
Monitoring Design Pattern Contracts

Jason O. Hallstrom
Computer Science
Clemson University

Clemson, SC 29634, USA

jasonoh@cs.clemson.edu

Neelam Soundarajan, Benjamin Tyler
Computer Science and Engineering

Ohio State University
Columbus, OH 43210, USA

{neelam, tyler}@cse.ohio-state.edu

ABSTRACT
Design patterns allow system designers to reuse well estab-
lished solutions to commonly occurring problems. These
solutions are usually described informally. While such de-
scriptions are certainly useful, to ensure that designers pre-
cisely and unambiguously understand the requirements that
must be met when applying a given pattern, we also need
formal characterizations of these requirements. Further, sys-
tem designers need tools for determining whether a system
implemented using a given pattern satisfies the appropriate
requirements. In [18], we described an approach to specify-
ing design patterns using formal contracts. In this paper, we
develop a monitoring approach for determining whether the
pattern contracts used in developing a system are respected
at runtime.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.4 [Software Engineering]: Verification—Runtime
Monitoring ; D.1.m [Programming Techniques]: Pat-
terns—AOP

General Terms
Design, Reliability, Verification

Keywords
Design patterns, Aspect-oriented programming, Runtime
monitoring of contracts

1. INTRODUCTION
Design patterns [2, 8, 10, 17] have, over the last decade,

fundamentally changed the way we think about the design
of large software systems. Using design patterns not only
helps designers exploit the community’s collective wisdom
and experience as captured in the patterns, it also enables
others studying the system in question to gain a deeper un-
derstanding of how the system is structured, and why it
behaves in particular ways. And as the system evolves over
time, the patterns used in its construction provide guidance
on managing the evolution so that the system remains faith-
ful to its original design, ensuring that the original parts and
the modified parts interact as expected. Although they are
not components in the standard sense of the word, patterns
may, as has been noted, be the real key to reuse since they
allow the reuse of design, rather than mere code. But to
fully realize these benefits, we must ensure that the designers

have a thorough understanding of the precise requirements
their system must meet in applying a given pattern, as well
as automated or semi-automated ways of checking whether
the requirements have been satisfied. To that end, the work
we present in [18] describes an approach to specifying de-
sign patterns precisely using formal contracts. Our goal in
this paper is to extend that work, and to develop a run-
time monitoring approach that allows system designers to
determine whether the patterns used in constructing a sys-
tem have been applied correctly. We use an aspect-oriented
programming [12, 11] approach to achieve this goal.

Consider the Observer pattern [8], illustrated in Fig. 1,
which will be our case-study. There are two roles [15] in
this pattern, Subject and Observer. The purpose of the pat-
tern is to allow a set of objects that have enrolled to play
the Observer role to be notified whenever the state of the
object playing the Subject role changes, so that each of the
observers1 can update its state to be consistent with the
new state of the subject. Also clear from Fig. 1 is the fact

Observer

+Update()

o.Update()
for all o in observers

ConcreteSubject
−subjectState

*

ConcreteObserver

−observerState

+Update()

*

observers

1

subject

1

+Attach(in Observer)

+Detach(in Observer)

Subject

+Notify()

Figure 1: Observer Pattern

that the Notify() method of Subject will invoke the Update()
method on each observer. What is not clear is when Notify()
will be called and by whom. The informal description [8]
states, “. . . subject notifies its observers whenever a change
occurs that could make its observers’ state inconsistent with

1We use names starting with uppercase letters, such as Sub-
ject, for roles; and lowercase names, such as subject, for the
individual objects that play these roles. We also use names
starting with uppercase letters for patterns. Occasionally,
the name of a pattern is also used for one of its roles, as
in the case of the Observer role of the Observer pattern. In
such cases, the context will make clear whether we are talk-
ing about the role or the pattern.

1

its own.” But it is not clear how the subject will know when
its state has become inconsistent with that of one or more
observers. Indeed, what does it mean to say that the sub-
ject state has become inconsistent with that of an observer?
In other words, what exactly are the requirements that the
designer must ensure are met in order to apply this pattern
as intended? The pattern contracts described in [18] pro-
vide precise answers to these questions. We will consider
the requirements specified by these contracts in Section 2.

Next consider the question of runtime monitoring. In
standard specification-based testing/monitoring [1, 3, 13],
we typically consider the behavior of the methods of a sin-
gle class. For this, we instrument the class in question to
see that the pre- and post-conditions of the class methods
are satisfied at appropriate points. But in the case of pat-
terns, we are dealing not with individual classes, but with
multiple classes. Indeed, the focus is usually on the inter-
actions and interrelations among the classes, rather than on
the behaviors of the classes in isolation.

