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ABSTRACT
Developing safe multithreaded software systems is difficult due
to the potential unwanted interference among concurrent threads.
This paper presents a sound, modular, and simple verification tech-
nique for multithreaded object-oriented programs with object in-
variants. Based on a recent methodology for object invariants in
single-threaded programs, this new verification technique enables
leak-proof ownership domains. These domains guarantee that only
one thread at a time can access a confined object.

0. INTRODUCTION
A primary aim of a reliable software system is ensuring that all

objects in the system maintainconsistentstates: states in which all
fields, and all fields of other objects on which they depend, contain
legal meaningful values. In this paper, we formalize consistency
constraints asobject invariants, which are predicates over fields.

An object is consistent if it is in a state where its invariant must
hold. We also allow an object to be in a mutable state, where its
invariant may temporarily be violated.

It is hard to maintain object invariants in sequential programs,
and it is even harder in concurrent programs. For example, consider
the following method:

void Transfer(DualAccounts o, int amount) {
o.a := o.a − amount ;
o.b := o.b + amount ;

}

Suppose this method is to maintain the invariant that for all dual
accountsd : d .a + d .b = 0. In a concurrent setting, this invariant
can be violated in several ways. Even if the programming system
ensures that each read or write of a field is atomic, the interleavings
might cause the invariant to be violated. For example, if one thread
executes methodTransfer and readso.a, but before the thread
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performs the write too.a, another thread causes some update of
o.a, then the invariant will not be maintained.

In a concurrent setting, consistency of an object can be ensured
by exclusion at a level coarser than individual reads and writes.
For example, while one thread updates an object, another is not
allowed to perform any operation on the object. In contemporary
object-oriented languages, exclusion is implemented via locking.

Guaranteed exclusion simplifies the automatic verification of mul-
tithreaded code a lot. It means that we can simply split the proof of
the concurrent program into a proof for exclusion and a proof for a
sequential program [17].

In this paper, we present a new programming methodology for
sound modular verification of multithreaded object-oriented pro-
grams with object invariants. The methodology not only guarantees
that every object protects itself from consistency violations, but it
also allows aggregates of objects to defineleak-proof ownership
domains. These domains guarantee that only one thread at a time
can access an object of the aggregate.

The methodology achieves modular static verification by requir-
ing methods to be annotated with simple ownership requirements.
The methodology is a extension of the Boogie methodology for se-
quential code, as described in our previous work [1].

The paper proceeds as follows. The next three sections gradually
introduce our methodology: Section 1 introduces object invariants,
Section 2 introduces confinement within objects, and Section 3
presents our extension to confinement within threads. In Section 4,
we sketch a proof of the soundness of our verification method. We
discuss additional issues of static verification in Section 5, of im-
plementation in Java and C# in Section 6, and of run-time checking
in Section 7. Sections 8 and 9 mention related work and conclude.

1. OBJECT INVARIANTS
We consider an object-oriented programming language with clas-

ses, for example like the class in Figure 0. Each class can declare
an invariant, which is a predicate on the fields of an object of the
class.

To allow a program temporarily to violate an object’s invariant,
the Boogie methodology [1] introduces into each object an auxil-
iary boolean field calledinv .0 We say that an objecto is consistent
if o.inv = true, otherwise we say the object ismutable. Only in
the mutable state is the object’s invariant allowed to be violated.
The inv field can be mentioned in method contracts (i.e., pre- and
postconditions). It cannot be mentioned in invariants or in program

0The Boogie methodology also deals with subclasses, but for
brevity we here consider only classes without inheritance. Extend-
ing what we say to subclasses is straightforward.



class IntList {
rep int[ ] elems := new int[10] ;
int count := 0 ;
invariant 0 ≤ count ∧ count ≤ elems.Length ;

void Add(int elem)
requires inv ;
{

unpack (this) ;
if (count = elems.Length)
{ elems := elems.Copy(count ∗ 2) ; }

elems[count ] := elem ;
count := count + 1 ;
pack (this) ;
}
}

Figure 0: An example class, representing a extensible list of in-
tegers. The invariant links thecount field with the array length
of the elems field. The Add method maintains the invariant.

code. Theinv field can be changed only by two special statements,
unpack andpack. These statements delineate the scope in which
an object is allowed to enter a state where its invariant does not
hold.

