the value of
our error model definition is that it allows us to construct a
much simpler error space with the type of QoS characteris-
tics commonly discussed in the QoS management literature.
A point in this simplified error space represents an equiva-
lence class of output traces that are the same distance from
the ideal with respect to the error model.

To continue the packet service example, if we define the
service as consisting of all deliver(packet) messages, then
both the input trace and its associated ideal output trace
may contain an unbounded number of events. To define
an error model for this service we need to decide how to
interpret packet delivery events that are expected but never
happen, or that cannot be distinguished from other packet
delivery events. For this error model, we consider a packet

to be lost if either the time difference in ~δ for its deliver
event exceeds some limit, such as 20 seconds, or its value
difference is non-zero. We associate a packet delivery event
with an ideal delivery event if the the actual event happened
after the ideal event and there is no other interpretation that
offers fewer packet losses.

To allow us to model quality at time t during the service,

we define i(p, t, ~δ) to be the sequence of consecutive values

in ~δ associated with ideal events in the interval (t−p, t]. Let

d(p, t, ~δ) be the values in i(p, t, ~δ) associated with packets
that were correctly delivered (not lost). A value of 10 sec-
onds was chosen arbitrarily for the period p in this example.

We can then construct an error model with the following
functions:

• delay(t) is the mean of time differences in d(10, t, ~δ).

• jitter(t) is the variance of time differences in d(10, t, ~δ).

• loss(t) is the ratio of the number of packets lost in

i(10, t, ~δ) to the number sent, or zero if none were sent.

These satisfy our definition of an error model, since each

is zero when the difference values in ~δ are zero and none
decrease when a difference value in ~δ increases.

Note that these definitions model only the error in the
recent history of time t. To constrain error over the lifetime
of a service we would need to use expressions like: for all
time t, delay(t) < 5. We could define many other similar
error models with different parameters or different functions.
For example, it may be useful to model the 95th percentile
of delay values. Still, the simple error model above is quite
useful for specifying and measuring the quality of a packet
delivery service and is similar to other common definitions
of packet service QoS characteristics.

A point in this error space; say delay(t) = 1 second,
jitter(t) = 0.5 second, and loss(t) = 0.2; corresponds to
all output traces in which the mean delay for recent events
before time t is one second, and so forth. This set of output
traces forms a surface in the behavioral space that surrounds
a neighborhood of the ideal output trace. Inside this neigh-
borhood, all output traces are closer to the ideal and can be
considered better at time t according to this error model.

We can use an error model to both quantify the loss of
quality and to constrain it. Let ε(~A − ~I) be the tuple of
error values for an error model ε, an actual trace A and the
ideal trace for a service I. Let limits be a tuple of positive
real numbers representing an upper bound for each of the
functions in ε. Then we say a service with output trace A
is acceptable if for each i, |εi(~A− ~I)| < limitsi .

Since many error models can be defined for a given service,
we would like some criteria to judge which error models are
better than others. The QQMM allows us to formally de-
fine desirable properties of a good error model. For brevity,
we suggest only informal definitions here. We say an error
model is sound if any set of non-zero error limits can be sat-
isfied by some set of actual output traces. An error model
is complete if, for any output trace that is different from the
ideal, we can find a set of non-zero error limits that would
exclude this trace. An error model is minimal if no function
can be removed without losing the ability to distinguish be-
tween some output traces. We say an error model M is more
expressive than an error model N if it can define exactly the
same sets of acceptable output traces as N , and then some
more.

The example error model for the packet service appears
to be sound, because any non-zero limits can be satisfied by
output traces with non-zero delay, jitter, and loss. The error
model also appears to be complete: for any time difference

value x > 0 in some i(10, t, ~δ) with n successfully delivered
packets, x/(n + 1) is a non-zero delay limit that must be
less than |delay(t)| even if all n − 1 other time differences

are zero, and if v > 0 is a value difference in such an interval
with m packets, 1/(m+1) is a non-zero loss limit that must
be less than |loss(t)| even if all other packets are delivered
in a timely manner without corruption.

The error model is also minimal, as each function models
an independent facet of error. The error model could be
made more expressive by adding functions, to distinguish
packet corruption from loss for example.

3. APPLICATION TO AN OBJECT TRACK-
ING SERVICE

In this section, we first define error models for a real appli-
cation and its component services, and then show how error
for the application service can be predicted from error in the
component services. We apply QQMM to an example of a
class of applications we refer to as real-time content-based
video analysis. These applications must process the video
data at least as fast as the video data is made available and
perform analysis with acceptable accuracy.

