
Formalizing Lightweight Verification
of Software Component Composition

Stephen McCamant Michael D. Ernst
MIT Computer Science and Artificial Intelligence Laboratory

32 Vassar Street
Cambridge, MA 02139 USA

smcc@csail.mit.edu, mernst@csail.mit.edu

ABSTRACT
Software errors often occur at the interfaces between separately
developed components. Incompatibilities are an especially acute
problem when upgrading software components, as new versions
may be accidentally incompatible with old ones. As an inexpensive
mechanism to detect many such problems, previous work proposed
a technique that adapts methods from formal verification to use
component abstractions that can be automatically generated from
implementations. The technique reports, before performing the re-
placement or integrating the new component into a system, whether
the upgrade might be problematic for that particular system. The
technique is based on a rich model of components that support in-
ternal state, callbacks, and simultaneous upgrades of multiple com-
ponents, and component abstractions may contain arbitrary logical
properties including unbounded-state ones.

This paper motivates this (somewhat non-standard) approach to
component verification. The paper also refines the formal model
of components, provides a formal model of software system safety,
gives an algorithm for constructing a consistency condition, proves
that the algorithm’s result guarantees system safety in the case of
a single-component upgrade, and gives a proof outline of the algo-
rithm’s correctness in the case of an arbitrary upgrade.

1. INTRODUCTION
Previous work [12, 13] introduced a technique that seeks to iden-

tify unanticipated interactions among software components, before
the components are actually integrated with one another. The tech-
nique compares the observed behavior of an old component to the
observed behavior of a new component; it permits the upgrade only
if the behaviors are compatible, for the way that the component is
used in an application. The technique issues a warning when the
behaviors of the new and old components are incompatible, but
lack of such a warning is not a guarantee of correctness, nor is its
presence a guarantee that the program’s operation would be incor-
rect. The technique constructsoperational abstractions, mathemat-
ical statements syntactically similar to specifications that describe
a component’s behavior and its expectations about the behavior of
other components. For a given system of components, the tech-
nique constructs a consistency condition that relates the expecta-
tions of one module to how they might be satisfied by the behav-
iors of others. This combination of the abstractions according to
the consistency condition is then passed to an automatic theorem
prover (our prototype uses Simplify [4]), and the upgrade is ap-
proved only if the consistency condition is verified to hold. We
have used our implementation to find behavioral inconsistencies
in large software systems — for instance, differences between ver-
sions in the behavior of the Linux C library, as used by desktop

applications.
In the case of an upgrade to a single, purely functional mod-

ule, the consistency condition that our technique checks is simi-
lar to the classic condition of behavioral subtyping relating proce-
dure pre- and postconditions [1, 3]. For upgrades to more com-
plex systems with arbitrary numbers of components, bidirectional
interactions among them, and components with internal state, the
consistency condition is more complicated. This work refines the
multi-component system model from [13] and gives an improved
algorithm for constructing a consistency condition.

In order to decide whether our changes to the algorithm are really
improvements, we need a standard by which to judge our technique.
The major new work described here is a formalization of the con-
sistency checking problem. We can use this formalization to verify
that consistency checks have desirable logical properties. Specif-
ically, we wish to verify that the consistency condition is sound
relative to the abstractions that describe the behavior of individual
components. If an upgrade is approved by virtue of satisfying a
consistency condition, and the behavioral abstractions that are re-
lated via that condition are safe approximations of the components’
actual behavior, then the actual upgrade in question issafe— that
is, the upgraded system satisfies specific properties that the orig-
inal one did. The algorithm improvements we describe eliminate
unsound aspects of our previous algorithm, and using them we de-
scribe a strategy for a relative soundness proof (though we have not
yet completed the proof in all details).

The remainder of this paper is organized as follows. Section 2
compares our technique with other approaches to component-based
verification. Section 3 describes a model of the structure of a multi-
component systems. Section 4 formalizes a simplified version of
the upgrade safety problem. Section 5 proves that the consistency
condition we use in the simplest case of upgrading a single com-
ponent is indeed sound. Section 6 proposes a general algorithm for
constructing consistency conditions and gives a proof outline of the
algorithm’s correctness. Section 7 concludes.

2. COMPARISON WITH OTHER WORK
Many other researchers share our goal of making component-

based development safer and more efficient, as well as the general
approach of verifying that components will interact correctly based
on an abstraction of their behavior. However, our approach takes as
its starting point a somewhat atypical combination of four theses.
We argue that the abstractions describing components:

• should be stated in an expressive language at the same ab-
straction level as concrete interfaces

• should describe concrete implementations and the way they
are exercised by real test suites

• should be compiled and compared automatically
• need not be sound over arbitrary executions

The following subsections discuss these points in turn.

2.1 An expressive language of abstractions
The operational abstractions that our technique uses to represent

a component’s behavior are expressed as statements in a first or-
der logic whose atomic statements can refer to the same concrete
values that program statements can, and include the same primitive
operators as the language itself. The statements can express the
same sorts of properties that a programmer might consider impor-
tant, for instance as might be checked in a conditional or assertion
statement. Matching the tool’s understanding to the developer’s has
two benefits. First, it helps the tool find properties that might be im-
portant for correctness. Second, when user interaction is required,
such as after a potential incompatibility has been flagged, it makes
it easier for the developer to understand the problem.

Much of the most important early work on specifications and
their combination, such as behavioral subtyping [11] and the Vi-
enna Development Method [10] used expressive specification lan-
guages similar to our operational abstractions. More recent work
has seen a trend toward less expressive representations, especially
finite state ones such as regular languages [16] or labeled transition
systems [15]. Besides being more amenable to automatic checking,
such representations also focus verification effort on a more limited
set of properties, such as those related to global temporal order-
ing. Such approaches necessarily neglect aspects of correctness in
a program’s local behavior, and cannot even express non-finite-state
properties involving integers or unbounded data structures.