The rules for maintaining object invariants are as follows:

• A new object is initially mutable.

• Packing an object takes it from a mutable state to a consistent
state, provided its invariant holds.

• Unpacking an object takes it from a consistent state to a mu-
table state.

• A field assignment is allowed only if the target object is mu-
table.

We formalize these rules as follows, whereInvT (o) stands for the
invariant of classT applied to instanceo.

packT o ≡
assert o 6= null ∧ ¬o.inv ∧ InvT (o) ;
o.inv← true

unpackT o ≡
assert o 6= null ∧ o.inv ;
o.inv← false

o.f := E ≡
assert o 6= null ∧ ¬o.inv ;
o.f ← E

In this formalization, anassert statement checks the given condi-
tion and aborts program execution if the condition does not hold.

Our methodology guarantees the following program invariant for
all reachable states, for each classT :

PROGRAM INVARIANT 0.

(∀ o : T • o.inv =⇒ InvT (o) )

Here and throughout, quantifications are over non-null allocated
objects.

class Account {
rep IntList hist := new IntList() ;
int bal := 0 ;
invariant bal =

(Σ i
>
>
> 0 ≤ i < hist .count • hist .elems[i ] ) ;

void Deposit(int amount)
requires inv ;
ensures bal = old(bal) + amount ;
{

unpack (this) ;
hist .Add(amount) ;
bal := bal + amount ;
pack (this) ;
}
}

Figure 1: An example class illustrating aggregate objects.

2. CONFINEMENT WITHIN OBJECTS
The accessibility modifiers (likeprivate andpublic) in con-

temporary object-oriented languages cannot guarantee consistency.
Consider for example the classAccount in Figure 1, which uses
anIntList object to represent the history of all deposits ever made
to a bank account. A bank account also holds the current balance,
which is the same as the sum of the history, as is captured by the
invariant.

We say anAccount object is anaggregate: its part is the ob-
ject referenced through the fieldhist . Part objects are also known
asrepresentation objects. We qualify fields holding representation
objects with arep modifier (cf. [16]).

A part is said to beleakedif it is accessible outside the aggregate.
In a sequential setting, leaking is not considered harmful, as long
as the parts are leaked only for reading [15, 1].

An aggregateownsits parts. Object ownership, here technically
defined viarep fields, establishes a hierarchy among objects. In-
variants and ownership are related as follows: the invariant of an
objecto can depend only on the fields ofo and on the fields of ob-
jects reachable fromo by dereferencing onlyrep fields. (We don’t
allow an invariant to mention any quantification over objects.)

To formulate ownership properly, we introduce for each object
anowner field. Like inv , theowner field cannot be mentioned in
program code. We say an objecto is free if o.owner = null . An
object issealedif it has a non-null owner object and that owner is
consistent. Theownership domainof an objecto is the set collect-
ing o and all objects thato transitively owns. The rules forpack
andunpack enforce that ownership domains are packed and un-
packed only according to their order in the ownership hierarchy.
Furthermore,pack andunpack change the ownership of repre-
sentation objects as described by the following rules, which extend
the ones given earlier.1 We use the functionRepFieldsT to denote
the fields markedrep within classT .

packT o ≡
assert o 6= null ∧ ¬o.inv ∧ InvT (o) ;
foreach (f ∈ RepFieldsT where o.f 6= null)
{ assert o.f .inv ∧ o.f .owner = null ; }

foreach (f ∈ RepFieldsT where o.f 6= null)
{ o.f .owner← o ; }

o.inv← true

1This is a slightly different use of theowner field than in [13].



unpackT o ≡
assert o 6= null ∧ o.inv ;
o.inv← false ;
foreach (f ∈ RepFieldsT where o.f 6= null)
{ o.f .owner← null ; }

For illustration purposes, let us inspect a trace of the invocation
acct .Deposit(100) for a non-nullAccount objectacct that sat-
isfies the precondition ofDeposit , where we focus only on the in-
volvedinv andowner fields of the involved objects. First,Deposit
unpacksacct : acct is made mutable,hist is made free. Next,Add
is called, which first unpackshist and makes it mutable. Next, the
updates happen. On return from theAdd method,hist is packed
again: the invariant ofhist is checked andhist is made consistent.
Finally, theDeposit method packsacct : the invariant ofacct is
checked,acct is made consistent, andhist is sealed. And that’s
exactly our pre-state restricted toinv andowner fields of the ob-
jects in the ownership domain.