A natural solution is to use aspects [12, 11], since aspects
allow us to deal with crosscutting concerns. We will define
an abstract aspect for Observer that implements the moni-
toring functionality common across all applications of the
pattern. Corresponding to any particular application in an
actual system, we will define a concrete subaspect that tailors
the monitoring functionality as appropriate to the applica-
tion in question. An abstract aspect captures the require-
ments embodied in a given pattern’s contract, and a concrete
subaspect captures the specializations embodied in a subcon-
tract of the pattern’s contract. In a sense, we can consider
the aspects used in the current paper as aspect-versions of
the contracts presented in [18]. (Although, [18] did not con-
sider the notion of a subcontract.) Indeed, hereafter, we
refer to the abstract aspect as a contract, and the concrete
subaspect as a subcontract. We will see how a contract-
subcontract pair can be used to monitor a system to see if
it applies a given pattern faithfully.

There is an inherent risk in formalizing patterns in that
their hallmark flexibility may be lost [16]. For the case of
Observer, if we adopt one definition for the notion of consis-
tency between the Subject and Observer states, the pattern
may not be usable in systems that have a different notion
of this concept; or we may have to come up with multi-
ple contracts, one for each possible notion of consistency.
Clearly, this would be undesirable. As we will see, our con-
tract for Observer, while precisely capturing the pattern re-
quirements, will also retain all of the flexibility contained in
the pattern.

Hannemann and Kiczales [9] show how patterns can be
implemented as aspects. They argue that the code for a
given pattern should be collected within an aspect, rather
than being distributed among different classes. By contrast,
the aspect we develop in Section 2 monitors a system to
check whether it satisfies the requirements that any designer
implementing the Observer pattern must meet. This raises
the question, does the Hannemann-Kiczales implementation
of the pattern meet our contract? It must, if our contract
is truly general. As we will show, we can indeed define a
subcontract for this implementation of Observer, in exactly
the same way as we do for a more ‘standard’ implementation
of the pattern in Section 3. This is remarkable because when
developing the contract for Observer, we only had in mind
standard class-based implementations of the pattern, and

we tried to ensure that our contract would be appropriate
for all such implementations. Here we had a very different
kind of implementation, and our contract turned out to be
appropriate for this implementation as well. Further, and
somewhat to our surprise, when we ran our contract and
subcontract against this aspect-based implementation of the
pattern, a contract violation was reported! It turns out, as
we will see, that there is a minor error in the implementation
in [9].

In Section 2, we develop the contract for Observer, present
a simple system built using the pattern, define the subaspect
corresponding to the pattern as used in this system, show
how the aspect and subaspect allow us to monitor the system
at runtime, and discuss the monitoring results. In Section 3,
we outline how a subaspect corresponding to the implemen-
tation of [9] can be defined, and discuss the monitoring re-
sults. In the next section, we discuss related work. In Sec-
tion 5, we summarize our approach, and provide pointers to
future work.

2. PATTERN CONTRACTS
Since we use AspectJ [11] to develop the pattern contracts

and subcontracts, we begin with a brief summary of some
of the essential parts of AspectJ. Three key concepts of the
language are join points, pointcuts, and advice. A join point
identifies a particular point in the execution of a program;
for example, a call to a particular method of a particular
class, or a call to a particular constructor of a particular
class. A pointcut is a way of grouping together a set of join
points that we want to treat in a particular fashion; for ex-
ample, calls to all methods of a given class. The pointcut
construct enables us to collect context: for example, the ob-
ject on which the method in question was applied, or the
additional arguments that were passed to the method. Fi-
nally, the advice associated with a given pointcut specifies
the code that needs to be executed at runtime when con-
trol reaches any of the join points that match the pointcut.
There are three distinct types of advice. Consider a method
call. The associated before advice, if any, will be executed
before the method is executed. The after advice, if any, will
be executed after the method is executed. We do not use
the third kind of advice, the around advice.

2.1 Observer Contract
The aspect that defines the Observer contract appears in

Figures 2, 3, and 4. The following notes explain the lines
with the corresponding numbers in the figures.

1. The interfaces Subject and Observer correspond to the
two roles of the pattern. Note that unlike in Fig. 1,
there are no methods such as Notify() in these inter-
faces. The pointcuts of AspectJ, as we will see, provide
a more general way of introducing these.

2. ObserverPatternContract, an abstract aspect, captures
the requirements to be checked for all applications of
Observer.

3. The information needed to monitor the system will
be maintained in three variables: xSubjectsObservers
maps2 each object that enrolls as a subject to the ob-
jects that are enrolled to be observers of that subject,

2This should be a WeakHashMap to allow garbage collection
to proceed normally.

