
Encapsulating Concurrency as an Approach to Unification

Santosh Kumar∗, Bruce W. Weide∗, Paolo A.G. Sivilotti∗, Nigamanth Sridhar†,
Jason O. Hallstrom‡, Scott M. Pike#

∗ The Ohio State University, Computer Science & Engineering, {kumars,weide,paolo}@cse.ohio-state.edu
† Cleveland State University, Electrical & Computer Engineering, n.sridhar1@csuohio.edu

‡ Clemson University, Computer Science, jasonoh@cs.clemson.edu
Texas A&M University, Computer Science, pike@cs.tamu.edu

ABSTRACT
We extend traditional techniques for sequential specification
and verification to systems involving intrinsically concur-
rent activities. Our approach uses careful design of compo-
nent specifications to encapsulate inherent concurrency, and
hence isolate clients from associated verification concerns.
The approach has three parts: (i) relational specifications to
capture the interleaved effects of concurrent threads of ex-
ecution, (ii) intermediate components to support a client’s
view of being the only active thread of computation, and
(iii) a new specification clause to express requirements on a
client’s future behavior. We illustrate these ideas, and dis-
cuss their merits, in the context of a case study specified
using RESOLVE.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifica-
tion—Methodologies; D.2.4 [Software Engineering]: Soft-
ware/Program Verification—Design By Contract

General Terms
Verification

Keywords
Unification problem, sequential verification techniques, con-
current systems, relational specification, mutual exclusion,
expects clause.

1. INTRODUCTION
Design-by-contract [10] has long been recognized as a foun-

dation for component-based specification and verification.
For sequential systems, contract specification mediates in-
teractions between a component and its client. By contrast,
for concurrent systems the contract specification is between

Specification and Verification of Component-Based Systems
(SAVCBS’04) Workshop at the12th ACM SIGSOFT Symposium on
Foundations of Software Engineering. Newport Beach CA, USA. Oct
31 – Nov 1, 2004.

a component and its environment. The difference is signifi-
cant since in a sequential system, the client and component
operate in the same thread of execution, whereas in a con-
current system, the environment may include other threads
of execution. Taking a sequential system view leads to tra-
ditional input-output specifications and Hoare-style verifica-
tion techniques. On the other hand, taking a concurrent sys-
tem view leads to explicit progress requirements and guar-
antees, where circularities in reasoning must be carefully
avoided. As a result, research in these nominally related
areas has focused on separate and largely orthogonal issues.
There has been remarkably little cross-fertilization.

Specification and verification techniques for sequential sys-
tems (particularly component-based systems) generally in-
volve showing that, given acceptable input values, a com-
putation produces specified output values. The operational
model is normally a standard von Neumann machine. Some
issues that arise include (1) the contract style (e.g., alge-
braic or model-based), (2) the impact of aliased references
on sound reasoning, and (3) the difficulties introduced by
modern programming language constructs (e.g., inheritance,
user-defined types, etc).

Specification and verification techniques for concurrent
systems generally involve showing that cooperating processes
adhere to specified temporal properties. Models of compu-
tation may vary, with message passing or shared memory,
various degrees of synchrony, etc. Programming language
features and variable types tend to be simpler in order to ab-
stract away from complex details concerning “what is being
computed” in the more traditional sense. Still, there are new
communication constructs that are not present in the se-
quential case. Some issues that arise include (1) the expres-
siveness of various temporal logics, (2) the non-determinism
introduced by interleaved access to shared resources, (3)
progress and fairness properties for scheduling individual
processes, and (4) non-interference requirements to guar-
antee sound proof systems, etc.

1.1 The Unification Problem
The unification problem in the title refers to the following

impediment to fully successful specification and verification
of component-based software: There is a need for a unified
theory that reconciles work in the now largely disjoint re-
search areas of specification and verification of sequential
systems, and of concurrent systems. This problem is impor-
tant because modern software systems involve both aspects.
A typical modern program is charged not only with com-

puting specified data values, but with doing so reliably in
the context of concurrent threads of activity that may be
accessing resources that it shares with them.

This paper partially develops an approach to addressing
the unification problem. Based on an early case study, we
believe it will permit extending the realm of traditional se-
quential specification and verification techniques to systems
that involve intrinsically concurrent activities. The idea is
to use certain component design and contract specification
techniques to create what appear to be ordinary sequential
components for the purposes of client interaction, and to
“bury” or encapsulate concurrency inside the implementa-
tions of those components. This shields otherwise sequential
clients of shared resources from the complications normally
associated with concurrency. Among other things, for exam-
ple, specification and verification of client correctness need
not be extended from the sequential situation by introduc-
ing temporal logic whenever the client also has to deal with
concurrent activities.