Real-time content analysis is an active research field where
efficient techniques have been found for problems such as
multi-object detection and tracking. In such applications,
pattern classification systems which automatically classify
media content in terms of high-level concepts have been
adopted. Such pattern classification systems must bridge
the gap between the low-level signal processing services (fil-
tering and feature extraction) and the high-level services
desired by the end-user.

The design of such a pattern classification system must
select analysis algorithms that balance requirements of ac-
curacy against requirements of timeliness.

3.1 The object tracking service
In this example, we refer to a simple object tracking ser-

vice as an Object-Tracker. The service is simple in the
sense that it can track a single object on a stationary back-
ground (i.e. the camera remains still). This example is
adapted from our earlier work on supporting quality con-
straints in real-time content-based video analysis [12].

Figure 3 shows the Object-Tracker as a component re-
ceiving input from a VideoSrc and sending output to an
EventSink. The Object-Tracker is implemented as a com-
position of Feature extractor and Classifier components
with multicast input to the feature extractors and pub-
lish/subscribe middleware for communications between the
feature extractors and the classifier. The extractors and the
classifier are further decomposed into functional and com-
munication components.

The VideoSrc sends each frame of an uncompressed video
stream to a filter component (not shown) that divides the
frame into regions, publishing the data for each to a mul-
ticast channel for that region. The multicast channel is an
efficient mechanism to communicate high-bandwidth data
to multiple clients over a local area network. However, in
this example, exactly one Feature Extractor receives the
data for each frame region.

Each Feature Extractor calculates features from the set
of frame data it has received. In this example, the Feature

Extractor components compute a two dimensional array
of motion vectors; one for each block of the frame region,
where a block is a subdivision of the frame into fixed size
rectangles of pixels. A motion vector indicates the direction

Object Tracker

Pub/Sub MW

Feature
Extractor 1 F1

RTP/UDP

Pub/Sub MW

Feature
Extractor n Fn

RTP/UDP

Classifier Cl

Pub/Sub MW

VideoSrc Src

RTP/UDP

...

M
-c

as
t C

ha
nn

el

Pu
b/

Su
b

C
ha

nn
el EventSink

Figure 3: Functional decomposition of the Object-Tracker.

and distance that most pixels within a block appear to have
moved from a previous frame.

The motion vectors and the associated frame number are
then published by the Feature Extractor as event notifi-
cations on a channel for the frame region. The Classifier

subscribes to these channels to receive motion vector data
from multiple Feature Extractor components. In this ex-
ample, the Classifier examines the history of motion vec-
tors over several frames to identify and determine the center
of a moving object.

We use Dynamic Bayesian Networks (DBNs) as a classi-
fier specification language. DBNs [5] represent a particularly
flexible class of pattern classifiers that allows statistical in-
ference and learning to be combined with domain knowledge.

In order to automatically associate high-level concepts
(e.g. object position) with the features produced through
feature extraction, a DBN can be trained on manually an-
notated media streams. The goal of the training is to find
a mapping between the feature space and high-level con-
cept space, within a hypothesis space of possible mappings.
After training the DBN can be evaluated by measuring the
number of misclassifications on a manually annotated media
stream not used in the training. This measured error rate
can be used as an estimate of how accurately the DBN will
classify novel media streams and can be associated with the
classifier as meta data.

One important reason for using DBNs is the fact that
DBNs allow features to be missing during classification at
the cost of some decrease in accuracy. This fact is exploited
in our work with the Object-Tracker to trade accuracy for
timeliness as discussed below.

3.2 QoS role in planning service configuration
Even this simple Object-Tracker implementation requires

many deployment configuration choices with associated QoS
tradeoffs. Components may be deployed to different proces-
sors to work in parallel, increasing throughput and reduc-
ing delay. Throughput may also be increased by deploying
pipeline components on different processors. But distribu-
tion may also increase communication overhead and add to
delay.

Since the motion vector Feature Extractor operates lo-
cally on image regions, the performance can scale with the
size of video processing task by distributing the work among
a greater number of Feature Extractor components, each
on its own processor. Similarly, the Classifier could be

parallelized if classification should become a processing bot-
tleneck [12]. In this paper, we consider only the case of
parallelizing the Feature Extractor.