Generalizing from this example, we observe that the methodol-
ogy ensures the following program invariant, for each classT :

PROGRAM INVARIANT 1.

(∀ o : T • o.inv =⇒ InvT (o) ) ∧
(∀ f ∈ RepFieldsT , o : T •

o.inv =⇒ o.f = null ∨ o.f .owner = o ) ∧
(∀ o : T • o.owner 6= null =⇒ o.inv )

3. CONFINEMENT WITHIN THREADS
In the object ownership scheme above, objects are either part of

an aggregate object or they are free, which means they do not have
any owner. For modular verification of multithreaded code, we now
refine this scheme again. We say that an object can either befree,
it can beowned by an aggregate object, or it can beowned by a
thread. Correspondingly, the owner field isnull , an object, or a
thread.2

To support sequential reasoning about field accesses, we require
a thread to have exclusive access to the fields during the execution
of the program fragment to which the sequential reasoning applies.
We require a thread to transitively own an object whenever it reads
one of its fields, and to directly own an object whenever it writes
one of its fields. Since no two threads can (transitively) own the
same object concurrently, this guarantees exclusion.

The rules for thread ownership are as follows:

• A thread owns any object that it creates, and the new object
is initially mutable.

• A thread can additionally attempt toacquire any object.
This operation will block until the object is free. At that
point, we know that the object is consistent and the thread
gains ownership of the object.

• A thread can relinquish ownership of a consistent object us-
ing therelease statement.

• A thread that owns a consistent aggregate object can gain
ownership of its sealed representation objects by unpack-
ing the aggregate object using theunpack statement. This
transfers ownership of the representation objects from the ag-
gregate object to the thread.

2In this text, threads are not objects. In some languages, like Java
and C#, a thread has a representation as an object; we can avoid
ambiguity in these languages by requiring that thread objects have
no rep fields, which allows us to stipulate that when a thread object
appears as an owner, it denotes the thread, not the object.

• A thread can, via apack statement, transfer ownership of a
consistent object that it owns to an aggregate object.

• A thread can perform a field assignment only if it owns the
target object and the target object is mutable.

• A thread can read a field only if it transitively owns the tar-
get object. We actually enforce this rule by a slightly stricter
rule: a thread can evaluate an access expressiono.f1. · · · .fn .g
only if it ownso and each object in the sequenceo.f1. · · · .fn
owns the next one.

These rules are an extension of the rules presented in the previous
section. They give rise to the object lifecycle shown in Figure 2.
Fully spelled out, they are formalized as follows, where we denote
the currently executing thread bytid .

packT o ≡
assert o 6= null ∧ o.owner = tid ∧ ¬o.inv ;
foreach (f ∈ RepFieldsT where o.f 6= null)
{ assert o.f .owner = tid ∧ o.f .inv ; }

foreach (f ∈ RepFieldsT where o.f 6= null)
{ o.f .owner← o ; }

assert Legal [[InvT (o)]] ∧ InvT (o) ;
o.inv← true

unpackT o ≡
assert o 6= null ∧ o.owner = tid ∧ o.inv ;
o.inv← false ;
foreach (f ∈ RepFieldsT where o.f 6= null)
{ o.f .owner← tid ; }

acquire o ≡
assert o 6= null ∧ o.owner 6= tid ;
await (o.owner = null) { o.owner← tid ; }

release o ≡
assert o 6= null ∧ o.owner = tid ∧ o.inv ;
o.owner← null

o.f := v ≡
assert o 6= null ∧ o.owner = tid ∧ ¬o.inv ;
o.f ← v

x := E ≡
assert Legal [[E ]] ;
x← E

In the above, we writeLegal [[E ]] to denote the predicate that says
that every access expression inE is transitively owned by the cur-
rent thread, as stipulated by the last bullet above. In particular,