2

protected interface Subject { } // see note (1)

protected interface Observer { }
public abstract aspect ObserverPatternContract { note (2)

//Aux. variables: (3)
private Map xSubjectsObservers = new HashMap();
private Set xUpdateCalls = new HashSet();
private Map xrecordedStates = new HashMap();

//Auxiliary functions: (4)
abstract protected String xSubjectState(Subject s);
abstract protected String xObserverState(Observer o);
abstract protected boolean

xModified(String s1, String s2);
abstract protected boolean

xConsistent(String s, String o);

//Pointcuts: (5)
abstract protected pointcut subjectEnrollment(Subject s);
abstract protected pointcut

attachObs(Subject s, Observer o);
abstract protected pointcut

detachObs(Subject s, Observer o);
abstract protected pointcut Notify(Subject s);
abstract protected pointcut Update(Subject s,Observer o);
abstract protected pointcut subjectMethods(Subject s);

Figure 2: Observer Contract (part 1 of 3)

and is initially empty. xUpdateCalls is used to keep
track of the observers that are updated when the cor-
responding subject state changes. xrecordedStates is
used to save, for each subject, the state that its ob-
servers have been most recently notified of.

4. We use auxiliary functions to represent pattern con-
cepts that vary among applications. As we noted ear-
lier, the pattern requires that observers become consis-
tent with the subject state when they are updated, but
the notion of consistency will vary from one system to
another. Similarly, the pattern requires the observers
to be notified when the subject state is modified, but
what modification of the subject state means will vary
from system to system. xModified() and xConsistent()
allow us to specify these requirements precisely, while
allowing for variation among different systems.

Given two subject states, xModified() tells us if the
second state should be considered ‘modified’ from the
first. Since this function is abstract, the pattern con-
tract will not define it; instead, the subcontract will
provide a definition tailored to the system in question.
Similarly, xConsistent(), given a subject state and an
observer state, tells us whether the latter is consistent
with the former. This, too, is abstract, since the no-
tion of consistency varies from system to system.

For simplicity, rather than working with the actual
states of the subjects and observers, we assume that
we have functions xSubjectState() and xObserverState()
that will encode the states into Strings. Naturally, such
encodings will depend on the system: hence these are
abstract, to be suitably defined in the subcontract.

5. Next we have the pointcuts that identify the points
at which the system should be interrupted at runtime,

either to save information needed by the contract, or
to check if the contract requirements are being met.

subjectEnrollment is the pointcut that represents the
points at which an object enrolls to play the Subject
role. The only argument here is the object enrolling.
attachObs and detachObs correspond to an object at-
taching or detaching, respectively. The arguments for
these two pointcuts are the subject and observer in-
volved.

Next we have Notify, which corresponds to the points
at which a given subject’s observers are notified follow-
ing a change in the state of the subject (as defined by
the xModified() function). The Update pointcut corre-
sponds to an individual observer being updated to be-
come consistent (as defined by xConsistent()) with the
modified (or rather, xModified()) subject state. The
final pointcut, subjectMethods, corresponds to all the
methods of the class playing the Subject role.

//Advice for Subject enrollment: (6)
after(Subject s): subjectEnrollment(s) {
Set obSet = new HashSet();
xSubjectsObservers.put(s,obSet);
xrecordedStates.put(s,xSubjectState(s)); }

//Advice for attaching Observer: (7)
before(Subject s, Observer o): attachObs(s,o) {
xUpdateCalls.clear(); }

after(Subject s, Observer o): attachObs(s,o) {
if (!xUpdateCalls.contains(o)) { System.out.println(
”Update not called on attaching Observer”); }
Set obSet = (Set)xSubjectsObservers.get(s);
obSet.add(o); xSubjectsObservers.put(s,obSet); }

//Advice for detaching Observer: (8)
before(Subject s, Observer o): detachObs(s,o) {
Set obSet = (Set)xSubjectsObservers.get(s);
obSet.remove(o); xSubjectsObservers.put(s,obSet); }

//No “after” advice for detachObs.

Figure 3: Observer Contract (part 2 of 3)

Let us now consider the advice corresponding to the var-
ious pointcuts3.

6. The advice for subjectEnrollment adds the enrolling ob-
ject to xSubjectsObservers with an empty set of ob-
servers, and saves its current state as its recorded state.
As there are no observers for this subject, we can vac-
uously say that they have all been informed of its cur-
rent state.

7. When a new observer attaches to a subject, we must
ensure that it is updated. As we noted in [18], this
point has been overlooked in many informal descrip-
tions of the pattern. If this is not done, the observer’s
state may be inconsistent with the subject state until
the point when the subject is next modified.