To give the flavor of the approach—and to emphasize that
we are claiming novelty from the standpoint of specification
and verification issues and not from the standpoint of, say, a
new software design pattern—consider a nominally sequen-
tial program that needs to use a printer. The printer is
a shared physical device that other programs like it might
also be using. Without some method to encapsulate a pro-
tocol for ensuring mutually exclusive access to the printer,
each program that shares it must understand how to nego-
tiate access with the printer’s other clients. This necessarily
involves modeling the other clients, specifying liveness and
safety properties associated with mutual exclusion, detailing
some particular protocol for mutual exclusion, etc. But if
there is a carefully-designed printer-monitor component that
allows each client to create its own logical printer object and
simply print to it as though it were alone in the world, all
the complications associated with sharing—indeed, all the
problems associated with specifying and reasoning about the
concurrency involved in accessing the physical printer—are
moved down one level in the system. The clients of the
printer-monitor component see an ordinary sequential com-
ponent. The problem of concurrency is not moved over the
horizon, just down one level. But the impact is that there
are more clients for which sequential contract specifications
and verification techniques can be used.

This is, of course, just one possible approach to the unifi-
cation problem. It is premature to discuss whether it might
be the best one or whether it could ultimately lead to a
complete solution to the problem. Instead, the goal of this
paper is to report on progress and to describe some open
issues in the hope that others will step forward to address
the unification problem, too.

Paper Organization.The rest of the paper is organized
as follows. Section 2 outlines the main technical features of
our approach. Section 3 presents the case study. Section 4
sketches some related work. Section 5 concludes the paper
and Section 6 points to open issues.

2. TECHNICAL FEATURES
There are three main technical features to the approach

we present. Individually, each is not new; the primary con-
tribution is combining them in a special new way. Each
feature is highlighted during the case study in Section 3.

2.1 Using Relational Specifications
The first idea is to use relational specifications to model

potential interference from concurrent threads of execution.
In this way, each client of a component can maintain an
especially simple view of the system: it is as though there
are no other threads of execution. The hoped-for result is
that specification and reasoning can be done using ordinary
techniques for sequential systems — so long as they admit
relational behavior (i.e., are not restricted to purely func-
tional input-output specifications).

There is an interesting connection between relational spec-
ifications and the philosophical theory of epistemic solip-
sism. Roughly stated, this doctrine draws a methodological
distinction between ontology (that which exists) and episte-
mology (that which we can know exists). Epistemic solip-
sism witnesses a gap between these concepts, such that it is
possible for certain entities to exist, despite our inability to
know them. We make no judgment here about the coher-
ence of solipsism as a philosophical doctrine, but only about
the similarity in principle between solipsism and the use of
relational specifications to mask concurrency.

By encapsulating concurrency inside an observably se-
quential component, we seek to create a cover story that
makes it appear to the client programmer as though all state
changes in all objects are the result of method calls made
by the client. In particular, no object’s value ever changes
spontaneously; indeed, nothing changes unless the client ini-
tiates such a change. Concurrency may exist in the imple-
mentations of such components, but it cannot be known to
the client insofar as it is unobservable through any compo-
nent interface. Consequently, there is never a need for the
client programmer to postulate the existence of concurrent
threads of activity to explain or verify the correctness of
the observed behavior with respect to the given sequential
specifications.

2.2 Separating Proxy and Core Components
Direct application of the above idea in principle might

lead to a sequential-component contract specification for the
client. But it is not necessarily a pretty one. One can make
visible, in the client’s nominally sequential view of behavior,
all the state needed to capture the underlying concurrency
in the implementation of the component. The specification
merely says that this state changes in bizarre though tech-
nically explainable ways. But probably most of this state is
not needed to explain the same behavior, i.e., the specifica-
tion is not fully abstract. So, the second idea is to simplify
the contract specification for the client by introducing an in-
termediate component that acts as a proxy in client dealings
with the underlying component that encapsulates concur-
rency (which we call the core component).

Figure 1 illustrates how this works in the case study.
Round-cornered boxes stand for contract specifications, rect-
angles for implementations, and arrows for the relationships
on their labels. For example, the top box represents the
client specification, which involves only sequential constructs.
The rectangle below it stands for the implementation of this
specification—what we have been calling the client program.
This program claims to implement the specification above it,
which is something that needs to be verified. It uses some
implementation of the Mutex Proxy specification, which in
turn hides the concurrency inherent in the Mutex Core spec-
ification below it. The client program could, in principle,

directly use something like the specification Mutex Core (al-
though the specification details would be quite different than
those developed in the case study). However, that specifica-
tion would be unnecessarily complex compared to the much
simpler Mutex Proxy specification.