Legal [[x ]] ≡ true
Legal [[E0 opE1]] ≡ Legal [[E0]] ∧ Legal [[E1]]
Legal [[o.f1. · · · .fn .g ]] ≡

o.owner = tid ∧
o.f1.owner = o ∧
· · · ∧
o.f1. · · · .fn .owner = o.f1. · · · .fn−1

When a thread attempts to execute a statementawait (P) { S },
it blocks until the conditionP is true, at which point the statement
S is executed; the evaluation ofP that findsP to betrue and the
execution ofS are performed as one indivisible action.
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Figure 2: Object lifecycle for an arbitrary object o.

class Account {
void Deposit(int amount)

requires owner = tid ∧ inv ;
. . .

}

class IntList {
void Add(int value)

requires owner = tid ∧ inv ;
. . .

}

Figure 3: The example classesAccount and IntList , revised for
their use in a multithreaded environment.

Now let us extend our running example, so that we can verify
it in a multithreaded environment. First, we have to make sure
thatAccount andIntList objects are accessed only when they are
owned by the current thread. We choose to relegate the respon-
sibility of exclusion to the client, a pattern which is often called
client-side locking. We indicate this by including the requirement
owner = tid in the preconditions for methodsDeposit andAdd ,
see Figure 3. A program is allowed to mentiono.owner only in
the formo.owner = tid and only in method contracts.

We extend the example with aBank class, which allows trans-
fers between different accounts, see Figure 4. The methodTransfer
requires that thefrom and to accounts are owned by the current
thread. If the precondition holds,Transfer performs the intended
account operations without blocking. The methodTransaction
does the same thing, but has no requirement on thread ownership.
Therefore,Transaction acquires thefrom andto objects, each of
which might block.

Note that methodTransfer declares a postcondition, whereas
methodTransaction does not. In fact,Transaction cannot en-
sure the same postcondition asTransfer , since other threads might
intervene as soon as the account objects are released. For method
Transfer , on the other hand, the postcondition is stable, since the
calling thread owns the account objects, which affords it exclusive
access.

Our methodology ensures the following program invariant, for

class Bank {
static void Transfer(Account from,

Account to,
int amount)

requires from 6= null ∧ to 6= null ∧ from 6= to ∧
from.owner = tid ∧ to.owner = tid ;

ensures from.bal = old(from.bal)− amount ∧
to.bal = old(to.bal) + amount ;

{
from.Deposit(−amount) ;
to.Deposit(amount) ;
}
static void Transaction(Account from,

Account to,
int amount)

requires from 6= null ∧ to 6= null ∧ from 6= to ;
{

acquire from ;
acquire to ;
Transfer(from, to, amount) ;
release to ;
release from ;
}
}

Figure 4: A safe multithreaded bank example.

each classT :

PROGRAM INVARIANT 2.

(∀ o : T • o.inv =⇒ InvT (o) ) (0)

(∀ f ∈ RepFieldsT , o : T •
o.inv =⇒ o.f = null ∨ o.f .owner = o )

(1)

(∀ o : T • o.owner 6∈ thread =⇒ o.inv ) (2)

4. SOUNDNESS
In this section, we prove two results for our methodology. First,

there are no data races. Second, if an object is consistent, its invari-
ant holds.

A data raceoccurs when a field is accessed concurrently by two
threads and at least one of the threads is performing a write to the
field. If a data race occurs, the values read or written by a thread
may be unpredictable, which severely complicates reasoning about
the program.

As we have formalized our methodology in the previous section,
there actually are data races, in particular on theowner field. For-
tunately, we can eliminate these data races by introducing redun-
dant thread-local data into our program state, as follows:

• With each threadt , we associate a thread-local tableowns,
which maps object references to booleans.

• We extend the semantics of all statements that perform up-
dates onowner fields so that they also update the local thread’s
owns variable. These updates will maintain the following in-
variant, for any objecto and threadt :

t .owns[o] =⇒ o.owner = t

• We modify the semantics of all statements whose precon-
ditions requireo.owner = tid for someo, so that these
preconditions instead requiretid.owns[o].



• We assume any write to theowner field of an object to be an
indivisible action.

With these modifications, we can now prove the following lemma
and theorem:

LEMMA 0. The methodology guarantees that (1) holds in all
reachable states.