To check this, the before advice clears xUpdateCalls.
As we will see below, the advice for the Update point-
cut adds the observer being updated to xUpdateCalls.

3Java’s collection classes rely on Object.equals() to locate
items. We assume the default implementation of equals(),
which tests for equality based on the identity of the objects.

3

Hence, in the after advice of attachObs, we require xUp-
dateCalls to contain this observer. If it does not, that
indicates that the observer was not updated when it
enrolled, and we output a message to that effect4.

8. Detachment of an observer simply requires eliminating
it from the set of objects enrolled to observe the sub-
ject. It is possible that in the actual system, nothing is
done at this point, i.e., the designer might have decided
to continue updating the object whenever the subject’s
state is modified. This will not violate our contract;
and it is consistent with the intent of the pattern since
the pattern requires that all enrolled observers be up-
dated, not that others should not be5.

//Advice for Notify: (9)
before (Subject s) : Notify(s) {
xUpdateCalls.clear();
xrecordedStates.put(s,xSubjectState(s)); }

after (Subject s) : Notify(s) {
Set obSet = (Set)xSubjectsObservers.get(s);
if (!xUpdateCalls.containsAll(obSet)) {
System.out.println(”Some Observers not notified

of change in Subject!”); } }
//Advice for Update: (10)
before (Subject s, Observer o) : Update(s,o)
{ xUpdateCalls.add(o); }

after (Subject s, Observer o) : Update(s,o) {
if (!xConsistent(xrecordedStates.get(s),

xObserverState(o))) { System.out.println(
”Observer not properly updated!”); } }

//Advice for Subject’s methods: (11)
after(Subject s): subjectMethods(s) {
if (xModified(xrecordedStates.get(s),xSubjectState(s))){
System.out.println(”Observers not notified

of change in Subject!”); } }
}

Figure 4: Observer Contract (part 3 of 3)

9. The before advice for Notify updates xrecordedStates
for the subject since its observers are about to be noti-
fied of its state change. And xUpdateCalls is cleared so
in the after advice we can check that all of its observers
have been notified. If not, we print a suitable message.

10. The before advice of Update adds the observer to the
set of observers being updated. In the after advice,
we check that the state of the observer is consistent
with the subject state. This checks that the system
code that is supposed to update the observer is work-
ing correctly, at least as judged by the definition of
xConsistent(). If the condition is not satisfied, it may

4We should note that in our actual contract, we have ad-
ditional checks. For example, in the before advice for this
pointcut, we check that this object has not already enrolled
as an observer for this subject. We also check that s has
enrolled as a Subject. We omit some of these details.
5If we wish to disallow detached observers from being up-
dated, the contract can be suitably modified: in the after
advice of Notify, check that obSet.containsAll(xUpdateCalls)
evaluates to true; i.e., for any subject, the set of updated
observers must equal the set of attached observers.

be an error in the subcontract, rather in the moni-
tored system. We clearly need to identify such errors
and correct them, and such checks help with that task.

11. The final advice corresponds to the methods of the
class playing the role of Subject. For any such method,
there are three possibilities.

First, the method execution did not change the sub-
ject state (according to xModified()). Hence, the final
state should match the recorded state of the subject,
assuming that this condition was satisfied at the start
of the method. (If this were not the case, an earlier
error would already have been caught.)

Second, the method execution changed the subject
state and called the appropriate operations to no-
tify/update the observers. This would have triggered
the advice associated with the Notify pointcut, and
the advice associated with Update for each observer.
Those two advices would have checked that all ob-
servers were updated, and would also have saved, in
xrecordedStates, the state of the subject at that time.
So the final subject state would match that in xrecord-
edStates.

Third, the method changed the subject state, but did
not notify the observers. Or perhaps the method
changed the subject state, notified the observers, and
then again changed the subject state, and this time did
not notify the observers. In both cases, the if-condition
of the after advice would be true, and we would get the
appropriate error message.

It is worth stressing that by specifying the auxiliary func-
tions and pointcuts as abstract, we have ensured that all of
these can be defined, in the subcontract, as appropriate to
the particular system. But at the same time, the checks in
the various pieces of advice ensure that the essential intent
of the pattern is not violated. Thus, the contract precisely
specifies the pattern’s requirements without in any way com-
promising flexibility.

2.2 A Simple System Using Observer
Fig. 5 presents TCL, a simple system that uses Observer. In-
stances of the Time class play the Subject role. Instances
of Clock and LazyPerson play the Observer role; these two
classes implement the TimeObserver interface. The Time
class maintains a hash set of objects that enroll (via its at-
tach() method) to observe the time. When the time changes,
which only happens in the tickTock() method, the object
calls its notifyObs() operation, which invokes the update()
operation on each of its observers. In the main() method, we
create aTime (a Time object), aClock (a Clock object), and
bob (a LazyPerson object), attach the latter two to aTime,
invoke tickTock() a few times on aTime, and then check the
state of bob. TCL is a fairly standard, if simple, example of
a system built using the Observer pattern.