2.3 Additional Client Obligations
In reasoning about the correctness of implementations of

the core and proxy components, one is faced with the usual
verification situation for traditional sequential components:
clients of a contract specification are responsible for estab-
lishing preconditions on calls, implementations are respon-
sible for establishing postconditions. However, because of
the need to reason about properties that otherwise would
involve temporal logic specifications, we must introduce an
additional reciprocal obligation on every client of the proxy.
This is needed to show that other clients will make progress.
The objective of proving total correctness of the client can-
not be achieved if other clients—whose very existence is not
knowable to any one of them—can thwart termination of
any of the calls to proxy methods.

The third idea, then, is to introduce an additional specifi-
cation construct in the sequential specification language. We
call this new construct the expects clause. While a method’s
requires clause defines an obligation the client must meet be-
fore calling the method, its expects clause describes an obli-
gation the client must meet at some point after calling the
method. This obligation is given as a set of method calls
that must be made in the future.

For example, consider the following path expression spec-
ification for a read-only file:

(Open; Read*; Close)

This expression stipulates that once a file has been opened,
the Read() operation can be invoked several times (or never
at all), and finally the file must be closed. That is, as a con-
sequence of invoking Open(), the client is required to invoke
Close() in the future. This obligation could be reflected in
the contract as follows:

operation Open()
requires true
ensures self .Is_Open
expects self .Close()

A brief operational sketch of the semantics of the expects
clause is as follows. In addition to the program context and
variable values in each state of a program, we maintain a
“promises set” PS of all the method calls that the program
has promised to other components via expects clauses, and
has not yet discharged. Whenever an operation is invoked, it
is removed from PS, if it is there. If the call is to an operation
that has its own expects clause, the calls in that clause are
added to PS. For other statements, PS is not modified. At
termination, if the program has honored all the promises it
made, then PS is empty. Therefore, the client, in addition
to dispatching proof obligations for all pre-conditions, also
has to dispatch an additional proof obligation that PS is an
empty set at the point of termination. (Please see Section 6
for issues raised by this over-simplified view.)

3. CASE STUDY: MUTUAL EXCLUSION
In this section, we present our specification of a mutual

exclusion component we call Mutex, using the RESOLVE

Figure 1: Component coupling diagram (CCD) for a system
using the Mutex component

specification language [7]. This single-object component
is divided into two parts — the first, called Mutex Proxy,
presents a sequential view to the client, and the second,
called Mutex Core, encapsulates a conflict resolution pro-
tocol for mutual exclusion. All aspects of concurrency in
the conflict resolution protocol are encapsulated inside Mu-
tex Core, and do not bleed through to the client. In effect,
there are several instances of Mutex Proxy in a distributed
system (one for each client), all of which interact with a
single instance of Mutex Core. The design of this system
structure is shown in Figure 1.

3.1 Mutex Proxy
Listing 1 shows the specification of our Mutex Proxy ab-

stract component. The mathematical model of the Mu-
tex Proxy type is defined by MUTEX PROXY MODEL (Lines
8—14). This is a 3-tuple of two booleans, requested and avail-
able, and a NATURAL NUMBER, wait index. If the client
that uses this proxy has requested access to the critical sec-
tion, requested becomes true, and when it is safe for the
client to access the critical section, available becomes true.
The purpose of wait index is to allow a client to prove its
progress, i.e., if it requests access to the resource, it will
eventually have it available. For a given proxy, available can
only become true if requested is also true (the client has
requested access to the critical section). Upon initialization,
every instance of Mutex Proxy has both requested and avail-
able equal to false and wait index equal to 0 (Lines 16—18).

The Mutex Proxy component exports the following opera-
tions:

Request() (Lines 20—26): A client invokes the Request()
method when it wants access to the critical section.
The various preconditions make sure that this method
can only be invoked once per “cycle” — once a client
requests access, it cannot make another request until it
has either used the critical section and then released it,
or simply canceled its request by calling Release(). The
post-condition of the Request() operation says that re-
quested becomes true and wait index assumes some
natural number value (which, it turns out, the client
has no way to observe, except to know whether it is

zero). In addition, as a consequence of this invocation,
the client is committed to invoking Release() in every
possible future computation.

