
Basic Laws of Object Modeling

Rohit Gheyi
∗

rg@cin.ufpe.br
Tiago Massoni

†

tlm@cin.ufpe.br
Paulo Borba

‡

phmb@cin.ufpe.br

Informatics Center
Federal University of Pernambuco

Recife, Brazil

ABSTRACT
Semantics-preserving model transformations are usually pro-
posed in an ad hoc way because it is difficult to prove that
they are sound with respect to a formal semantics. So, sim-
ple mistakes lead to incorrect transformations that might,
for example, introduce inconsistencies to a model. In or-
der to avoid that, we propose a set of simple modeling
laws (which can be seen as bi-directional transformations)
that can be used to safely derive more complex semantics-
preserving transformations, such as refactorings which are
useful, for example, to introduce design patterns into a model.
Our laws are specific for Alloy, a formal object-oriented mod-
eling language, but they can be leveraged to other object
modeling notations. We illustrate their applicability by for-
mally refactoring Alloy models with subtypes in order to
improve the analysis performed by the Alloy Analyzer tool.

Categories and Subject Descriptors
D.2.4 [Software/Program Verification]: Formal Meth-
ods, Model Checking; F.3.1 [Specifying and Verifying
and Reasoning about Programs]: Mechanical verifica-
tion

General Terms
Design, Verification

Keywords
Model Transformations, Refactorings, Formal Methods, Ver-
ification

1. INTRODUCTION
Laws of programming [14] are important not only to define
the axiomatic semantics of programming languages but also

∗Supported by CNPq.
†Supported by CAPES.
‡Partially supported by CNPq (521994/96-9).

to assist in the software development process. In fact, these
laws can be used as the foundation for informal develop-
ment practices, such as refactorings [7], widely adopted due
to modern methodologies, in particular Extreme Program-
ming [1].

Modeling laws might bring similar benefits, such as refactor-
ing models, but with a greater impact on cost and produc-
tivity, since they are used in earlier stages of the software
development process. However, semantics-preserving model
transformations are usually proposed in an ad hoc way be-
cause it is difficult to prove that they are sound with respect
to a formal semantics. So, simple mistakes lead to incorrect
transformations that might, for example, introduce incon-
sistencies to a model.

In this paper, we propose a set of modeling laws [9] for Al-
loy [15], a formal object-oriented modeling language. Each
law proposed here defines two small-grained model transfor-
mations that preserve semantics. We proved their soundness
based on a denotational semantics for Alloy [9]. We regard
them as basic because they are simple and able to derive
more complex transformations. This set can be considered
comprehensive, if compared to what have been proposed so
far [6, 12, 18]. In addition, we propose an equivalence notion
for Alloy models.

These laws can be useful to refactor Alloy models with sub-
types in order to improve the analysis performed by the
Alloy Analyzer tool. Moreover, these laws can be applied
to derive refactorings [9], which are useful, for instance to
introduce design patterns [8] into a model. Additionally,
they can be applied to reason whether one component, an-
notated with Alloy, can be reused or substituted by another.
Our laws can also be used for educational purposes in ob-
ject modeling, since they clarify the meaning of a number of
important constructs.

Related work [6, 18, 12] has proposed transformations for
Unified Modeling Language (UML) [2] class diagrams. How-
ever, they do not offer a comprehensive set of modeling laws
that can derive more complex transformations. In addition,
some of them do not completely preserve semantics. We
proposed laws for Alloy, rather than UML and the Object
Constraint Language (OCL) [17], due to Alloy’s simpler se-
mantics, although expressive enough to model a broad va-
riety of applications. Nevertheless, our laws can also be
useful for reasoning about UML class diagrams, by provid-

ing a semantics for UML class diagrams based on Alloy [20].
Similarly, the results can also be leveraged to other object
modeling notations.

The remainder of this paper is organized as follows. Section
2 overviews the Alloy language. Section 3 presents some
basic laws for Alloy. In Section 4, we show applications for
the laws. The following section discusses some related work.
Finally, Section 6 concludes the paper.

2. ALLOY
Alloy is formal object-oriented specification language that
is strongly typed and assumes a universe of elements par-
titioned into subsets, each of which associated with a basic
type. Alloy can be used for specifying, verifying and validat-
ing properties about object and component-based systems.