The amount of processing required for acceptable accu-
racy in object tracking is another tradeoff point. The level
of accuracy provided by the Object-Tracker depends on
the misclassification behavior (error rate) of the classifier
algorithm, which in turn depends on the quality of the fea-
ture extraction input. Greater accuracy can be achieved
by processing video data at a higher frame rate or higher
resolution, but the increased processing requirements might
increased delay in reporting the object location. Hence the
configuration must be carefully selected based on both the
desired level of accuracy and the tolerance for delay.

To reason about which configurations might satisfy the
Object-Tracker QoS requirements, it must be possible to
estimate what QoS the components will offer and how these
QoS offers compose to satisfy the end-to-end requirements.
To do this in practice, we exploit knowledge of the measured
behavior of the components in the target physical processing
environment.

3.3 Error model definitions
We model the Object-Tracker as a service that has un-

compressed video frames as input and that produces a lo-
cation event for every video frame as its output. A video
frame number accompanies each frame, frame region, set of
motion vectors, and each location output event so that there
is no ambiguity about which frame these events are to be
associated with. Each video frame is divided into m × n
blocks. A location is represented as a block number in the
video frame and indicates the center position of the tracked
object.

For this service, the variables in the output trace are the
time of the output and the location coordinates. It matters
little whether the difference between actual and ideal loca-
tion coordinates is in one axis or another, so we will refer to
location as an aggregate value.

We would like to model three quality characteristics for

this service: latency, errorRate and period. Let i(p, t, ~δ)
be the values from the difference vector for the interval of
period p up to time t as defined in the last section.

We can define the error model as follows:

• latency(t) is the mean of time differences in i(10, t, ~δ).

• errorRate(t) is the ratio of non-zero location differ-

ences in i(10, t, ~δ) to the total number of location val-
ues.

• period(t) is the maximum q such that location dif-

ference is non-zero for all values in i(q, t′, ~δ), where
t− 10 ≤ t′ ≤ t.

The latency(t) is the mean of recent values for the elapsed
time from when a frame containing a motion event is sent to
the Object-Tracker until a causally related location event
is output. The ideal latency is zero, but any real application
will permit some latency greater than zero.

The errorRate(t) gives the fraction of the recent location
difference values that were non-zero. The ideal error rate
of zero may be achieved if all video blocks are processed
and the moving object is similar to those used in classifier
training.

The period(t) is the amount of time that may elapse before
a updated and correct object location is reported. As with
the errorRate, the ideal value of zero may be achieved with
sufficient processing resources and good video input, but
frame dropping will cause this error to increase.

Because the Classifier has the same output interface
as the Object-Tracker, we can and should use the same
error model. This shows a good feature of the QQMM:
Error model definitions refer only to the output interface of
a service and so an error model may be used for any service
with the same output interface.

We model a Feature Extractor as a service that receives
uncompressed video frames (or some region of a frame) as
input and that produces a motion vector array and asso-
ciated frame number as its output. The variables between
actual and ideal output traces for this service are the time
of output events and the motion vector array values.

For this example, we are not concerned with trading accu-
racy in the motion vectors against other quality dimensions
so we again treat this complex data type as a single aggre-
gate value in the following error model:

Let i(p, t, ~δ) be as defined in the last section.

• latency(t) is the mean time difference in i(10, t, ~δ).

• errorRate(t) is the ratio of non-zero motion vector

array differences in i(10, t, ~δ) to the total number of
motion vector array values.

These are the same definitions given for the functions of
the same name in the previous error model except that here
we reference the motion vector array as the output trace
variable. Because we do not anticipate error in the deter-
ministic algorithm for computing motion vectors, it might
seem that errorRate(t) could be left out of our model, but
this would leave our model incomplete and unable to ex-
press even the constraint that the motion vectors should be
correct.

Our work with this application has been in a local area
network environment where the remote communication has
not been a bottleneck, but we understand that modeling the
QoS of these communication links is necessary for future
work. At this time, we have not defined error models for
the the communication protocols or the component which
divides the video frames into regions.

3.4 Modeling compositional QoS relations
To configure the Object-Tracker to perform with accept-

able errorRate, latency and period requires an ability to
predict these values for alternative configurations. Systems
engineers accomplish this task with a combination of anal-
ysis and experimental observations of component behavior.
The QQMM allows us to define an error model for each
component service type that does not depend on its imple-
mentation, and thus can be used as a standard QoS spec-
ification model used by both component clients and inde-
pendent component developers. Given such standards, a
component developer can encode knowledge of the relation
between component and composition QoS independently for
each implementation. Thus, the QQMM enables a kind of
QoS composition algebra: the algebraic operators are error
prediction functions provided by the developer with each
component implementation and the operands are the sub-
component QoS predictions.