Is Requested() (Lines 28—30): This operation can be in-
voked to check whether the client has requested access
to the resource. (It is provided for functional com-
pleteness but plays no other substantive role.)

Check If Available() (Lines 32—40): After a client has re-
quested access to the resource, a call to this procedure
returns with b equal to true when the client can safely
access the resource. Also, with every invocation of this
method, the value of wait index decreases if it is posi-
tive. Finally, if and only if wait index is already 0, then
it stays the same and available becomes true (as does
b). Notice that Check If Available(), by virtue of its
relational specification, has the property that (some-
times) it makes the client believe that available changes
as a result of the Check If Available() call. That is,
there is no reason for the client to explain the change
in the value of available by postulating the existence
of some other process having concurrent access; the
client’s call to Check If Available() is what has caused
available to change.

Release() (Lines 42—46): The Release() operation is in-
voked to signal the end of the critical section or to
cancel an outstanding request. This operation results
in requested and available both becoming false.

3.2 Mutex Core
Listing 2 shows the mathematical model of Mutex Core.

PROXY SET (Lines 3—4): This denotes a mathematical
set of proxy identities, each of which is a natural num-
ber.

WAITING PROXY (Lines 6—8): This denotes a pair of nat-
ural numbers, id to represent the identity of the proxy,
and ticket to represent some metric that determines
when the proxy will get access to the resource.

WAITING PROXY SET (Lines 10—16): This denotes a set
of waiting proxies, i.e., those that have requested ac-
cess to the resource.

MUTEX CORE MODEL (Lines 18—35): The mathemati-
cal model of the Mutex Core type is a tuple that con-
sists of the set, all proxies, of all the proxies that have
“registered” with this Mutex Core instance; the set,
waiting proxies, of just those proxies in all proxies that
have requested access to the resource but have not yet
released it or canceled the request; and the integer, cur-
rent id, which is the (non-negative integer) identity of
the proxy that currently has access to the resource be-
cause it has a minimum ticket value among all waiting
proxies (or a negative number if there are no waiting
proxies). Notice that a proxy can request access to a
resource only after registering with the Mutex Core in-
stance that is responsible for that resource. Upon ini-
tialization, a Mutex Core instance has no proxies reg-
istered (and hence no waiting proxies) and current id
is -1 (no proxy is accessing the resource).

Listings 3 and 4 present the specifications of the opera-
tions that the Mutex Core component exports.

Listing 1: Specification of abstract Mutex Proxy component

1 abstract component Mutex_Proxy
2

3 math subtype NATURAL_NUMBERis integer
4 exemplar n
5 constraint
6 n >= 0
7

8 math subtype MUTEX_PROXY_MODELis
9 (requested: boolean ,

10 available: boolean ,
11 wait_index: NATURAL_NUMBER)
12 exemplar mpm
13 constraint
14 if mpm.available then mpm.requested
15

16 Mutex_Proxy is modeled by MUTEX_PROXY_MODEL
17 initialization ensures
18 self = (false , false , 0)
19

20 procedure Request ()
21 requires
22 not self .requested
23 ensures
24 there exists i: NATURAL_NUMBER such that
25 (self = (true , false , i))
26 expects self .Release()
27

28 function Is_Requested (): Boolean
29 ensures
30 Is_Requested = self .requested
31

32 procedure Check_If_Available (replaces b: Boolean)
33 requires
34 self .requested
35 ensures
36 self .requested and
37 (if #self .wait_index /= 0
38 then self .wait_index < # self .wait_index
39 else #self .wait_index = self .wait_index) and
40 b = self .available = (self .wait_index = 0)
41

42 procedure Release ()
43 requires
44 self .requested
45 ensures
46 self = (false , false , 0)

Listing 2: Specification of abstract Mutex Core component

1 abstract component Mutex_Core
2

3 math subtype PROXY_SETis
4 finite set of NATURAL_NUMBER
5

6 math subtype WAITING_PROXYis
7 (id: NATURAL_NUMBER,
8 ticket: NATURAL_NUMBER)
9

10 math subtype WAITING_PROXY_SETis
11 finite set of WAITING_PROXY
12 exemplar wps
13 constraint
14 for all p,q: WAITING_PROXY
15 where ({p,q} is subset of wps)
16 (if p.id = q.id then p = q)
17