2.2 Using real implementations
The operational abstractions used in our technique are different

from formal specifications in that they describe software as it has
actually been implemented, rather than as it is intended to perform.
While formal specifications can be useful as part of the design of a
system, or to assign responsibility for deviations from an interface,
they are unavailable for most real systems. In particular, some of
the most productive uses of formal specifications take advantage of
the ability to describe a component at a high level of abstraction,
so as to capture only the aspects of its behavior most important to
a global architecture. While it is possible to describe the complete
correctness conditions of a component at the level of concrete in-
puts and outputs in a formal specification, doing so is prohibitively
expensive for any but the most critical systems.

By contrast, our technique’s use of operational abstractions is
intended to leverage the investments that developers already make
in implementation and testing, and to discover potential problems
that would affect actual system executions. We presume that the
developers of individual system modules have checked locally to
a module, informally and/or via unit testing, that those modules
behave as intended. The job of our technique is to propagate the
characterization of behavior embodied in such local checks and
cross-check it for consistency with the expectations held by other
separately developed modules in a large system. Unlike dynamic
contract-checking [14, 7], our technique is intended to be used be-
fore system integration, rather than during execution, and discovers
inconsistencies without assigning blame to one component or an-
other.

2.3 Automatic generation and comparison
Our tool automatically derives operational abstractions from a

component’s implementation, as it is exercised by representative

uses such as a test suite. This approach takes advantage of devel-
oper effort already expended in development and in choosing which
aspects of behavior to test. Such derivation is of course not appli-
cable to a specification-first methodology, but dynamically inferred
properties are increasingly used for verification; in addition to the
axiomatic-semantics style properties we use [6], other researchers
have applied similar techniques to infer algebraic specifications [8]
and temporal properties [2, 19].

Many component-based verification techniques use behavioral
abstractions that can be compared automatically, at least for finite
scopes, by conceptually simple techniques such as model checking
or approaches based on finite automata. In theory, the unbounded-
state properties that make up our operational abstractions are more
difficult to operate on, with many operations in fact undecidable.
However, we have not found our use of an automated theorem
prover to be a major bottleneck in our technique, for two reasons.
First, because propositional logic is a standard abstraction, we can
treat the theorem prover as a black box, and ignore its internal
complexities. Second, the properties we wish to check tend to be
straightforward deductions from a general statement to a more spe-
cific one, involving only simple arithmetic and relations between
variables. In previous work, a more common approach has been to
combine human direction and a proof assistant tool [20]; this can
increase assurance relative to a completely manual proof, but does
not necessarily reduce the effort required. Schumann and Fischer
use an automated theorem prover with some specialized prepro-
cessing [18] to compare specifications for a procedure reuse appli-
cation, but the space of examples they consider is quite small.

2.4 Soundness and precision
Operational abstractions describe a component’s behavior in spe-

cific contexts, namely those in which the component was tested.
Our approach does not require the operational abstractions to be
sound as statements describing a component’s execution in any
context. Even if our technique had access to a sound description
of a component’s general behavior, we would still want it to sep-
arately record the contexts in which a component was used, to be
able to verify that a system uses only tested behavior. The real
limitation of our approach is that we cannot necessarily make this
distinction between properties that are true in general and those that
hold only in a restricted context.

At the same time we give up soundness, however, we gain a
dual benefit of precision [5]. By virtue of their construction, ev-
ery property (from a particular grammar) that fails to appear in an
operational abstraction can be traced back to at least one concrete
execution in which it was false, and any property that held over
each observed execution will appear in the abstraction. In exchange
for restricting our attention to specific system executions, we enjoy
accurate information about them, avoiding the over-approximation
that can come with approaches that are sound.

3. A MULTI-COMPONENT MODEL
This section describes a model of software systems that handles

complicated situations that arise in object-oriented systems, such
as components with state, components that make callbacks, or a si-
multaneous upgrade to two components that communicate via the
rest of a system. This model differs from that of [13] in separat-
ing control flow from data flow in some situations. This separa-
tion allows a more precise determination of what parts of a system
influence others (Section 6.1) and a sound treatment of data flow
through non-local state (Section 6.2.4).

We consider systems to be divided intomodulesgrouping to-
gether code that interacts closely and is developed as a unit. Such

modules need not match the grouping imposed by language-level
features such as classes or Java packages, but we assume that any
upgrade affects one or more complete modules. Our approach to
consistency checking is modular, but not simply compositional; it
also summarizes each module’s observations of the rest of a work-
ing system, and uses them as a basis for comparison with a pro-
posed upgrade.

3.1 Relations inside and among modules
Given a decomposition of a system into modules, we model its

behavior with three types of relations.Call and return relations
represent how modules are connected by procedure calls and re-
turns. Internal flow relationsrepresent the behavior of individual
modules, in context: that is, the way in which each output of the
module potentially depends on the module’s inputs.External sum-
mary relationsrepresent a module’s observations of the behavior of
the rest of the system: how each input to the module might depend
on the behavior of the rest of the system and any previous outputs
of the module.

3.1.1 Call and return relations
Roughly speaking, each module is modeled as a black box, with

certain inputs and outputs. When module A calls proceduref in
module B, the arguments tof are outputs of A and inputs to B,
while the return value and any side effects on the arguments are
outputs from B and inputs to A. In the module containing a proce-
duref , we use the symbolf to refer to the input consisting of the
values of the procedure’s parameters on entrance, andf ′ to refer
to the output consisting of the return value and possibly-modified
reference parameters. We usefc andfr for the call to and return
from a procedure in the calling module. Collectively, we call these
moments of executionprogram points. All non-trivial computa-
tion occurs within modules: calls and returns simply represent the
transfer of information unchanged from one module to another.