As mentioned earlier, meta data measuring the errorRate
for various configurations may be associated with the Cla-

ssifier. For all of the components, measurements of pro-
cessing time for a periodic task on a particular class of CPU
and with a particular class of workload may be associated
with the component type as meta data for use in estimating
latency.

Another input to the latency prediction function is a model
of the available computing resources in terms of both the
number and class of CPUs, and the latency and bandwidth
of communication between each pair of CPUs.

To simplify the estimation of latency for a service config-
uration, we assume that the communication between each
pair of CPUs is contention free and that the latency and
bandwidth are constant. These assumptions are valid for a
significant class of distributed processing environments (e.g.
dedicated homogeneous computers connected in a dedicated
switched LAN) and allow us to ignore the complexity of com-
munication contention, routing, etc., which are not the focus
of this paper.

Given an allocation of components to processors, the pro-
cessing period of each Object-Tracker component can be
estimated. From the component QoS predictions and con-
figuration values such as the classifier location output rate,
the end-to-end error for this example of the Object-Tracker
can be predicted.

The composition of latency for serial tasks, such as remote
communication of video frame data and Feature Extractor

processing of that frame, is the sum of the delays. The
QQMM semantics ensure that this composition is seamless:
that end-to-end accounting of time attributes every moment
to exactly one service in the sequence. If the latency mea-
surements follow these semantics than there is good reason
to hope that the composition estimate will be good.

The serial composition of Feature Extractor and Cla-

ssifier is not strictly serial processing however. The Cla-

ssifier does not wait for all features from a frame to ar-
rive before reporting a guess about the location, but instead
is configured with its own periodic schedule to update hy-
potheses, including hypotheses about past. In this imple-
mentation, the composition trades the risk of an increase in
the errorRate to avoid the high latency of waiting for every
serial dependency. The end-to-end latency is held constant
at runtime while the errorRate may vary.

The prediction of the errorRate can be made analyti-

cally from estimates of the availability of extracted features
and knowledge of the classifier. The ARCAMIDE algorithm
exploits the fact that DBNs allow features to be missing
during classification to trade accuracy for timeliness [12].
Alternatives are generated for removing feature extractors
from an initial configuration. The error prediction for the
Object-Tracker is used to sort the alternatives, least in-
crease in the errorRate first. This algorithm then tests each
configuration to determine if the latency and period predic-
tion will satisfy application requirements. In this sequence,
the first service configuration which meets the latency and
period requirements, must also meet the accuracy require-
ment, otherwise it is not possible to satisfy the requirements
with the specified processing resources.

The period can be predicted from the absolute value of
the difference between the classifier update period and the
V ideoSrc frame period.

This example suggests that the error prediction for a com-
position can be a complex function of component inter-
actions and component error. The QQMM semantics en-
able such error prediction functions to be written without
knowledge of component implementations and thus, to pre-
dict error regardless of which component implementation is
plugged in to the composition. However, we have only begun
to define error models for real services and error predictions
for compositions. Future work is needed to learn if there are
important patterns for error prediction in compositions.

4. RELATED WORK
There has been little work published specifically address-

ing QoS models for component architectures. Researchers at
BBN developed QuO (Quality of Service for Objects) [13] as
a framework for management of QoS properties in CORBA
applications. A more recent QuO paper introduced qoskets
as a means for reusing adaptive QoS behaviors, but they
have not yet adapted this work to a component architec-
ture [10]. They specify QoS contracts between client and
server objects, but do not address other service types such
as a pipeline component that receives input from one ob-
ject and sends output to another. Also, they do not focus
on QoS semantics, so it is not clear that a description of
QoS provided by one component would be understood cor-
rectly by an independent developer who would use such a
component.

SLAng is a language for specifying service level agree-
ments between very large grain components that may be
owned and operated by separate commercial entities [3].
The authors acknowledge that SLAng’s informal semantics
for QoS characteristics is a weakness [2]. Our model is
complementary and could provide a formal semantics and
a method to expand the SLAng catalog with QoS charac-
teristics for new service types.