18 math subtype MUTEX_CORE_MODELis
19 (all_proxies: PROXY_SET,
20 waiting_proxies: WAITING_PROXY_SET,
21 current_id: integer)
22 exemplar mcm
23 constraint
24 for all p: WAITING_PROXY
25 where (p is in mcm.waiting_proxies)
26 (p.id is in mcm.all_proxies) and
27 if mcm.waiting_proxies = {}
28 then mcm.current_id < 0
29 else
30 there exists p: WAITING_PROXY such that
31 (p is in mcm.waiting_proxies and
32 mcm.current_id = p.id and
33 (for all q: WAITING_PROXY
34 where (q is in mcm.waiting_proxies)
35 (q.ticket >= p.ticket)))
36

37 Mutex_Core is modeled by MUTEX_CORE_MODEL
38 initialization ensures
39 self = ({}, {}, -1)

Listing 3: Operations of abstract Mutex Core component

1 math definition IS_REQUESTED
2 (id: integer , wps: WAITING_PROXY_SET): boolean
3 explicit definition
4 there exists wp: WAITING_PROXY such that
5 ((wp is in wps) and (wp.id = id))
6

7 math definition MIN_TICKET
8 (wps: WAITING_PROXY_SET): NATURAL_NUMBER
9 explicit definition

10 min ({0} union {wp: WAITING_PROXY
11 where (wp is in wps) (wp.ticket)})
12

13 procedure Add_Proxy (replaces id: Integer)
14 ensures
15 self .waiting_proxies = # self .waiting_proxies and
16 self .current_id = # self .current_id and
17 id is not in #self .all_proxies and
18 self .all_proxies = # self .all_proxies union {id}

Listing 4: Operations of abstract Mutex Core component
(contd.)

1 procedure Remove_Proxy (evaluates id: Integer)
2 requires
3 id is in self .all_proxies and
4 not IS_REQUESTED(id, self .waiting_proxies)
5 ensures
6 self .waiting_proxies = # self .waiting_proxies and
7 self .current_id = # self .current_id and
8 self .all_proxies = # self .all_proxies - {id}
9

10 procedure Request (evaluates id: Integer)
11 requires
12 id is in self .all_proxies and
13 not IS_REQUESTED(id, self .waiting_proxies)
14 ensures
15 self .all_proxies = # self .all_proxies and
16 there exists ticket: NATURAL_NUMBER such that
17 ((if #self .waiting_proxies = {}
18 then (ticket = 0 and self .current_id = id)
19 else (ticket >
20 MIN_TICKET(self .waiting_proxies) and
21 self .current_id =
22 #self .current_id)) and
23 self .waiting_proxies =
24 #self .waiting_proxies union
25 {(id, ticket)})
26 expects self .Release(id)
27

28 function Is_Requested (id: Integer): Boolean
29 requires
30 id is in self .all_proxies
31 ensures
32 Is_Requested =
33 IS_REQUESTED(id, self .waiting_proxies)
34

35 procedure Check_If_Available
36 (evaluates id: Integer , replaces b: Boolean)
37 requires
38 id is in self .all_proxies and
39 IS_REQUESTED(id, self .waiting_proxies)
40 ensures
41 self .all_proxies = # self .all_proxies and
42 self .current_id = # self .current_id and
43 b = there exists wp: WAITING_PROXY such that
44 (wp is in #self .waiting_proxies and
45 id = wp.id = self .current_id)
46

47 procedure Release (preserves id : integer)
48 requires
49 id is in self .all_proxies and
50 IS_REQUESTED(id, self .waiting_proxies)
51 ensures
52 self .all_proxies = # self .all_proxies and
53 there exists wp: WAITING_PROXY such that
54 (wp is in #self .waiting_proxies and
55 wp.id = id and
56 self .waiting_proxies =
57 #self .waiting_proxies - {wp}) and
58 if self .waiting_proxies = {}
59 then self .current_id = -1
60 else
61 (self .current_id,
62 MIN_TICKET (self .waiting_proxies)) is in
63 self .waiting_proxies

Useful Mathematical Definitions
IS REQUESTED (Lines 1—5): Is the proxy with the given

id in the set of waiting proxies?

MIN TICKET (Lines 7—11): The minimum value of ticket
in the set of waiting proxies.

Operations
Add Proxy() (Lines 13—18): This operation adds a new

proxy to the set of proxies that want to use the re-
source. The operation ensures the uniqueness of id’s
in the set of all proxies. It returns the id of the newly
created proxy.

Remove Proxy() (Lines 1—8): Given an id, this operation
removes the proxy with this id. The proxy can no
longer request access to the resource once it is removed.