An Alloy model or specification is a sequence of paragraphs
of two kinds: signatures that are used for defining new types,
and formula paragraphs, namely facts and functions, used to
record constraints. Each signature contains a set of objects
(elements). These objects can be related by the relations de-
clared in the signatures. A signature paragraph introduces
a basic type and a collection of relations, called fields, along
with the types of the fields and other constraints on the
values they relate. Besides subtyping with signature exten-
sion, Alloy includes other important structures and opera-
tors such as modules, predicates and commands for analyz-
ing the specification, which are discussed elsewhere [15].

Figure 1: Bank System Object Model

Suppose that we want to model part of a banking system
in Alloy, on which each bank contains a set of accounts and
a set of customers. Each account is owned by a customer.
Also, accounts may be checking or savings. Figure 1 de-
scribes the object model [19] of the system. Each box in
an object model represents a set of objects. The arrows are
relations and indicate how objects of a set are related to
objects in other sets. For instance, the arrow labeled owner

shows that each object from Account has a field whose value
object is a Customer object.

An arrow with a closed head form, such as from ChAcc to
Account, denotes a subset relationship. In this case, ChAcc
is a subset of Account. If two subsets share an arrow, they
are disjoint. For instance, ChAcc and SavAcc are disjoint. If
the arrowhead is filled, the subsets exhaust the superset, so
there are no members of the superset that are not members
of one of the subsets. In the banking system, the subsets
form a partition: every member of the superset belongs to

exactly one subset.

The multiplicity symbols are as follows: ! (exactly one), ?
(zero or one), * (zero or more) and + (one or more). Mul-
tiplicity symbols can appear on both ends of the arrow. If
a multiplicity symbol is omitted, * is assumed. The follow-
ing fragment introduces three signatures and three relations
modeling part of the banking system.

sig Bank {
accounts: set Account,
customers: set Customer

}
sig Customer {}
sig Account {
owner: set Customer

}

In the field declaration of Bank, the set relation qualifier
specifies that accounts maps each element in Bank to a set
of elements in Account. When we omit the keyword, we
specify a total function.

In Alloy, one signature can extend another, establishing that
the extended signature is a subset of the parent signature.
For instance, the values given to ChAcc is a subset of the
values given to Account.

sig ChAcc, SavAcc extends Account {}

Signature extension introduces a subtype in Alloy version 3,
establishing that each subsignature is disjoint. In this case,
ChAcc and SavAcc are disjoint. In Alloy, we can declare
several signatures at once if they do not declare any relation,
as showed in the previous fragment.

Facts are formula paragraphs. They are used to package
formulae that always hold, such as invariants about the el-
ements. The following example introduces a fact named
BankConstraints, establishing general properties about the
previously introduced signatures.

fact BankConstraints {
all acc: Account | one acc.owner
Account = ChAcc + SavAcc

}

The first formula states that each account is owned by ex-
actly one customer (the . operator can be seen as relational
dereference), while the last one states that each account is
a checking or savings account. The keyword all represents
the universal quantifier. The one keyword, when applied to
an expression, denotes that the expression has exactly one
element. The operator + corresponds to the union set oper-
ator. In Alloy, the fact formulae are implicitly declared as a
conjunction.

3. BASIC LAWS
In this section, we present a set of basic laws proposed for Al-
loy. These laws state properties about signatures, relations,

facts and formulae. With a comprehensive set of simple ba-
sic laws [9], we aim to provide powerful guidance on the
derivation of complex transformations, such as refactorings
and optimizations. The models on the left and the right side
of each law have the same meaning, since each law preserves
semantics, as described elsewhere [9].

For instance, the laws can be useful to transform the model
shown in Figure 2, which shows a transformation introduc-
ing a collection between Bank and Account. We establish
that these models have the same semantics considering a
set of signature and relation names that we call alphabet
(Σ). The alphabet includes the element names which are
considered to be relevant in a model. For instance, suppose
that Σ contains the Bank, Account and accounts names. If
these models have the same set of values to all names in the
alphabet, they are equivalent under this equivalence notion.
The other names (col, Vector and elems) are auxiliary, thus
not taken into consideration.