3.1.2 Internal flow relations
Internal flow relations connect each output of a module to all the

inputs to that module that might affect the output value. In a module
M , M(v|u1, . . . , uk) is the flow relation from inputsu1 through
uk to an outputv. In some cases, it is also helpful to decompose
a flow relation into a number offlow edges, one connecting each
input to the output. Anindependent outputM(v) is one whose
value is not affected by any input to the module.

Conceptually, the flow relation is a set of tuples of values at the
relevant inputs and at the output, having the property that on some
execution of the output point, the output values might be those in
the tuple, if the most recent values at all the inputs have their given
values. Because each variable might have a large or infinite do-
main, it would be impractical or impossible to represent this re-
lation by a table. Instead, our approach summarizes it by a set of
logical formulas that are (observed to be) always true over the input
and output variables. The values that satisfy these formulas are a
superset of those that occurred in a particular run. This representa-
tion is not merely an implementation convenience. Generalization
allows our technique to declare an upgrade compatible when its
testing has been close enough to its use, without demanding that it
be tested for every possible input.

Flow relations capture the behavior of a module primarily in
terms of relations over data in variables. However, a limited char-
acterization of a system’s control flow is required to correctly com-
bine facts from different relations. To this end, we further model
flow edges as being of two types: those that represent control flow
as well as data flow information, orcontrol-flow edgesfor short,

anddata-flow edgesthat represent the flow of data not mediated by
control (say, communication via a shared variable). To represent
conditional control flow, control-flow edges include an additional
fact called aguarding condition. A flow edge from an inputu to
an outputv does not imply that every execution ofu is followed
by some execution ofv: for instance,u might be the entry point
of a procedure that calls another procedure atv under some cir-
cumstances but not others. A guarding conditionφg is a property
that held on executions ofu that were followed by executions of
v, but did not hold on executions ofu that were followed by an-
other execution ofu without an interveningv. If the control flow is
unconditional,φg is simply “true.”

In order to facilitate analysis of a model, we impose the restric-
tion that the subgraph consisting of control-flow, call and return
edges has no cycles. This restriction forbids mutual recursion be-
tween procedures when the procedures appear in different modules,
but not the use of recursive procedures in the implementation of a
module. Note that procedure calls in both directions between a pair
of modules are not restricted as long as there can be no cycle of
procedure invocations in different modules; for instance, callbacks
are allowed. See Section 6.2.3 for further discussion of why we
impose this restriction.

3.1.3 External summary relations
External summary relations are in many ways dual to internal

flow relations. Summary relations connect each input of a module
to all of the module outputs that might feed back to that input via the
rest of the system. In a moduleM , we refer to the summary relation
from outputsu1 throughuk to an inputv asM(v|u1, . . . , uk). As
a degenerate case, anindependent inputM(v) is one not affected
by any outputs. The line over theM is meant to suggest that while
this relation is calculated with respect to the interface ofM , it is
really a fact about the complement ofM — that is, all the other
modules in the system.

4. FORMALIZING THE MODEL
The key properties of our technique depend on the relationship

between the abstract model and the concrete behavior of real com-
ponents, but reasoning about the full complexities of languages
such as Java, Perl or C would be difficult. Instead, this section
presents a very simple module-structured language, and describes
the meaning of the system model for that language, as well as giv-
ing a precise notion of soundness for systems in that language. In
the context of this formalization it is then possible to unambigu-
ously discuss whether a consistency checking technique is sound.

To concentrate on the most important aspects of the consistency
checking problem, the formalization also differs in two key ways
from our actual technique. First, our real technique has a broad
goal of preserving the correct behavior of a system after an up-
grade, as well as ensuring that an upgraded system relies only on
tested behavior. To unify these notions and make them precise,
the formalized language includes assertion statements, and we say
that an upgraded system is safe if no assertions fail. Second, our
real technique characterizes behavior by generalizing from facts
that were observed to be true over finitely many executions. In
the formalization, we imagine that these generalizations are always
sound, so that descriptions of a component’s behavior will be true
for any inputs, and descriptions of the conditions under which be-
havior is safe in fact guarantee safety for any inputs. Because our
actual implementation lacks this soundness property, soundness re-
sults about the formalization correspond only to relative soundness
properties of the real system: guarantees about safety are only as
reliable as the operational abstractions on which they are based.

4.1 Language
The statements of our simplified programming language have the

following grammar. (C stands for code, andD stands for dynamic
program point, which is discussed in Section 4.2.)

C ::= C;C | v := E | if P then C else C
| v := M.f(v1, ..., vk) | D

D ::= M.f.DPP(enterM.f)
| M.f.DPP(exitM.f)
| M.f.DPP(call toM.f #n)
| M.f.DPP(return fromM.f #n)

PredicatesP and side-effect-free termsE include variable refer-
ences and an arbitrary set of function and predicate symbols, such
as the integer operations+, ×, and<. M andf range over the
names of modules and procedures respectively.

Procedure definitions have the formM.f(v1, . . . , vk) : C. Their
semantics are defined by a substitution that transforms a program
into one without procedure calls. A callvr = M.f(α1, . . . , αk)
originally appearing in a procedureM2.f2 rewrites to

M2.f2.DPP(call toM.f #i);
v′1 := α1;
. . .
v′k := αk

M.f.DPP(enterM.f);
C[v′1/v1] · · · [v′k/vk][r′/return];
M.f.DPP(exitM.f);
vr := r′;
M2.f2.DPP(return fromM.f #i)

where i and the primed variables are fresh.v1 throughvk are
called the parameter variables, andα1 throughαk are the argu-
ment variables. The return value of a procedure is signified by a
distinguished variablereturn. Recursion is prohibited, as are calls
between procedures in the same module (which can be simulated
with ahead-of-time inlining). Note that this restriction on recursion
is stronger than the one imposed in the real implementation, which
forbids only recursion between modules. Our formalized language
has no iteration constructs, and is far from Turing-complete, but we
believe that the complications of loop verification and nontermina-
tion are orthogonal to the questions we wish to address with the
formalization, so we have chosen to omit them.