Request() (Lines 10—26): When this operation is invoked
by a valid proxy, the proxy is given a ticket, whose
value can not be directly observed by any proxy. The
proxy’s id and the associated ticket are added to the
set of waiting proxies. If, at the time of invocation, no
other proxy had requested access to the resource, the
proxy invoking Request() gets access to the resource,
i.e., the current id becomes this proxy’s id. This means
that the proxy will be able to access the resource im-
mediately after its first call to Check If Available(). If
there are pending requests from other proxies at the
time of invocation, the ticket assigned is some larger
value than MIN TICKET(waiting proxies).

Is Requested() (Lines 28—33): This operation returns true
if the given id belongs to a waiting proxy, and false
otherwise.

Check If Available() (Lines 35—45): After requesting ac-
cess to the resource, a proxy invokes this operation to
see if the resource is available to it. The procedure
returns with b equal to true if the given id is equal
to current id and the waiting proxy with this id has a
ticket value equal to MIN TICKET(waiting proxies).

Release() (Lines 47—63): Once a proxy is done using the
resource, it invokes Release(). This removes it from
the set of waiting proxies, and results in current id be-
coming either -1 (in case there are no other waiting
proxies), or the id of some still-waiting proxy whose
ticket is equal to MIN TICKET(waiting proxies). The
next time the proxy whose id equals current id invokes
Check If Available(), it will be granted access to the
resource.

3.3 Proofs of Implementations
As shown in Figure 1, there are four implements relations.

Each of these has a set of associated proof obligations to
show that the implementations meet the specifications. We
focus on the new aspects of these (the impl(1) and impl(2)
relations in Figure 1) in this paper and defer the other two,
which will be similar to each other, for future work.

3.3.1 Proof of Client Progress
We notice that the proof of the client implementation will

be similar to any sequential component, although it is using

a concurrent program. As mentioned in Section 2.1 and Sec-
tion 2.2, the verification for client implementation is reason-
ably simple because it is using the sequential specification
of the proxy as opposed to that of the core. For example, the
client will be able to prove loop termination in the following
code snippet:

1 proxy1.Request();
2 while(not b) {
3 proxy1.Check_If_Available(b); }
4 proxy1.Release();

When it calls Request() on proxy1, which is an instance of
Mutex Proxy 1, wait index assumes the value of some natural
number. With every call to Check If Available() this number
goes down. Eventually, it will hit zero and the client will be
able to access the critical section. We also notice that the
client is able to prove, based on the termination of the loop,
that it satisfies the expects obligation it acquired by calling
Request().

3.3.2 Proof of Proxy Implementation
The key part to prove in this proof obligation is that the

proxy can meet the ensures clause of Check If Available() by
using the specification of Mutex Core.

A sketch of the implementation of the Mutex Proxy is as
follows: In the constructor, it calls Add Proxy() and gets an
id. In Request(), it calls Request(id) on Mutex Core and sets
its requested to true. In the Check If Available(), it sets b
and available to true, if it gets a true answer from the Mu-
tex Core. In Release(), it calls the corresponding operation
of the Mutex Core and sets both requested and available to
false.

In the following lemmas and theorems, we assume that
mc is the common instance of a Mutex Core implementa-
tion that all proxies are using. Further, we use MP to de-
note the Mutex Proxy type. We also use min ticket to de-
note MIN TICKET(mc.waiting proxies). Lastly, we use the
terms “getting access to the resource” for a proxy synony-
mously with the event that the associated id becomes equal
to mc.current id.

Lemma 3.1. ∀ wp∈ mc.waiting proxies,
(wp.ticket-min ticket,k), where k is the number of proxies
with ticket equal to min ticket, decreases with every call to
mc.Release() by proxies who get access to the critical section,
until mc.current id = wp.id.

Proof. The value of wp.ticket is unchanged once it is
assigned by mc.Request(). If |mc.waiting proxies| = 0 at
the time wp calls mc.Request(), it follows from the post-
condition of Request() that mc.current id = wp.id. On the
other hand, if at the time of wp’s call to mc.Request(),
|mc.waiting proxies|> 0, then (from the constraint in lines 29-
35 in Listing 2), as long as |mc.waiting proxies-wp|> 0, there
is some proxy ap such that mc.current id = ap.id. From the
expects clause of mc.Request(), ap eventually calls mc.Release().
With this call to mc.Release(), either min ticket increases (if
there were no other waiting proxies with the same value of
ticket as ap.ticket) or k decreases. In either case, the tuple
(wp.ticket-min ticket,k) decreases1. The same situation now

1We use the standard ordering relation on tuples, where (a,
b) < (c, d) iff (a < c) or a = c and b < d.

recurs with some other proxy np taking the place of ap until
mc.current id = wp.id. This completes the proof.