2.3 Observer Subcontract for TCL
The subaspect, appropriate to TCL, that defines the sub-

contract of our pattern contract appears in Fig. 66.

12. We use the declare parents mechanism of AspectJ to
state that Time implements the Subject interface of

6For readability, we use “∧”, rather than the standard
“&&”, to denote the ‘and’ operation.

4

interface TimeObserver { public void update(Time t); }
class Clock implements TimeObserver {

protected int hour = 12, minute = 0;
public void update(Time t) {
hour = t.getHour(); minute = t.getMinute(); }

public String ClockTime() {
return(”The time is: ” + hour + ”:” + minute); }

}
class LazyPerson implements TimeObserver {

protected boolean isSleepy = true;
public void update(Time t) { isSleepy = t.isAm(); }
public boolean readyToRiseNShine(){ return (!isSleepy); }

}
class Time {

protected HashSet observers = new HashSet();
protected int hour = 0, minute = 0, second = 0;
public void attach(TimeObserver o) {

observers.add(o); o.update(this); }
public void detach(TimeObserver o) { observers.remove(o);}
protected void notifyObs() {
for (Iterator e = observers.iterator() ; e.hasNext() ;) {

((TimeObserver)e.next()).update(this); } }
public int getHour() { // Return hour in 12-hour mode. }
public int getMinute() { . . . }
public int getSecond() { . . . }
public boolean isAm() { . . . }
public void tickTock() {
// Update hour, etc. appropriately. Code omitted.
// In our actual system, this function sets the Time to
// a random (legal) value.
notifyObs(); }

public static void main(String[] args) {
Time aTime = new Time(); Clock aClock = new Clock();
LazyPerson bob = new LazyPerson();
aTime.attach(bob); aTime.attach(aclock);
aTime.tickTock(); aTime.tickTock(); aTime.tickTock();
System.out.println(aClock.ClockTime());
if (bob.readyToRiseNShine()) {
System.out.println(”Bob is ready to face another day!”);}

else { System.out.println(”Too early for Bob!”); } }
}

Figure 5: Time-Clock-LazyPerson (TCL) System

the pattern contract (Fig. 2), and that TimeObserver
is an extension of the Subject interface.

13. Next we provide definitions for the abstract pointcuts
of the base contract. Thus, attachObs is defined as a
call to the attach() method of Time, since that is the
method that Time’s observers are required to use to
enroll as observers. detachObs, Notify, and Update are
equally direct. In each case, we use the target and args
constructs of AspectJ to bind the parameters of the
pointcut with the appropriate entities from the actual
(join) point in the system.

In TCL, there is no explicit enrollment of a Time object
as a subject; instead, it becomes a subject upon con-
struction. We define the subjectEnrollment pointcut
accordingly. subjectMethods captures all the methods
of the Time class. Note that if in a future modification
of the system, new methods are added to Time, those

public aspect TCLContract extends ObserverPatternContract{
declare parents: Time implements Subject; (12)
declare parents: TimeObserver extends Observer;

//Pointcuts: (13)
protected pointcut attachObs(Subject s, Observer o):
call(void Time.attach(TimeObserver))

∧ target(s) ∧ args(o);
protected pointcut detachObs(Subject s, Observer o):
call(void Time.detach(TimeObserver))

∧ target(s) ∧ args(o);
protected pointcut subjectEnrollment(Subject s):
call(Time.new()) ∧ target(s);

protected pointcut subjectMethods(Subject s):
call(* Time.*()) ∧ target(s);

protected pointcut Notify(Subject s):
call(void Time.notifyObs()) ∧ target(s);

protected pointcut Update(Subject s, Observer o):
call(void TimeObserver.update(Time))

∧ target(o) ∧ args(s);

//Aux. functions: (14)
protected String xSubjectState(Subject s) {
//s must be of type Time; return the time as a String. }

protected String xObserverState(Observer o) {
//o must be of type Clock or LazyPerson; use getClass()
//to check, and return state encoded as a String. }

protected boolean xModified(String s1, String s2) {
//Return true if the times encoded in s1 and s2 are
// equal, else false. }

protected boolean xConsistent(String s, String o) {
//Check if o encodes a Clock state or a LazyPerson state.
//For a LazyPerson, return true if isSleepy agrees with hour
//in the Time state encoded in s being between 0 and 11.
// Similarly if o encodes a Clock. }

}

Figure 6: TCL Subcontract

methods will also be captured by this pointcut, and
will be required to abide by the requirements of the
pattern contract, as captured by clause (11) in Fig. 4.