The parameters to a procedure, andreturn, are local to it, and
cannot be mentioned outside the procedure. Additional locals can
be obtained by declaring parameters and ignoring their values. All
other variables are associated with a particular module, and can
only be mentioned there. Each module has a special variablefail
which is initially zero, but set to 1 if any assertion fails. It can be
mentioned only via a special syntactic sugarassert(P) which is
otherwise equivalent toif P then fail := fail else fail := 1. (For
brevity in examples, we will sometimes abbreviatereturn asr and
combine expressions and procedure calls in single statements.)

Modules may refer to other modules by name. A system is a col-
lection of modules with a distinguishedmain procedure in one of
the modules, such that all named references to other modules in a
module can be satisfied by other modules in the system. An execu-
tion of the system is an execution of the main procedure, including
the expansions of all called procedures (transitively), in which the
initial values of all the variables are arbitrary, except that all the
specialfail variables are initially zero.

The semantics of the language are the usual ones, given by the
following small-step relation7→, which maps code and a store to
either new code and a new store, or just a new store to signify ter-
mination.

〈v := E, s〉 7→ s[v := s(E)] [assign]

〈D, s〉 7→ s [ppt]

〈C1, s〉 7→ 〈C′1, s′〉
〈C1;C2, s〉 7→ 〈C′1;C2, s

′〉 [seqProgress]

〈C1, s〉 7→ s′

〈C1;C2, s〉 7→ 〈C2, s
′〉 [seqElim]

s(P)
〈if P then C1 else C2, s〉 7→ 〈C1, s〉 [ifTrue]

¬s(P)
〈if P then C1 else C2, s〉 7→ 〈C2, s〉 [ifFalse]

A system execution is safe for a moduleM if at the end of exe-
cution, thefail variable of moduleM is still zero. A module is safe
in a system if every execution is safe for the module, and a system
is safe if every module in it is safe.

4.2 Program points and relations
The execution of a dynamic program pointD marks a moment

of execution; it has no other runtime effect, and may not appear in
the original program. The name of a dynamic program point gives
an event (in parentheses) and the procedure where the event occurs
(before the ‘DPP’). The values at a dynamic program point are the
current values of all in-scope variables when the point expression
evaluates.

Static program pointsS abstract over dynamic program points;
for any procedureg in moduleM1:

Static Dynamic
M : f M.f.DPP(enterM.f)
M : f ′ M.f.DPP(exitM.f)
M1:M2.fc M1.g.DPP(call toM2.f)
M1:M2.fr M1.g.DPP(return fromM2.f)

Static program pointsM : f andM1:M2.fr are called input pro-
gram points, andM : f ′ andM1:M2.fc are output program points.

A flow relationM(So|S i
1, . . . , S

i
k) consists of an output pro-

gram pointSo and zero or more input program pointsS i
j , all be-

longing to a moduleM , along with a formulaψ over all the vari-
ables of the given program points. In addition, one or more edges
from inputsS i

j to the output may be control-flow relations, with
associated guarding conditionsφj . ψ and eachφj are together re-
quired to be sound in the following sense:

For any system containingM and other modules, a dynamic in-
stance of the flow relation is a dynamic program point correspond-
ing to the output point, along with a dynamic program point cor-
responding to each static input point, such that no later dynamic
point for the same input occurs before the dynamic output point.
The flow relation holds over a dynamic instance ifψ holds over
the values of its variables at the dynamic points. A flow relation
is required to hold over any dynamic instance in any system con-
taining the module, for any system inputs. In addition, for each
control-flow edge, it must be the case that every instance of the in-
put program pointS i

j at which the guarding conditionφj holds is
followed later in the execution order, without any intervening in-
stances of the output program point, by an instance of the output
program point such thatS i

j and the output point are part of an in-
stance of the relation.

A summary relationM(S i |So
1, . . . , S

o
k) consists of an input pro-

gram pointS i and zero or more output program pointsSo
j , all be-

longing to a moduleM , along with a formulaψ over the variables
at all of the given program points. When the name of a summary

relation appears in a logical formula, it stands for the formulaψ. ψ
is required to soundly assure safety in the following sense:

For any system containingM and other modules, a dynamic in-
stance of the summary relation is a dynamic program point corre-
sponding to the input point, along with a dynamic program point
corresponding to each static output point, such that no later dy-
namic point for the same output occurs before the dynamic input
point. The summary relation holds over a dynamic instance ifψ
holds over the values of its variables at the dynamic points. The
summary relations of a module are required to have the property
that if in any system, they all hold on each of their dynamic in-
stances for any system input, then that execution must be safe for
that module.

The variables in the formulas of flow and summary relations are
named so that every name is qualified by the static program point it
corresponds to; thus relations can refer separately to the value of a
program variable at different program points.

A call relation consists of a procedure call program point, a pro-
cedure entrance point for the called procedure, and a formula that
states that each formal parameter variable is equal to the corre-
sponding actual argument variable. When the name of a call re-
lation appears in a formula, it stands for this conjunction of equali-
ties. Similarly a return relation consists of a procedure exit program
point, a procedure return point for the procedure that the exit is the
exit from, and a formula stating that the value of the return in the
procedure returned to is equal to the value returned by the exiting
procedure. When the name of a return relation appears in a formula,
it stands for this equality.

5. SAFETY FOR A SINGLE COMPONENT
UPGRADE

To illustrate the use of the formalism developed in the previ-
ous section, consider the simple case of an upgrade to a module
that provides a single procedure without visible side effects. We
will give our technique’s consistency condition for such a system,
and prove that it is sound. This result is analogous to Example 5
of [3], which proves that a similar condition between specifications
is “reuse-preserving,” based on a relational semantics of specifi-
cations. Our proof is more involved, because it addresses more ex-
plicit details such as the passing of procedure arguments. Explicitly
formalizing these notions becomes important for more complicated
systems (for instance, if a procedure might have multiple callers).