Theorem 3.1. ∀ wp ∈ mc.waiting proxies eventually
mc.current id = p.id, unless wp cancels its request by calling
mc.Release() prematurely.

Proof. From Lemma 3.1, (wp.ticket - min ticket, k) de-
creases with every call to mc.Release() by proxies who get ac-
cess to the resource before wp. When the value of (wp.ticket
- min token, k) becomes (0, 0), wp is guaranteed to have
mc.current id = p.id, although it may get access to the re-
source earlier when min ticket = 0 and k > 0.

Theorem 3.1 ensures that every proxy can meet the en-
sures clause of its Check If Available() method. A more for-
mal proof of this claim can be done by using an abstraction
relation [12] to relate wait index to its associated ticket in
mc.

3.4 Proof of Safety and Starvation Freedom
The entire mutual exclusion program is making some guar-

antees to the system designer. These are the safety and
progress guarantees [2]. The safety specification says that
“at most one client gets access to the critical section at a
time.” The progress specification says that “every request-
ing client eventually gets access to the critical section.” The
system uses the Mutex Proxy and Mutex Core components to
meet these specifications.

The progress property follows immediately from Theo-
rem 3.1. We prove the safety property below. In the fol-
lowing, we assume that the id assigned by the Mutex Core
to a proxy is one of the fields of proxy. We use the definitions
and assumptions from Section 3.3.2.

Lemma 3.2. The following invariant holds in the system:
∀ p ∈ MP : p.available⇒ (p.id = mc.current id).

Proof. The invariant vacuously holds at initialization
since available is false for all proxies. Now, when p.available
changes from false to true (in a call to mc.Check If Available())
for some proxy p, it is only when p.id = mc.current id. There-
fore, the invariant is preserved by this transition. When the
assertion p.id = mc.current id changes from true to false (in
a call to mc.Release()), p.available is set to false, thus pre-
serving the invariant in this transition too. Therefore, the
invariant holds.

Theorem 3.2. ∀ p ∈ MP : p.available ⇒ (∀ op ∈ MP :
op 6= p ⇒ ¬ op.available).

Proof. The theorem holds vacuously if ∀ p ∈ MP : ¬
p.available. So, let us assume ∃ p ∈ MP: p.available. From
Lemma 3.2, p.id = mc.current id. Further, from the con-
straint on Line 16, ids are unique. Now, the assignment
p.id = mc.current id is done either in mc.Request() or in
mc.Release(). If the assignment was done in mc.Request(),
then there were no other waiting proxies and p is the unique
proxy with available set to true. If the assignment was done
in mc.Release(), then the proxy with available set to true
previously, had set its available to false at the time that
mc.current id was assigned to p.id. Therefore, in this case

also p is the unique proxy with its available set to true. From
the uniqueness of ids, no other proxy can get an affirma-
tive answer in a call to mc.Check If Available(), as long as p
does not call mc.Release(). Therefore, p remains the unique
proxy with its available set to true as long as it does not call
mc.Release(). When p calls mc.Release(), either there are no
more waiting proxies, in which case no proxy has its avail-
able set to true, or some waiting proxy q takes the place of
p. This completes the proof.

4. RELATED WORK
Concurrent systems often exhibit reactive behavior, so

specification techniques for such systems usually include ex-
plicit treatment of both safety and progress properties. Many
different compositional approaches have been investigated,
including rely-guarantee [13, 1, 8], hypothesis-conclusion [4],
and assumption-commitment [5]. All of these techniques
address the problem of circularities in proofs in some way,
for example by restricting the properties on which a com-
ponent relies to be safety properties only. In contrast, the
expects clause introduced here allows a component to explic-
itly require a progress property of its client. Circularities are
avoided by preventing a client from requiring any progress
properties from the components it uses, apart from termi-
nation of each called method.

A common way to model concurrency is with nondeter-
ministic interleaving, as in Unity [4] and TLA [9]. Our use
of relational specifications to capture the potential effects of
concurrently executing threads of execution is certainly not
new. The introduction of an intermediary component (the
proxy), however, facilitates a solipsistic view on the part of
a client, and in this way promotes a novel way to composi-
tionally reason about program behavior.