THEOREM 1 (RACE FREEDOM). Consider any objecto in an
execution of a program. Ift is a thread that transitively ownso,
thent is the only thread that can read or write a field ofo or change
the transitive ownership ofo. Furthermore, if the transitive owner
of o is null , then the only field ofo that a thread reads or writes
is o.owner , and the thread reads and writeso.owner only at a
moment wheno.owner = null .

We prove Lemma 0 and Theorem 1 together:

PROOF. Consider an arbitrary execution of the program. We
prove by induction that the required properties hold in every prefix
of the execution.

We look at our formalization of each program construct, as given
in the previous section. Except for theunpack and acquire
statement, these rules guarantee that each read or write of a field
o.f1. · · · .fn .g is protected by an expression equivalent to the ex-
pansion ofLegal [[o.f1. · · · .fn .g ]] (we assume the evaluation of∧ to
be conditional-and). By the induction hypothesis, these conditions
are stable (with respect to the execution of other threads).

This property is also guaranteed for theunpack statement, ex-
cept for its update ofo.f .owner . Here’s where we need the lemma.
By the inductive hypothesis of the lemma, we have the disjunction
o.f = null ∨ o.f .owner = o immediately after checkingo.inv .
By the inductive hypothesis of the theorem, this disjunction is sta-
ble. Therefore,o.f .owner = o holds inside theforeach loop
(unless a previous iteration of theforeach loop has already as-
signedtid to o.f .owner , which is also okay; this situation arises
if o has tworep fields referencing the same part).

For theacquire statement, the reading and writing ofo.owner
happens at a time wheno.owner = null , as required by the theo-
rem.

For the lemma, (1) holds in the empty prefix of the execution,
since no objects are allocated then, which means the quantifica-
tions are vacuously true. We now turn to nonempty prefixes of the
execution.

Condition (1) can be violated if the quantifier’s range is enlarged
to a newly allocated object. But new objects are initially mutable,
so (1) is maintained.

Condition (1) can be violated if aninv field is set totrue, which
happens only in thepack statement. There, the update ofo.inv
is preceded by assignments too.f .owner for representation fields
o.f . By the theorem, the effect of these assignments is stable, and
thuspack maintains (1).

Condition (1) can also be violated if a representation fieldo.f
is changed to a non-null value wheno.inv holds. But only the
field update statement writes to fields, and its update is protected
by¬o.inv , which by the theorem is stable.

Finally, condition (1) can be violated ifp.owner is changed to a
valueq , when there is an objectr and representation fieldg such
that

r 6= q ∧ r .inv ∧ r .g = p

for then, after the assignment, we would have

r .inv ∧ r .g 6= null ∧ r .g .owner = q

The assignment too.f .owner in the pack statement is okay,
because we argue that there are nor andg such thatr .g = o.f ∧
r .inv : For a contradiction, suppose there are such anr and g .
Then, by the induction hypothesis of (1),r .g = null∨r .g .owner =
r . It can’t ber .g = null , becauseo.f 6= null . And it can’t be
r .g .owner = r , because thepack statement checkso.f .owner
to be a thread, not the objectr .

Theunpack statement changeso.f .owner , so we again argue
that there are nor andg such thatr .g = o.f ∧ r .inv . At the time
theunpack statement checkso.inv , the induction hypothesis of
(1) tells us thato.f = null ∨o.f .owner = o for all representation
fields f . The update ofo.f .owner happens only ifo.f 6= null ,
so if o.f .owner is updated, theno.f .owner starts off aso. So
the onlyr in danger iso itself. But at the time of the update of
o.f .owner , o.inv is false.

Theacquire statement changeso.owner , but does so from a
state whereo.owner is null .

The release statement changeso.owner , but does so from a
state whereo.owner is a thread, not an object.

Because of Theorem 1, we no longer have to argue about race
conditions. That is, in the proof of the Soundness Theorem below,
we can assume values to be stable.

THEOREM 2 (SOUNDNESS). The methodology guarantees that
Program Invariant 2 holds in all reachable states.

PROOF. Lemma 0 already proves (1), so it remains to prove (0)
and (2).