However, some models may not have all names considered in
the alphabet. For instance, in Figure 2, accounts does not
belong to the right-hand side model. In this case, relevant
names must be represented by others names. Hence, we de-
fine a view (v), consisting of a set of items such as n→exp,
where n is a name and exp is an expression not contain-
ing n, and they have the same type. In the example of
Figure 2, we can choose a v containing the following item:
accounts→col.elems. Now we can compare both models.
Notice that accounts is defined in terms of two names that
belong to the right-hand side model; hence we can compute
the accounts’s value. So, a view allows a strategy for repre-
senting relevant names using an equivalent combination of
other elements. There are some constraints when choosing
a view, such as the items cannot be recursive. This is a gen-
eral idea of the equivalence notion considered for our basic
laws and it is described in more detail elsewhere [11].

Figure 2: Equivalence Notion

In the proposed laws, we used ps to denote a set of signa-
ture and fact paragraphs. We do not consider other Alloy
paragraphs since some of them are syntactic and others are
used to perform analysis in the Alloy Analyzer.

3.1 Laws for Signatures
The first law states that we can introduce a generalization
between two signatures when the name of the new parent
signature is not previously used in the specification. We
can also remove a generalization between them if the parent
signature, the relations of its family and the subsignatures
are not being used elsewhere. This proviso guarantees that
there is no formula containing S, T and their relations, ex-
cept the two formulae stating the partition. Since S and
T have different types after the generalization removal, this

proviso assures that the generalization removal does not in-
troduce type errors.

Law 1. 〈introduce generalization〉

ps
sig S {

rs
}

sig T {

rs′

}

fact F {

forms
}

=Σ,v

ps
sig U {}

sig S extends U {

rs
}

sig T extends U {

rs′

}

fact F {

forms
U = S + T

}

provided
(↔) if U belongs to Σ then v contains the U→S + T item;
(→) ps does not declare any paragraph named U ;
(←) U and the relations declared by its family, S and T do
not appear in ps, rs, rs′ and forms.

We write (→), before the proviso, to indicate that this pro-
viso is required when applying this law from left to right.
Similarly, we use (←) to indicate what is required when ap-
plying the law in the opposite direction, and we use (↔)
to indicate that the proviso is necessary in both directions.
It is important to notice that each basic law, when applied
in any direction, defines one transformation that preserves
semantics.

Notice that both models of the law have the same names
and constraints, except U , its definition and the implicit
constraints stating that S and T are subset of U . Since the
view has an item for U that is equivalent to its definition
and it contains the union of the values given to S and T ,
the left side model yields the same value for U of right side
model; hence the law preserves semantics.

The operator & denotes the intersection set operator. The
keyword no when applied to an expression denotes that the
expression has no elements. We write forms and rs to de-
note a set of formulae and a set of relation declarations,
respectively. We also propose trivial laws allowing us to
introduce empty signatures [9].

3.2 Laws for Relations
Besides laws for dealing with signatures, we also define laws
for manipulating relations. The next law states that we can
introduce a new relation along with its definition, which is
a formula of the form r = exp, establishing a value for the
relation. We can also remove a relation that is not being
used.

Law 2. 〈introduce relation and its definition〉

ps
sig S {

rs
}

fact F {

forms
}

=Σ,v

ps
sig S {

rs,
r : set T

}

fact F {

forms
r=exp

}

provided
(↔) if r belongs to Σ, r does not appear in exp and v con-
tains the r→exp item;
(→) The family of S in ps does not declare any relation
named r; T is a signature name declared that does not ex-
tend other signatures;
(←) The r relation does not appear in ps and forms.

The exp expression can be either r or an expression having
the same type of r and not containing r. It is important to
stress that the previous law can be used to simply introduce
a relation, without any definition. We have just to take
exp as being r itself, introducing a tautology. Moreover,
constraints involving Σ and v must be carefully introduced.
When introducing or removing a relation in Σ, we must
guarantee that the r→exp item belongs to v and r does not
appear in exp in order to avoid a recursive definition in v.
The family of a signature is the set of all signatures that
extend or are extended by it direct or indirectly. Alloy does
not allow two relations with the same name in the same
family.