14. Next we define the auxiliary functions. xSubjectState()
encodes the time represented by the the given Time
object. xObserverState() is similar, but has to handle
two types of observer objects, Clock and LazyPerson.
xModified() determines whether the times encoded in
its two arguments are equal. xConsistent(), depending
on whether the state encoded in the second argument
is of type Clock or LazyPerson, compares the value of
either isSleepy, or hour and minute in that argument to
the time in the first argument.

These definitions are dictated by the TCL system. If we
considered another system that had different classes playing
the Subject and/or Observer roles, or did the notification,
update, etc. in other ways, we would have to define another
subcontract tailored to that system. But for another system
that uses the same classes as TCL, and does the notification,
etc., in the same manner as TCL, we can use the same sub-
contract.

5

2.4 Results of Runtime Monitoring
We can now compile the abstract aspect that captures the

Observer contract (Figs. 2, 3, 4), the subaspect that captures
the subcontract for this system (Fig. 6), and the actual sys-
tem code (Fig. 5) using the AspectJ compiler. The compiler
will do the necessary code weaving [12, 11]. When the result-
ing byte code is executed, if there are no problems, that is,
if all the requirements of the pattern contract/subcontract
are met, the system will run as usual (if a bit slower than
usual). However, in order to check that the monitoring was
indeed progressing appropriately, we inserted additional out-
put statements in the various pieces of advice, as well as in
the tickTock() method, to help us track the progress of the
system. A portion of the output from a sample run appears
in Fig. 7 (the line numbers were inserted by hand).

1: Tick-tock!
2: before Notify(Time:11:42:06)
3: before Update(Time:11:42:06, Clock:5:48am)
4: after subjectMethods(Time:11:42:06)
5: after subjectMethods(Time:11:42:06)
6: after subjectMethods(Time:11:42:06)
7: after Update(Time:11:42:06, Clock:11:42am)
8: before Update(Time:11:42:06, LazyPerson:true)
9: after Update(Time:11:42:06, LazyPerson:true)
10: after Notify(Time:11:42:06)
11: after subjectMethods(Time:11:42:06)

12: Tick-tock!
13: before Notify(Time:17:09:06)
14: . . .
19: before Update(Time:17:09:06, LazyPerson:true)
20: after Update(Time:17:09:06, LazyPerson:true)
21: *** Observer not properly updated!
22: * Subject: Time:17:09:06; Observer: LazyPerson:true

Figure 7: Sample Monitored Run of TCL System

Line 1 indicates that tickTock() was called, which resulted
in Time.notifyObs() being called, which resulted in the Notify
pointcut being entered, with the aTime value at this point
being as stated (line 2). Next (line 3), Update on aClock
was called. (Note that the clock reading is incorrect in this
line because we have not yet done the update.) Updating
aClock requires three calls to the Time methods for getting
the hour, minute, and am/pm information. In each case, the
after advice of the subjectMethods pointcut was executed.
The advice did not report any problems, since at the start
of Notify, xrecordedStates had already been updated for this
Time object. The outputs from the after advice for these
three calls appear in lines 4, 5, and 6. Finally, the update()
operation finished, and the output from the after advice (line
7) shows that the clock was properly updated.

Next, notifyObs invoked update() on the bob object. Dur-
ing this run, we inserted an error in the system by replacing
the code of LazyPerson.update() with an empty body; this
update() operation did not invoke any operation of Time.
Hence, immediately following the output from the before
advice of Update (line 8), we have the output from the af-
ter advice (line 9). But there was no error reported, because
the value of bob.isSleepy happened to have the correct value.
In the next call to tickTock(), the error was reported (lines
21, 22). Thus, without any changes in the code of TCL, we
were able to monitor the system to see if it met the appro-

priate pattern requirements. For a more complex system
built using several patterns, we would define the appropri-
ate contract and subcontract for each, and would compile
all of them against the system source code.