Consider an arbitrary execution of the program. We prove by
induction that Program Invariant 2 holds in every prefix of the exe-
cution.

Program Invariant 2 holds in the empty prefix of the execution,
since no objects are allocated then, which means the quantifications
are vacuously true.

Consider any prefix of the execution leading to a state in which
Program Invariant 2 holds. Lett be the thread that is about to
execute the next atomic action. We prove by case analysis that this
action maintains Program Invariant 2. In all cases, we make use of
the fact that theowner field is not mentioned in invariants.

• Casecreation of a new objecto. This operation affects only
quantifications over objects, since the operation enlarges the
range of such quantifications. Sinceo.owner = t and¬o.inv ,
and since for allp, InvT (p) does not mention quantifications
over objects, all conditions are trivially satisfied.

• CasepackT o. (0) and (2) follow directly from the seman-
tics.

• CaseunpackT o. (0) and (2) follow directly from the se-
mantics.

• Caseacquire o. (0) is vacuously maintained. (2) follows
directly from the semantics.

• Caserelease o. (0) is vacuously maintained. (2) follows
directly from the semantics.

• Caseo.f := v . (2) is vacuously maintained. We prove the
maintenance of (0) for an arbitrary objectp of a typeT . Sup-
pose for a contradiction thatp.inv holds and thatInvT (p)
depends ono.f . Theno must be reachable fromp via non-
null rep fields. Through repeated application of (1) and (2),
we obtain thato.inv holds. This contradicts the action’s pre-
condition, which incorporates¬o.inv .



This concludes the proof.

Having proved the Soundness Theorem, we can simplify the de-
finition of Legal . In particular, we only need to check that the
current thread owns the root object of an access expression and that
all fields in the intermediate dereferences in the access expression
arerep fields:

Legal [[o.f1. · · · .fn .g ]] ≡
o.owner = tid
andf1, . . . , fn are allrep fields

Program invariant (1) takes care of the rest.
The soundness proof assumes an interleaving semantics. This

implies that memory accesses are sequentially consistent. Sequen-
tial consistency means that there is a total order on all memory
accesses, such that each read action yields the value written by the
last write action.

Unfortunately, most execution platforms do not actually guar-
antee sequential consistency. However, many do guarantee the
following property, see for instance Manson and Pugh’s proposed
memory model for Java [14]:

If in all sequentially consistent executions of a pro-
gram P , all conflicting accesses are ordered by the
happens-before relation, then all executions ofP are
sequentially consistent.

Since Theorem 1 proves the absence of data races, our Soundness
Theorem is relevant even in these systems, provided a happens-
before edge exists between writing theowner field in therelease
statement and reading theowner field in theacquire statement.

5. STATIC VERIFICATION
Our Soundness Theorem proves three properties that hold in every

reachable state. These properties can therefore be assumed by a sta-
tic program verifier at any point in the program.

By Theorem 1, we know that the values read by a thread are
stable with respect to other threads. That is, as long as an object
remains in the thread’s ownership domain, the fields of the object
are controlled exactly in the same way that fields of objects are
controlled in a sequential program. Therefore, static verification
proceeds as for a sequential program.

For objects outside the thread’s ownership domain, all bets are
off (as we alluded to in the discussion of theTransaction method
in Figure 4). But since a thread cannot read fields of such objects
(Theorem 1), static verification is unaffected by the values of those
fields.

When an objecto enters a thread’s ownership domain, we know
that the invariants of all objects ino’s ownership domain hold. In
particular, due to our non-reentrantacquire statement and pro-
gram invariant (2) of the Soundness Theorem, we haveo.inv . To
model the intervention of other threads between exclusive regions,
a static verifier plays havoc on the fields of all objects ino’s own-
ership domain after eachacquire o operation. The static verifier
can then assumeo.inv . By repeated applications of program in-
variants (1) and (2), the verifier infersp.inv for all other objectsp
in the ownership domain ofo. Thus, by program invariant (0), the
verifier infers that the invariants of all of these objects hold.