Consider a system consisting of two modulesU andL. Library
L contains a single proceduref , andU contains a single procedure
m, which makes one or more calls tof . Furthermore, assume that
f makes no use of any module-wide variables (except of course
for uses offail in assertions). We call this the single-component
upgrade case.

We can model the system with two flow relations,U(fc) and
L(f ′|f), and two dual summary relations,L(f) andU(fr|fc).
Since every call to the procedure returns, the flow edge fromf
to f ′ is a control-flow edge with guarding condition “true.” As
a concrete example, one might imagine that the proceduref in-
crements its argument, and thatU happens to callf only with
even integers; thenU(fc) might be “fc is even”,L(f ′|f) might be
“f ′.r = f.x+1”, L(f) might be“f.x is an integer”, andU(fr|fc)
might be “fr.r = fc.x + 1 ∧ fr.r is odd”, whileC andR would
be simplyf.x = fc.x andfr.r = f ′.r.

PROPOSITION 1. If

(U(fc) ∧ C) ⇒ L(f)

and

(U(fc) ∧ C ∧ L(f ′|f) ∧R) ⇒ U(fr|fc),

whereC andR are the call and return relations for the call to and
return fromf , then the system ofU andL is safe.

PROOF. First, we will check that the system is safe forL. Since
L has only one summary relation,L(f), it suffices to check that
L(f), which is a formula over the parameters tof , holds at each
dynamic entrance tof (recall thatf uses no module-wide vari-
ables, so the parameters tof are the only relevant variables for the
execution off). Now, each dynamic occurrence ofL: f is imme-
diately preceded, except for intervening assignments of arguments
to parameters, by a dynamic occurrence ofU :L.fc, by the defini-
tion of procedure expansion. BecauseU(fc) is a flow relation for
U , on any execution,U(fc) will hold at each dynamic execution
of U :L.fc. Furthermore, the assignments off ’s arguments to its
parameters assure thatC will hold at the occurrence ofL: f , and
since the parameters are disjoint from the arguments, the formula
of U(fc) will continue to hold at that point. Thus, the formula
U(fc)∧C will hold at each instance ofL: f . Thus by assumption,
L(f) will hold at each instance ofL: f , completing the proof that
L is safe.

Next, we’ll check that the system is safe forU . SinceU has only
one summary relation,U(fr|fc), it suffices to check thatU(fr|fc),
which is a formula over the value returned byf given the argu-
ments tof , perhaps along with other variables inm, holds for
the actual arguments, the return value, and those other variables,
for each dynamic execution of the return. Consider any partic-
ular dynamic instance ofU(fr|fc), consisting of a callU :L.fc

and a returnU :L.fr. By the structure of the procedure expan-
sion, the instance ofU :L.fc must be followed by an assignment
of arguments to parameters, and an instance ofL: f . Similarly,
the instance ofU :L.fr must be immediately preceded by a return
assignment, and before that an instance ofL: f ′. Since, by the
definition of a summary relation, the instance ofU :L.fc was the
most recent prior to the instance ofU :L.fr, and because onlyU
callsf , it must also be that the instance ofL: f is the most recent
prior to the instance ofL: f ′; thus, the instances ofL: f andL: f ′

are related by the flow relationL(f ′|f). In other words, we know
thatL(f ′|f) holds over the parameters to and the return value from
this dynamic invocation off . Furthermore,U :L.fc andL: f are
separated only by the assignment of arguments to parameters, so
C holds as a relation between the arguments and the parameters,
and similarlyR holds as a relation between the copies of the return
value atL: f ′ and atU :L.fr. Finally,U(fc) is a flow relation for
U , so it must hold at the same pointU :L.fc. In summary, we see
thatU(fc) ∧ C ∧ L(f ′|f) ∧ R holds over the parameters, argu-
ments, and return value off , so by the assumed safety condition,
U(fr|fc) also holds over that dynamic execution. Since we picked
an arbitrary execution,U(fr|fc) holds for each dynamic invocation
on any input, completing the proof thatU is safe.

6. A MORE GENERAL CONDITION
The previous section described the consistency condition used

by our technique when considering the simplest sort of compo-
nent upgrade, and showed that it gave sound determinations of up-
grade safety when used with sound abstractions of individual com-
ponents. This section describes the algorithm for computing such
conditions in arbitrary multi-component systems, and discusses the
features that allow it to have the same soundness property. If de-
sired, the algorithm can be performed separately for each summary
relation in the model of a system, but we will describe it as check-
ing all the relations together, in a series of three phases. First, for

each summary relation it selects a subset of the model that is rel-
evant to the expectations summarized in that relation; this process
is analogous to the technique of slicing in program analysis. Sec-
ond, it transforms the flow relations in the model so that they can
be soundly combined to describe the behavior of modules working
together. Finally, it combines the transformed flow relations in the
subset of the model to construct a logical condition connecting the
abstractions describing the behavior of various components to the
expectations of the summary relation, so that if the condition holds,
the summary expectations will be satisfied. The second and third
phases are analogous to the construction of a verification condition
in program verification, except that they operate using much larger
atomic units of program behavior. The following subsections de-
scribe these three phases in turn.

In previous work [13] we described a simpler algorithm with
the same purpose as the one described here, which combined the
aforementioned three phases into one. However, the previous al-
gorithm contained an ambiguity in its description, relating to the
order in which the system graph was traversed, and the consistency
conditions it produced could potentially lead to both false positive
results (rejected safe upgrades) and false negatives (approved un-
safe upgrades). In the present algorithm we focus on eliminating
false negatives, to achieve soundness.