The Seuss methodology [11] is similar to our proposed
approach in that it draws on both concurrent and sequen-
tial techniques. Whereas we begin with a sequential frame-
work (RESOLVE) and add elements to address concurrency,
Seuss begins with a concurrent framework (similar to Unity)
and incorporates program structures such as processes and
methods with sequential invocation semantics.

5. CONCLUSION
We proposed an approach to unify the specification and

verification of sequential systems with those of concurrent
ones. We proposed a specification approach that charac-
terizes concurrent programs as a pair of components — a
Proxy and a Core component. The Proxy component uses re-
lational specifications to present a sequential veneer over the
Core component, allowing clients of a concurrent program to
be verified without concern for concurrency. We also intro-
duced a new expects clause in the contractual specification
of operations to formalize the well-behavedness requirements
from the clients. We illustrated our approach in the context
of the traditional mutual exclusion problem. In our case
study, we also demonstrated how the proof obligation as-
sociated with the expects clause can be carried out by the
clients.

6. OPEN ISSUES
As the work presented in this paper is preliminary, there

are a number of avenues for future investigation. We plan

to investigate the utility of the expects construct in specify-
ing other RESOLVE components. We also plan to investi-
gate other possible versions of the mathematical structure
involved in the operational semantics of the expects clause,
i.e. multi-set, string or some other model in place of a set.
Further, we plan to investigate what proof obligations a non-
terminating program should have with respect to the expects
clauses in the components it uses. We would like to point
out here that it is tempting to make the structure and se-
mantics of the expects clause very rich, but it is not yet clear
whether that will be useful. For example, in our case study
of the Mutex component, nested calls to methods with ex-
pects clause do not arise, although this may have been the
case had we designed our component in a different way.

Another area of investigation is the evaluation of the ap-
plicability limits of our approach. A successful application
of our approach to the case study of mutual exclusion pro-
gram in this paper is evidence that our approach can work
for conflict resolution programs, also called competitive sys-
tems, such as dining philosophers [6] and drinking philoso-
phers [3]. Currently, we are in the process of applying this
approach to some systems in the other domain of concur-
rent programming, cooperative systems. In particular, we
are working on designing components for barrier synchro-
nization and network protocol stack, both of which are rep-
resentative of cooperative concurrent systems.

In the more distant future, we plan to focus on a proof
system for verifying the correctness of concurrent component
implementations.

7. ACKNOWLEDGMENTS
We thank the anonymous referees for their helpful in-

sights, and especially for more suggestions for future work
than we could elaborate here. We also thank the Reusable
Software Research Group (RSRG) at the Ohio State Uni-
versity for their comments and criticisms on this work.

8. REFERENCES
[1] Abadi, M., and Lamport, L. Composing

specifications. TOPLAS 15, 1 (Jan 1993), 73–132.

[2] Alpern, B., and Schneider, F. B. Defining
liveness. Information Processing Letters 21, 4 (Oct
1985), 181–185.

[3] Chandy, K. M., and Misra, J. The drinking
philosophers problem. ACM Trans. Program. Lang.
Syst. 6, 4 (1984), 632–646.

[4] Chandy, K. M., and Misra, J. Parallel Program
Design: A Foundation. Addison-Wesley, Reading, MA,
USA, 1988.

[5] Collette, P. Composition of
assumption-commitment specifications in a UNITY
style. SCP 23 (Dec 1994), 107–125.

[6] Dijkstra, E. W. Hierarchical ordering of sequential
processes. Acta Informatica 1, 2 (Oct 1971), 115–138.

[7] Edwards, S. H., Heym, W. D., Long, T. J.,

Sitaraman, M., and Weide, B. W. Specifying
Components in RESOLVE. Software Engineering
Notes 19, 4 (1994), 29–39.

[8] Jones, C. B. Tentative steps toward a development
method for interfering programs. TOPLAS 5, 4
(1983), 596–619.

[9] Lamport, L. The temporal logic of actions. TOPLAS
16, 3 (May 1994), 872–923.

[10] Meyer, B. Design by contract. Prentice Hall, 1992,
ch. 1.

[11] Misra, J. A Discipline of Multiprogramming.
Monographs in Computer Science. Springer-Verlag,
2001.

[12] Sitaraman, M., Weide, B. W., and Ogden, W. F.

On the practical need for abstraction relations to
verify abstract data type representations. IEEE
Transactions on Software Engineering 23, 3 (1997),
157–170.

[13] Stark, E. W. A proof technique for rely guarantee
properties. In Foundations of software technology and
theoretical computer science, no. 306 in LNCS.
Pergamon-Elsevier Science Ltd., 1985, pp. 369–391.