To check our methodology at run time, we only need to check
the assertions prescribed in Section 3. However, to reason modu-
larly about a program, as in static modular verification, one needs
method contracts. We have already seen examples of pre- and
postconditions, but method contracts also need to includemodifies
clauses, which frame the possible effects a method can have within
the thread’s ownership domain, see [1].

public class AcqRel {
private boolean free ;
public final synchronized void acquire()
{while (!free) { wait() ; } free = false ; }

public final synchronized void release()
{ free = true ; notify() ; }

}

Figure 5: Example implementation ofacquire and release in
Java.

6. SAFE CONCURRENCY IN JAVA AND C#
Our methodology usesacquire andrelease as synchroniza-

tion primitives. But how, if at all, does this apply to thesynchronized
of Java (or, equivalently, C#’slock statement)? One might think
that it would suffice to map Java’ssynchronized statement to
acquire andrelease statements as follows:

J synchronized (o) { S } K =
acquire o ;
try { S } finally { release o ; }

Unfortunately, this approach is incorrect. Specifically, entering a
synchronized statement is not semantically equivalent to the
acquire statement because Java considers an object to be initially
not owned, whereas our methodology considers an object to be ini-
tially owned by the thread that creates it. This manifests itself in the
following specific behavior: in Java, the first thread that attempts
to enter a synchronized statement always succeeds immediately;
in our methodology, arelease operation must occur on an object
before any thread can successfully acquire it, even the first time.

Additionally, in this approach there is no syntax for an object’s
initial release operation; as a result, an object could never become
free. One might suggest having an implicit release operation when
an object is created, and requiring even the creating thread to syn-
chronize on the object, even in the object’s constructor. But this is
problematic, since it would not give the creating thread a chance to
establish the object’s invariant before it is released.

But there are at least two ways to achieve a correct mapping be-
tween our methodology and Java and C#. The first consists of im-
plementingacquire andrelease methods on top of the language’s
built-in primitives. An example implementation in Java is shown
in Figure 5. With this implementation, acquiring an objecto would
correspond to calling theacquire method of theAcqRel object as-
sociated with objecto. The latter association could be achieved
usinge.g.a hash table, or, depending on platform constraints, more
efficient methods, such as merging theAcqRel class into class
Object .

The second way to apply our methodology to Java and C#, is
by modifying the methodology. Specifically, a modified method-
ology exists such that executing anacquire or release state-
ment on an object corresponds exactly with entering or exiting a
synchronized statement that synchronizes on the object. The
modification involves the introduction of an additional boolean field,
calledshared , in each object. The field is initiallyfalse, it can be
mentioned only in method contracts, and it can be updated only
through a specialshare statement.

In the modified methodology, the semantics of the statements



share, acquire, andrelease are as follows:

acquire o ≡
assert o 6= null ∧ o.shared ∧ o.owner 6= tid ;
await (o.owner = null) { o.owner← tid ; }

release o ≡
assert o 6= null ∧ o.owner = tid ∧ o.shared ∧ o.inv ;
o.owner← null

share o ≡
assert o 6= null ∧ o.owner = tid ∧ ¬o.shared ∧ o.inv ;
o.owner← null ;
o.shared← true

In the modified methodology, exclusive access to an object by
its creating thread during initialization is ensured not through run-
time synchronization, but through constraints on the the newly in-
troducedshared field imposed by the methodology.

7. RUN-TIME CHECKING
Our methodology supports both static verification and run-time

checking. The advantage of static verification is that it decides
the correctness of the program for all possible executions, whereas
run-time checking decides whether the running execution complies
with the methodology. The disadvantage of static verification is
that it requires method contracts, including preconditions, postcon-
ditions, and modifies clauses, whereas run-time checking does not.

If a program has been found to be correct through static verifi-
cation, no run-time checks would ever fail and they can be omit-
ted. When running a program without run-time checks, the only
run-time cost imposed by our methodology is the implementation
of the acquire andrelease statements (as in Figure 5, for ex-
ample); none of the fields or other data structures introduced by
our methodology need to be present, and none of theassert state-
ments need to be executed. In particular, thepack andunpack
statements become no-ops.

For run-time checking, two fields, theinv field and theowner
field, need to be inserted into each object. To prove race freedom,
we eliminated the races on theowner fields by introducing an
owns table for each thread; however, on most platforms, includ-
ing Java and C#, these races are in fact benign and theowns tables
can be omitted.