6.1 Selecting relevant relations
The set of data-flow relations that are relevant to a given sum-

mary relation can be determined using context-free language reach-
ability [17] on the graph representing the model. Suppose that the
edges of the model graph, excluding summary edges, are labelled
as follows. Control-flow edges are labeled with4. Procedure calls
and returns are labelled with(i and)i respectively, where the in-
dicesi are chosen to be unique except that the call from and return
to any particular site have the same index. Data-flow edges are re-
placed with sequences of three edges labeled with4, connecting
the original ends via two fresh vertices:

(
j)

i

v
1

v
2

The fresh vertices are each adorned with a number of self-edges:
one for each closing parenthesis)i on the first vertex, and one for
each opening parenthesis(j on the second vertex. Now, letv be
the input of a summary relation in such a graph. We say that a
path from a nodeu to v is relevant if it is labelled by a word in the
following context-free language:

S → R L
L → Z | (i L | B L
R → Z | R)i | R B
B → Z | (i B)i | B B
Z → ε | 4

where productions with parentheses are repeated for alli. In other
words, relevant paths include no mismatched parentheses; a4may
appear anywhere. The set of all nodesu that start relevant paths can
be determined by a dynamic-programming approach that enumer-
ates all the triples consisting of two nodes and a nonterminal such
that the path between the nodes can be labeled by the nonterminal.
We say that an edge is relevant if it occurs on any relevant path. A
relation is relevant if it contains any relevant edge (though in fact,
either all or none of the edges in a relation will be relevant), or for
an independent output if its node is on a relevant path.

The intent of this selection algorithm is to conservatively choose
a subset of the system model whose behavior might affect the va-
lidity of a summary relation. The basic approach is similar to tra-
ditional interprocedural slicing: any path is considered feasible un-
less it violates the correct matching of procedure calls and returns.
The treatment of data-flow edges, however, is non-traditional. Data-
flow edges represent non-local dependencies between parts of a
program, which need not obey the proper nesting of calls and re-
turns: internal state might be set at one point in execution and read
much later in an unrelated context. Thus, reachability across data-
flow edges is granted an exemption from the usual matching of
calls with returns, achieved via the data-flow edge rewriting shown
above. Our treatment of state may be contrasted with the usual
treatment of global variables in CFL-reachability-based program
slicing [9], in which globals are threaded through procedures as ex-
tra parameters. While the traditional approach is potentially more
precise, it relies on more detailed information about procedure im-
plementations than is available in our framework.

Note that abstractly, this first phase of our algorithm is superflu-
ous: one could obtain the correct results for each summary rela-
tion by using a consistency condition covering the entire system.
However, including the first phase as described above has a num-
ber of practical benefits. First, as a matter of efficiency, existing
automatic theorem provers are often unable to avoid consideration
of supplied premises that are irrelevant to the statement being ver-
ified, especially when those premises include quantification. We
would expect it to be more efficient to exclude irrelevant facts be-
fore passing them on to the theorem proving stage. Second, this
slicing of the system model helps users of a tool track down and fix
potential incompatibility warnings when they are generated. After
a potential incompatibility is flagged, it is up to a user to decide
which components must be modified or re-tested to allow the sys-
tem to operate correctly. Knowing which components might be
responsible for a failure reduces the scope of this search.

6.2 Transformations for sound composition
We aim to construct a consistency condition by conjoining for-

mulas representing each relation in the relevant subgraph of the
system model. We already assume that relations are sound with
respect to the single module where they are found, but they must
be changed to be sound over the larger domain of a combined sys-
tem. Conjoining the formulas for each relation unmodified would
lead to a consistency condition that might be satisfied even by an
unsafe system. Recall that a flow relation from (input) program
pointsu1, u2, . . . , uk to an (output) program pointv is a formula
that holds at each dynamic instance ofv, in terms of the values
at the most recent preceding instances of each pointui. In order to
soundly combine relation formulas by conjunction, we must ensure
that the variables in those formulas always consistently refer to the
same set of values. In the following subsections, we explain where
variable reference inconsistencies arise, and how we transform the
relations to achieve sound combination.

6.2.1 Splitting relations into edges
Flow relations connect any number of inputs to a single output

using formulas over the relevant variables at each program point.
When combining information about multiple modules, though, it
is more convenient to divide the relations into edges matching the
graph structure of the model. Consider a relation fromu1, . . . , uk

to v. Introduce a fresh set of variables corresponding to all the vari-
ables at each of the pointsui, and rewrite any formula involving at
least one of theui variables and av variable to use the fresh copies
of the variables from eachui. Next, add formulas setting each orig-

inal variable fromui equal to its corresponding copy. Now, just
these equations can be associated with each edge from a pointui to
v. The new set of equations represents the same relation between
the variables at the pointsui and the variables atv that the original
one did.

6.2.2 Guarding conditional control flow
Consider a control-flow edge from a pointu to a pointv. The

‘meaning’ of the edge is described with two formulas (as explained
in Section 3.1.2). First, a relationψ over the variables of bothu
andv describes data flow, holding for each occurrence ofv over
the variable values of that occurrence ofv and the values at the
most recent previous occurrence ofu. Second, a guarding con-
dition φg is a relation only over the variables ofu, and holds on
only on occurrences ofu that are followed by an occurrence ofv
(without an interveningu). To construct an edge that can be used
to soundly ‘predict’ the values atv given those atu, we combine
these formulas into a new conditionφg ⇒ ψ. This new formula
holds over every occurrence ofu and the next followingv: for any
u, if u is not followed byv (without an interveningu), thenφg will
be false, making the implication true. On the other hand, if someu
is followed by an occurrence ofv, then thatu is the most recent oc-
currence beforev, soψ holds over the values, and the implication
is again true.