3. MONITORING ALTERNATE PATTERN
IMPLEMENTATIONS

As required by the pattern, notifyObs() in Time, and up-
date() in Clock and LazyPerson, are all concerned with up-
dating the observers when the state of the Time object
changes. Hannemann and Kiczales [9] argue that such code
is better written as an aspect, thereby localizing this code in
a single module. They present an aspect that implements
Observer. The aspect contains the code for notifying the
observers of a given subject when the subject state changes.
This naturally involves calling an update() operation on each
observer; this operation is flagged as abstract since it will de-
pend on the class of the observer. Further, they define an
abstract pointcut, subjectChange, intended to capture all the
methods of the Subject class that might result in the subject
state being modified. This portion of their aspect looks as
in Fig. 8.

abstract protected pointcut subjectChange(Subject s);

abstract protected void updateObserver(
Subject s, Observer o);

after (Subject s): subjectChange(s) { notifyHandler(s); }
public void notifyHandler(Subject s) {
Iterator i = ((Set)perSubjectObservers.get(s)).iterator();
if (i==null) { System.out.println(”Trouble 1”); }
else { while (i.hasNext()) {

updateObserver(s, (Observer)i.next()); } }

Figure 8: Partial AOP Implementation of Observer

We have made a slight change in their code; we have writ-
ten the after advice for subjectChange as a call to notifyHan-
dler(). In the original version, notifyHandler() is not intro-
duced; instead, the advice simply contains the code that
appears in the body of our notifyHandler(). The reason for
this change is that in defining the subcontract correspond-
ing to this implementation of Observer, we need to define
the execution of this after advice as our Notify pointcut, but
AspectJ does not provide a construct that will allow us to
do so7. Therefore, we introduce the notifyHandler() method
corresponding to this advice, and use this method to define
the Notify pointcut.

The aspect in [9] also defines the code shown in Fig. 9,
for adding and removing an observer. The code for adding
an observer adds the object to the set corresponding to the
subject; the code for removing an observer removes it from
this set. Here, too, we have made a change. If the map does
not contain an entry for the subject, that means the ob-
ject is not currently enrolled. We must then add it (paired
with a set consisting of just this observer) to the map. This
is the point where the object is enrolling as a Subject. So
this point should, in our subcontract, be captured by the
subjectEnrollment pointcut. To achieve this, we have intro-
duced an empty method, subEnroll(), inserted a call to it in

7Recent versions of AspectJ seem to include such constructs.

6

public void addObserver(Subject s, Observer o) {
Set obSet = (Set)perSubjectObservers.get(s);
if (obSet == null) {obSet = new HashSet(); subEnroll(s);}
obSet.add(o); perSubjectObservers.put(s,obSet); }

public void removeObserver(Subject s, Observer o) {
Set obSet = (Set)perSubjectObservers.get(s);
obSet.remove(o); perSubjectObservers.put(s,obSet); }

public void subEnroll(Subject s) { ; }

Figure 9: AOP Implementation of Observer (cont’d)

addObserver(), and will define the subjectEnrollment pointcut
(in the subaspect) as a call to subEnroll().

Let us now turn to the subcontract, presented in Fig. 10,
corresponding to this implementation of Observer. Due to
space limitations, we present only some key portions of the
subaspect.

protected pointcut attachObs(Subject s, Observer o):
call(void HKObserver.addObserver(Subject, Observer))

∧ args(s,o);

protected pointcut subjectEnrollment(Subject s):
call(void HKObserver.subEnroll(Subject)) ∧ args(s);

protected pointcut Notify(Subject s):
call(void HKObserver.notifyHandler(Subject))

∧ args(s);

Figure 10: Subcontract for AOP Implementation

As we noted above, introducing the subEnroll() method
allows us to define an appropriate pointcut for subject en-
rollment. Similarly, introducing notifyHandler() allows us to
define the Notify pointcut. The attachObs pointcut is defined
directly in terms of the addObserver() method.

We next ran this implementation (along with the concrete
Subject and Observer classes defined in [9]) using our pattern
contract and subcontract. Surprisingly, the system printed
a message indicating that an observer was not properly up-
dated. Further analysis showed that the addObserver() code
(Fig. 9) does not meet the requirement of the pattern con-
tract (Fig. 3, line (7)) that requires observers to be updated
upon attachment. Thus, our original contract is general
enough to be used to monitor such novel implementations
of patterns.

4. RELATED WORK
A number of authors have recognized the importance of

describing patterns precisely. The work in [20, 4], for exam-
ple, improves the traceability of design patterns in design
documentation by developing UML extensions. Other au-
thors have more directly addressed the requirements ques-
tion. Eden et al. use a higher-order logic formalism [7, 5] to
encode patterns as formulae. The primitives of the logic
include classes, methods, and the relations among them.
While the approach seems to capture the structural proper-
ties of interest, it provides only limited support for behav-
ioral properties. Mikkonen [14] specifies behavioral proper-
ties of patterns using an action system, the guarded com-
mands of which operate over abstract models and relations.
Taibi et al. combine these two approaches to capture both
structural and behavioral properties.