Nahrstedt, et al., describe a QoS-aware middleware archi-
tecture designed to support QoS-sensitive applications [7].
They propose a QoS compiler to map from user-perceived
QoS down to system-level QoS, but we understand that this
compiler understands only a fixed set of QoS characteristics.
They conclude that more research is needed to allow uniform
specification of QoS for different application domains. We
agree and we believe that QQMM provides a prerequisite
common semantics independent of any particular middle-
ware or component architecture.

5. CONCLUSIONS
In this paper we have described the QuA QoS Meta-Model

(QQMM) for defining QoS semantics for an arbitrary ser-
vice. The key features of the QQMM are a definition of a
service that is based on component interface semantics and
a definition of quality dimensions based on a metric space
with ideal service behavior at the origin. Error models that
conform to the QQMM define QoS dimensions that can be
observed by a client without knowledge of the service imple-
mentation. This allows independent component developers
to agree on a common standard for specifying client QoS
requirements and component QoS offers. The QQMM al-
lows us to analyze any implementation as a composition of
component services and to define error models for these com-
ponent services that fully account for loss of quality in the
implementation. From this analysis, a component developer
may be able to provide a mapping relation between QoS of
component services and the QoS of a composition.

The QQMM provides clear guidelines for defining QoS
measures with a rigorous semantics, but we have learned
from initial experiments that it can be difficult to define
precise error models that correspond to our intuition about
quality dimensions. Despite this note of caution, we believe
a strong semantics are a prerequisite for QoS management in
component-base software engineering where representations
of QoS properties come with ”off-the-shelf” components.

5.1 Acknowledgment
Thanks to Jonathan Walpole for comments on an early

draft and to the referees for their suggestions to improve
the paper. This work was funded in part by a grant from
the Research Council of Norway.

6. REFERENCES
[1] G. Coulson, G. S. Blair, M. Clarke, and

N. Parlavantzas. The design of a configurable and
reconfigurable middleware platform. ACM Distributed
Computing Journal, 15(2):109–126, 2002.

[2] D. Davide Lamanna and James Skene and Wolfgang
Emmerich. Specification Language for Service Level
Agreements, 2003. http://www.newcastle.research.ec-
.org/tapas/deliverables/D2.pdf.

[3] Wolfgang Emmerich, D. Davide Lamanna, Giacomo
Piccinelli, and James Skene. Method for service
composition and analysis, 2003.
http://www.newcastle.research.ec.org/tapas/deliver-
ables/d3.pdf.

[4] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. Grid
services for distributed system integration. Computer,
35(6), 2002.

[5] F. V. Jensen. Bayesian networks and decision graphs,
2001. Series for Statistics and Engineering and
Information Science, Springer Verlag.

[6] J. P. Loyall, R. E. Schantz, J. A. Zinky, and D. E.
Bakken. Specifying and measuring quality of service in
distributed object systems. In Proceedings of the First
International Symposium on Object-Oriented
Real-Time Distributed Computing (ISORC ’98), pages
20–22, Kyoto, Japan, 1998.

[7] Klara Nahrstedt, Dongyan Xu, Duangdao
Wichadakul, and Baochun Li. QoS-aware middleware
for ubiquitous computing. IEEE Communications

Magazine, 39(11):140–148, November 2001.

[8] I. Pyarali, D. Schmidt, and R. Cytron. Achieving
end-to-end predictability of the TAO real-time
CORBA ORB. In Proceedings of the 8th IEEE
Real-Time Technology and Applications Symposium,
San Jose, CA, 2002.

[9] Richard Staehli, Frank Eliassen. Component-Based
Service Planning For Platform-Managed QoS.
Submitted to Middleware 2004, 2004.

[10] R. Schantz, J. Loyall, M. Atighetchi, and P. Pal.
Packaging quality of service control behaviors for
reuse. In Proceedings of ISORC 2002, The 5th IEEE
International Symposium on Object-Oriented
Real-time distributed Computing, Washington, DC,
2002.

[11] Richard Staehli and Jonathan Walpole. Quality of
service specifications for multimedia presentations.
Multimedia Systems, 3(5/6), 1995.

[12] Viktor S. Vold Eide and Frank Eliassen and
Ole-Christoffer Granmo and Olav Lysne. Supporting
Timeliness and Accuracy in Distributed Real-Time
Content-based Video Analysis. In ACM Multimedia,
2003.

[13] J. A. Zinky, D. E. Bakken, and R. E. Schantz.
Architectural support for quality of service for
CORBA objects. Theory and Practice of Object
Systems, 3, 1997.