6.2.3 Duplicating based on calling context
Consider a procedure that is called from more than one module

(say two); lete be its exit program point, andr1 andr2 the return
program points for the two callers. The return relation between
e andr1 says that the return value seen by the caller is equal to
the value returned, and similarly for the return relation betweene
andr2. However, conjoining these relations would be unsound, be-
cause they are effectively referring to two different sets of values
at e: one the values that will be returned tor1, for the first caller,
and the other only those to be returned tor2. Given a property
of the values returned tor1 that distinguished them from the val-
ues returned tor2, one might imagine using a technique similar
to guarding to resolve this inconsistency, but that is not a feasible
approach. Such a property may not even exist (if there are some
values that could be returned to either caller), and even it did it ex-
ist it couldn’t be determined in our modular approach, because it
would require knowledge of all the calling modules.

Instead, the mismatch can be corrected by duplicating the pro-
gram pointe to create two points,e1 connected tor1 ande2 con-
nected tor2, so that the variables ate1 refer only to values on
calls that return tor1, and similarly fore2. After this transfor-
mation, the return relations that equatee1 with r1, ande2 with r2,
will be sound for any invocations of the restrictede1 or e2. Of
course, if the program pointe is split, we must also describe how
the other edges ending ate are transformed. In the case of control-
flow edges, we can repeatedly apply the same splitting technique
to predecessor points until reaching the calls corresponding to the
procedure returns; the net effect is to duplicate the representation of
the procedure between the various call sites. For data-flow edges,
see Section 6.2.4.

In practice, the duplication need not be performed step by step
as it was just introduced. We can construct the right number of du-
plicates for every program point by simply traversing the system
graph, maintaining a stack corresponding to the call stack of a sys-
tem execution, and constructing one copy of a node for each unique
stack contents (calling context) with which it might be reached. It is
somewhat unfortunate that for soundness, our technique currently
requires this extensive duplication of procedures called from mul-

A.m(x): x := x · x+ 1; r := B.b(x); assert(r > 4 · x)
B.b(y): r := C.c(2 · y) +D.d(2 · y + 1)
C.c(v): r := E.i(v)
D.d(v): r := E.i(v)
E.i(x): r := x+ 1

(A(bc) ∧ Call(B.b|A.bc) ∧B(cc|b) ∧ Call(C.c|B.cc)

∧ C(ic|c) ∧ Call((E.i)c|C.ic) ∧ (E(i′|i))c

∧ Ret(C.ir|(E.i′)c) ∧ C(c′|ir) ∧ Ret(B.cr|C.c′)
∧B(dc|b) ∧ Call(D.d|B.dc) ∧D(ic|d)

∧ Call((E.i)d|D.ic) ∧ (E(i′|i))d ∧ Ret(D.ir|(E.i′)d)

∧D(d′|ir) ∧ Ret(B.dr|D.d′) ∧B(b′|cr, dr)

∧ Ret(A.br|B.b′)) ⇒ A(br|bc)

(A.bc.y > 0∧B.b.y = A.bc.y ∧B.cc.v = 2 ·B.b.y ∧C.c.v = B.cc.v

∧ C.ic.x = C.c.v ∧ (E.i.x)c = C.ic.x ∧ (E.i′.r)c = (E.i.x)c + 1

∧ C.ir.r = (E.i′.r)c ∧ C.c′.r = C.ir.r ∧B.cr.r = C.c′.r
∧B.dc.v = 2 ·B.b.y + 1 ∧D.d.v = B.dc.v ∧D.ic.x = D.d.v

∧(E.i.x)d = D.ic.x∧(E.i′.r)d = (E.i.x)d +1∧D.ir.r = (E.i′.r)d

∧D.d′.r = D.ir.r ∧B.dr.r = D.d′.r ∧B.b′.r = B.cr.r + B.dr.r

∧A.br.r = B.B′.r) ⇒ A.br.r > 4 ·A.bc.y

Figure 1: A small example of a consistency condition derived
by the algorithm of Section 6. The three sections show code for
a system, the form of the consistency condition as computed by
the algorithm of Section 6, and the actual condition as passed to
a theorem prover. The increment routinei of moduleE is called
in different contexts by modulesC (with an even argument) and
D (with an odd argument). Duplication of the logical variables
for procedure i is indicated by the notations(·)c and (·)d.

tiple contexts. Because our model of the tested behavior of each
module is collected without knowledge of the particular contexts
where the module will be used, the context sensitivity provided by
duplication should not be expected to significantly increase the pre-
cision of the technique’s results. Rather, duplication seems neces-
sary as a matter of soundness, for cases when two uses of a module
are considered together, to avoid effectively assuming that a pro-
cedure’s return value always took a single value, as would happen
if it were represented by a single logical variable. Figure 1 shows
an example where duplication appears necessary. Without dupli-
cation, one could conclude that the values returned byc andd are
equal, and thus that the return value ofbmust be even, when in fact
it must be odd. We are still looking for less extensive modifications
that might achieve soundness while remaining essentially context-
insensitive. The overhead incurred by duplication, though expo-
nential in the worst case, should be modest in practice, because the
number of modules comprising a system will be relatively small.

6.2.4 Mixing data-flow edges
Data-flow edges must also be changed when the nodes they con-

nect are duplicated, but they cannot be duplicated along with the
nodes they connect in the way that control-flow edges are, because
a data-flow edge does not correspond to any particular execution
context. In fact, a data-flow edge might connect two nodes that are
duplicated a different number of times. Our model is too abstract to
determine which flows between copies of the source program point
and copies of the target program point might occur (for instance,
because it does not provide a total ordering of calls), so we instead
conservatively assume that any flow might be possible. If an origi-
nal source program pointu is duplicatedn times and a target point
v is duplicatedm times, we createnm copies of the data-flow edge

originally connecting them, one connecting each duplicate ofu to
each duplicate ofv. However, at each duplicate of v, the formulas
for the edges are disjoined (rather than conjoined as formulas are
otherwise). The effect is to express that each destination receives
values flowing from at least one source.