8. RELATED WORK
The Extended Static Checkers for Modula-3 [6] and for Java [8]

attempt to statically find errors in object-oriented programs. These
tools include support for the prevention of data races and dead-
locks. For each field, a programmer can designate which lock pro-
tects it. However, these two tools trade soundness for ease of use;
for example, they do not take into consideration the effects of other
threads between regions of exclusion. Moreover, various engineer-
ing trade-offs in the tools notwithstanding, the methodology used
by the tools was never formalized enough to allow a soundness
proof.

Method specifications in our methodology pertain only to the
pre-state and post-state of method calls. Some systems [18, 9] ad-
ditionally support specification and verification of the atomic trans-
actions performed during a method call, even though this informa-
tion does not translate into knowledge about the post-state (because
of intervening transactions by other threads).

A number of type systems have been proposed that prevent data
races in object-oriented programs. For example, Boyapatiet al. [4]

parameterize classes by the protection mechanism that will protect
their objects against data races. The type system supports thread-
local objects, objects protected by a lock (i.e., another object), read-
only objects, and unique pointers. However, the ownership rela-
tionship that relates objects to their protection mechanism is fixed.
Also, their type system does not support object invariants.

Quite similar to ours is the methodology used by Vault (cf. [5]),
which can be applied in a concurrent setting. In Vault, linear types
guarantee that objects are owned by a single thread only. Thepack
andunpack operations are implicit in Vault. Theacquire oper-
ation is not supported, because the object to be acquired may have
been deleted; however, it would be possible to add therelease
acquire operation pair to a version of Vault for a garbage-collected
language. Vault’s methodology is enforced by a static type system,
which has advantages but limits its supported invariants. For ex-
ample, Vault supports neither general predicates on the fields of
an object nor relations on the fields of more than one object in an
aggregate.

Atomizer [7] dynamically checks the atomicity of unannotated
methods. It ensures that all statements in the method can be rea-
soned about sequentially. However, Atomizer does not easily sup-
port atomicity at different abstraction levels, which our methodol-
ogy does.

Ábrah́am-Mummet al. [0] propose an assertional proof system
for Java’s reentrant monitors. It supports object invariants, but these
can depend only on the fields ofthis. No claim of modular verifi-
cation is made.

The rules in our methodology that an object must be consistent
when it is released, and that it can be assumed to be consistent
when it is acquired, are taken from Hoare’s work on monitors and
monitor invariants [10].

There are also tools that try dynamically to detect violations of
safe concurrency. A noteable example is Eraser [19]. It finds data
races by looking for locking-discipline violations. The tool has
been effective in practice, but does not come with guarantees about
the completeness nor the soundness of the method.

The basic object-invariant methodology that we have built on [1]
has also been extended in other ways for sequential programs [13,
3, 12].

9. CONCLUSIONS
Our new sound, modular, and simple locking methodology helps

in defining leak-proof ownership domains. Several aspects of this
new approach are noteworthy. First, sequentially verifiable pro-
grams are race free. Due to the necessary preconditions for reading
and writing, only one thread at a time can access the objects of
an ownership domain. Second, the owner of an object can change
over time. In particular, an object may move between ownership
domains. Third, our methodology can be efficient; it acquires only
one lock per ownership domain, where the domain consists of many
objects. Further, at run time, we only need to keep track of a bit per
object that says whether or not there exists a thread that transitively
owns the object.

We are in the process of adding support for this methodology to
Spec#, an extension of C# with contracts [2]. Spec# performs both
run-time checking and static verification (via the program verifier
Boogie).

But there is obviously much more left to be done. One important
area of work is the assessment and optimization of the efficiency
of both static verification and run-time checking on realistic exam-
ples. Also, we are currently extending the approach to deal with
other design patterns, like traversals, wait and notification, condi-
tion variables, multiple reader writers,etc. In fact, our ambition is



to cover many of the design patterns described by Doug Lea [11].
Another area of future work is the treatment of liveness properties,
such as deadlock freedom.

Since our methodology is an extension of an object-invariant
methodology for sequential programs, it would be interesting to au-
tomatically infer for given sequential programs the additional con-
tracts necessary for concurrency.
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