There does not seem to be much work focused explicitly
on monitoring design pattern specifications. In [19], the
authors discuss issues in testing software created using pat-
terns that rely heavily on the use of dynamic binding and dy-
namic dispatch, but the question of testing whether the pat-
terns are being used correctly is not considered. Techniques
for implementing design patterns may be worth mentioning.
Much of this work targets the development of pattern repos-
itories encoding individual patterns that can be applied to
an existing design automatically [6, 21]. More relevant to
our work, however, is the aspect-based implementation ap-
proach of Hanneman and Kiczales [9] discussed earlier.

5. DISCUSSION
The goal of our work was to develop a monitoring ap-

proach for determining whether design pattern requirements
are satisfied at runtime. As patterns cut across class bound-
aries, the requirements to be checked are also cross-cutting.
An AOP-based approach was therefore a natural choice.
The monitoring code common across all applications of a
given pattern is implemented as an abstract aspect; the
parts that vary among applications are expressed over ab-
stract functions and pointcuts. These functions and point-
cuts are defined in a subaspect corresponding to a particular
application of the pattern. The abstract aspect and sub-
aspect combined form the complete monitoring code for the
system in question.

Our monitors are fairly robust. Consider, for example,
the requirements defined for subjectMethods. Suppose a de-
signer, as part of evolving a system, adds a new method to
the class that plays the Subject role, and that this method
modifies the state of the object. Even if the new method
respects the invariants of the class, problems will arise if
the designer neglects to call notifyObs() after performing
the modifications, as this will leave the object inconsistent
with its observers. Such maintenance errors will be detected
by monitoring the new system without any changes to our
aspect-based monitor.

Our future work aims to investigate the applicability of
our monitoring approach to other types of design patterns.
In particular, we plan to investigate more complex patterns,
such as those used in concurrent and networked systems.

6. ACKNOWLEDGEMENTS
We would like to thank the anonymous referees for their

detailed comments on the first draft of this paper.

7. REFERENCES
[1] R. Binder. Testing object-oriented systems.

Addison-Wesley, 1999.

[2] F. Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, and M. Stal. Pattern-oriented software
architecture: A system of patterns. Wiley, 1996.

[3] Y. Cheon and G. Leavens. A simple and practical
approach to unit testing: The jml and junit way. In
Proc. of ECOOP 2002, pages 231–255.
Springer-Verlag LNCS, 2002.

[4] J. Dong. UML extensions for pattern compositions. J.
of Object Technology, 3:149–161, 2002.

[5] A. Eden. A visual formalism for object-oriented
architecture. In Proceedings, Integrated Design and
Process Technology (IDPT-2002), June 2002.

7

[6] A. Eden, J. Gil, Y. Hirshfeld, and A. Yehudai. Toward
a mathematical foundation for design patterns.
Technical Report 004, Tel Aviv University, 1999.

[7] A. Eden, A. Yehudai, and J. Gil. Precise specification
and automatic application of design patterns. In
Automated Software Engineering, pages 143–152, 1997.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable OO Software.
Addison-Wesley, 1995.

[9] J. Hannemann and G. Kiczales. Design pattern
implementation in Java and AspectJ. In Proc. of
OOPSLA, pages 161–173. ACM, 2002.

[10] R. Johnson. Components, frameworks, patterns. In
Symposium on Software Reusability, 1997.

[11] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. Griswold. An overview of AspectJ. In
Proc. 15th ECOOP, pages 327–353. Springer, 2001.

[12] C. Lopes, B. Tekinerdogan, W. de Meuter, and
G. Kiczales. Aspect oriented programming. In Proc. of
ECOOP’98. Springer, 1998.

[13] B. Meyer. Object-Oriented Software Construction.
Prentice Hall, 1997.

[14] T. Mikkonen. Formalizing design patterns. In
Proceedings of 20th ICSE, pages 115–124. IEEE
Computer Society Press, 1998.

[15] T. Reenskaug. Working with objects. Prentice-Hall,
1996.

[16] D. Riehle. Composite design patterns. In Proc. of
OOPSLA, pages 218–228. ACM, 1997.

[17] D. Riehle and H. Zullighoven. Understanding and
using patterns in software development. Theory and
Practice of Object Systems, 2(1):3–13, 1996.

[18] N. Soundarajan and J. Hallstrom. Responsibilities and
rewards: specifying design patterns. In Proc. of Int.
Conf. on Software Engineering (ICSE), 2004.

[19] W. Tsai, Y. Tu, W. Shao, and E. Ebner. Testing
extensible design patterns in object-oriented
frameworks through scenario templates. In Proc. of
COMPSAC, pages 166–171, 1999.

[20] J. Vlissides. Notation, notation, notation. C++
Report, April 1998.

[21] S. Yau and N. Dong. Integration in component-based
software development using design patterns. In 24th
Ann. Int. Computer Software Applications Conf.,
Taipei, Taiwan, October 2000.

8