6.3 Assembling a consistency condition
Once the relational model has been transformed as described in

the previous subsection, assembling the consistency condition is
straightforward. For a given summary relation, take the set of flow
relations relevant to the summary input, as computed by CFL reach-
ability. Let S be the set of all those relation formulas, as rewrit-
ten or duplicated according to the transformations above. Then the
consistency condition states that the conjunction of all the formulas
in S implies the summary relation formula.

In outline, the proof of the soundness of this technique is as fol-
lows, for a single summary relation. Suppose that the consistency
condition holds; it is an implication of the form(

V
i φi) ⇒ σ,

where eachφi is a transformed flow relation formula andσ is
a summary relation formula. Eachφi holds individually, due to
the assumption that the original flow relations are sound and the
fact that their transformations were soundness-preserving. Further-
more, the formulasφi use common variables consistently, so they
can be legitimately conjoined, and their conjunction is true. Thus,
by our assumption of the implication,σ must hold. By this argu-
ment, each summary relationσ in a system can be seen to hold,
which guarantees, by the definition of a summary relation, that the
system will be safe.

7. CONCLUSION
This research takes steps toward proving the soundness of a tech-

nique for verifying properties about a software system made up of
components. One use of the technique is to verify that after some
components of a software system have been upgraded, the system
as a whole continues to behave as desired.

This paper makes five key contributions. First, we provided an
abstract model of the behavior of software components. The model
differs from previous models by distinguishing between control
flow and data flow. Second, we gave a formalized version of the
problem of checking consistency for a modular system in a simple,
imperative language. Safe component composition is modeled by
the success of arbitrary assertion statements. Third, we defined an
algorithm that constructs a consistency condition. The consistency
condition is a logical formula such that if the components satisfy its
parts (which express expectations about component behavior), then
the system as a whole behaves safely. This algorithm differs from
previous work by applying to the new, more detailed model and by
fixing an error in previous formulations. Fourth, we proved the cor-
rectness of the algorithm in the special case of a single-component
upgrade: the condition that the algorithm generates suffices to en-
sure that an upgrade is safe. Fifth, we gave a proof outline of the
correctness of the algorithm in the general case. Completing this
proof is future work.

We made two types of changes to previous work. Some changes
were motivated by the desire to prove correctness; for example, the
proof required formalization of the safety condition. Other changes
correct errors in previous work that were not apparent until revealed
by our formalization and proof attempts. The result is a more de-
tailed and correct technique for verifying the composition of soft-
ware components.

Though our technique does not require its users to understand
the complexities behind its operation, this research demonstrates
that techniques from formal specification and verification can make

possible a practical and lightweight tool to help software develop-
ment.

Acknowledgment: This work was funded in part by NSF grant
CCR-0133580, DARPA contract FA8750-04-2-0254, the Oxygen
project, and an NDSEG fellowship.

8. REFERENCES
[1] P. America. Inheritance and subtyping in a parallel

object-oriented language. InECOOP, pages 234–242, June
1987.

[2] G. Ammons, R. Bod́ık, and J. R. Larus. Mining
specifications. InPOPL, pages 4–16, Jan. 2002.

[3] Y. Chen and B. H. C. Cheng. A semantic foundation for
specification matching. InFoundations of Component-Based
Systems, chapter 5, pages 91–109. Cambridge University
Press, New York, NY, 2000.

[4] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem
prover for program checking. Technical Report
HPL-2003-148, HP Labs, Palo Alto, CA, July 23, 2003.

[5] M. D. Ernst. Static and dynamic analysis: Synergy and
duality. InWODA 2003: ICSE Workshop on Dynamic
Analysis, pages 24–27, Portland, OR, May 9, 2003.

[6] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to support
program evolution.IEEE TSE, 27(2):1–25, Feb. 2001.

[7] R. B. Findler, M. Latendresse, and M. Felleisen. Behavioral
contracts and behavioral subtyping. InESEC/FSE, pages
229–236, Sept. 2001.

[8] J. Henkel and A. Diwan. Discovering algebraic specifications
from Java classes. InECOOP, pages 431–456, July 2003.

[9] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs.ACM TOPLAS, 12(1):26–60, Jan.
1990.

[10] C. B. Jones.Systematic Software Development using VDM.
Prentice Hall, second edition, 1990.

[11] B. H. Liskov and J. M. Wing. A behavioral notion of
subtyping.ACM TOPLAS, 16(6):1811–1841, Nov. 1994.

[12] S. McCamant and M. D. Ernst. Predicting problems caused
by component upgrades. InESEC/FSE, pages 287–296,
Sept. 2003.

[13] S. McCamant and M. D. Ernst. Early identification of
incompatibilities in multi-component upgrades. InECOOP,
pages 440–464, June 2004.

[14] B. Meyer.Object-Oriented Software Construction.
Prentice-Hall, 1988.

[15] S. Moisan, A. Ressouche, and J.-P. Rigault. Behavioral
substitutability in component frameworks: A formal
approach. InSAVCBS, pages 22–28, Sept. 2003.

[16] O. Nierstrasz. Regular types for active objects. InOOPSLA,
pages 1–15, Sept./Oct. 1993.

[17] T. W. Reps. Program analysis via graph reachability.
Information and Software Technology, 40(11–12):701–726,
Nov./Dec. 1998.

[18] J. Schumann and B. Fischer. NORA/HAMMR: Making
deduction-based software component retrieval practical. In
ASE, pages 246–254, Nov. 1997.

[19] J. Yang and D. Evans. Dynamically inferring temporal
properties. InPASTE, pages 23–28, June 2004.

[20] A. M. Zaremski and J. M. Wing. Specification matching of
software components.ACM TOSEM, 6(4):333–369, Oct.
1997.