A relation qualified as a set of T , declared in the S signa-
ture, indicates that every element in S relates to any num-
ber of T elements. Since it does not impose any constraint
on the relation, we ensure that the previous law preserves
the constraints, not introducing inconsistency. In contrast,
due to its constraint, we cannot always introduce a relation
declared with the one (stating a total function) qualifier
since this constraint can contradict previous specification
constraints. For instance, the introduction of the r relation
with one in the previous law can introduce an inconsistency
if there are constraints stating that T is empty and S has
at least one element. After applying this transformation, r
must relate every element of S to one element of T . However,
S is not empty and T is empty, introducing an inconsistency.

Notice that both models of the law have the same names
and constraints, except r and its definition. Since the view
has an item for r that is equivalent to its definition, the left
side model yields the same value for r of right side model;
hence the law preserves semantics.

Next, we establish a law for pulling up relations. We can
pull up a relation from a signature to its parent by adding
a formula stating that this relation only maps elements of
the subsignature. Similarly, we can push down a relation if
the specification has a formula stating that the relation only
relates elements of the subsignature.

Law 3. 〈pull up relation〉

ps
sig T {

rs
}

sig S extends T {

rs′,
r : set U

}

fact F {

forms
}

=Σ,v

ps
sig T {

rs,
r : set U

}

sig S extends T {

rs′

}

fact F {

forms
no (T − S).r

}

The operator - corresponds to the difference set operator.
Notice that the values given to r, which is pulled up or
down, are the only values that are subject to change. On
the left side of the law, r relates elements from S to U .
On the right side of the law, r relates elements from T to
U . However, there is an explicit constraint indicating that
r relates elements from S to U . Therefore, both modes
have the same meaning. We have proposed other laws for
relations, such as splitting a relation [9].

3.3 Laws for Facts and Formulae
Besides proposing some trivial laws for facts and formulae,
we proposed a law establishing that we can add or remove a
formula from a fact, as long as it can be deduced from other
formulae in the specification.

Law 4. 〈introduce formula〉

ps
fact F {

forms
}

=Σ,v

ps
fact F {

forms
f

}

provided

(↔) The formula f can be deduced from the formulae in ps
and forms.

Since f is derived from other formulae, we guarantee that
both specifications have the same meaning. The constraints
imposed by this formula are already imposed by the oth-
ers. From predicate calculus, we infer ’P and Q’ from the
’P => Q’ and ’P’ formulae, where P and Q are arbitrary
predicates. Therefore, this law is trivially valid. The laws
presented here focus on Alloy structures, although relational
[24] and predicate [22] calculi can also be applied to Alloy
formulae.

Besides these laws, we proposed laws for syntactic sugar
constructs [9]. We prove these laws using a denotational
semantics for Alloy [9]. We aim at proposing simple small-
grained transformations because it is easier to prove that
they are semantics-preserving. Although they are simple,
we can derive a number of complex large-grained transfor-
mations by composing them, which consequently preserve

semantics. Examples of the use of the laws can be found in
Section 4.

4. APPLICATIONS
The basic laws provide an axiomatic semantics for Alloy,
clarifying the meaning of its constructs. In this section,
we describe how we can use them to transform Alloy mod-
els with subtypes in order to improve the analysis perfor-
mance by the Alloy Analyzer. As previously illustrated [5],
analysis performance of Alloy models with subtypes can be
increased by atomization. When performing analysis, the
Alloy Analyzer internally transforms (atomizes) a model by
pushing relations down to the lowest subtype level in order
to improve its performance. Atomization applies a num-
ber of model transformations to remove a relation in a par-
ent signature and introduce one relation to each subsigna-
ture. However, some transformations are not proved to be
semantics-preserving [5], such as introducing and removing
relations. Other transformations, such as deducing formu-
lae, are semantics-preserving considering they are derived
from relational calculus laws. Next, we show how the pro-
posed laws, which are sound with respect to an Alloy deno-
tational semantics, can formalize the atomization scheme.

Consider an addition to the signature Account, described in
Section 2, which is partitioned by ChAcc and SavAcc. Each
account relates to a customer by the owner relation. In or-
der to improve the performance analysis, the atomization
scheme removes owner from Account while introducing re-
lations in ChAcc and SavAcc, called chOwner and savOwner,
respectively.

Suppose that we consider an alphabet Σ containing all names
declared in the initial specification, and a view v having the
owner→chOwner+savOwner item. First of all, we can in-
troduce the new relations into Account and their definitions
by applying Law 2 from left to right. Since both relations
do not belong to Σ, no item is needed to v. Next, we show
the resulting specification. We consider that ps contains the
Bank and Customer signatures.

ps
sig Account {
owner: set Customer,
chOwner: set Customer,
savOwner: set Customer

}
sig ChAcc extends Account {}
sig SavAcc extends Account {}

fact BankConstraints {
all acc: Account | one acc.owner
Account = ChAcc + SavAcc
chOwner = owner & (ChAcc->Customer)
savOwner = owner & (SavAcc->Customer)

}

The notation -> represents the product operator that com-
bines every element in the left operand with every element
in the right operand. When applied to sets, this operator
represents the standard Cartesian product.

Our aim is to pull down chOwner and savOwner to ChAccount

and SavAccount, respectively. In order to do that, we first

derive the no (Account - ChAcc).chOwner formula, by ap-
plying some relational calculus properties, from the chOwner
definition. Similarly, we can derive a formula for savOwner,
and introduce both formulae, by applying Law 4 from left
to right, which results in the following specification.

ps
sig Account {
owner: set Customer,
chOwner: set Customer,
savOwner: set Customer

}
sig ChAcc extends Account {}
sig SavAcc extends Account {}

fact BankConstraints {
all acc: Account | one acc.owner
Account = ChAcc + SavAcc
chOwner = owner & (ChAcc->Customer)
savOwner = owner & (SavAcc->Customer)
no (Account - ChAcc).chOwner
no (Account - SavAcc).savOwner

}

Next we apply Law 3 from right to left and pull down both
relations, as shown next.

ps
sig Account {
owner: set Customer

}
sig ChAcc extends Account {
chOwner: set Customer

}
sig SavAcc extends Account {
savOwner: set Customer

}

fact BankConstraints {
all acc: Account | one acc.owner
Account = ChAcc + SavAcc
chOwner = owner & (ChAcc->Customer)
savOwner = owner & (SavAcc->Customer)

}

Our aim is to derive the owner definition in order to replace
it by its definition and eventually remove it from the spec-
ification. Applying some predicate and relational calculus
properties, which are within brackets to justify every step
in the derivation, we deduce that:

(chOwner + savOwner =
owner & (ChAcc->Customer) +
owner & (SavAcc->Customer))
[(P&Q + P&R) = (P&(Q+R))] =

(chOwner + savOwner =
owner & ((ChAcc->Customer) + (SavAcc->Customer)))
[(P->R) + (Q->R) = (P+Q)->R)] =

(chOwner + savOwner =
owner & ((ChAcc+SavAcc)->Customer))
[Account = ChAcc + SavAcc] =

(chOwner + savOwner = owner & (Account->Customer)) =
(owner = chOwner + savOwner)

Since this formula is deduced from formulae in the speci-
fication, using Law 4 from left to right, we can introduce

this formula in the specification. After that, we can replace
owner by its definition. It is important to notice that from
every formula containing owner, except its definition, we can
derive a new formula replacing owner by its definition, which
is inserted to the specification applying Law 4 from left to
right. Consequently, these new formulae can also derive the
formulae with owner. Next, we can remove all formulae that
contain owner, except its definition, from the specification
by applying Law 4 from right to left.

Finally, since owner does not appear in the model, except
in its definition, we can remove this relation and its defini-
tion using Law 2 from right to left. Since owner belongs to
Σ, we have to check whether v has the owner→chOwner +
savOwner item. Moreover, the third and fourth formula of
BankConstraints can be deduced from the model. There-
fore, we can remove them from the specification applying
Law 4 from right to left. The final specification is described
next.

ps
sig Account {}
sig ChAcc extends Account {
chOwner: set Customer

}
sig SavAcc extends Account {
savOwner: set Customer

}

fact BankConstraints {
all acc: Account | one acc.(chOwner + savOwner)
Account = ChAcc + SavAcc

}

Notice that our laws deal with equivalent models; hence the
atomization process can be reversed, similarly. This pro-
cess can be generalized and we can state the atomization
semantics-preserving transformation similarly to the laws.
Figure 3 summarizes the order of the application of the laws.
Each box has the direction and number of the law to be ap-
plied. The filled arrow denotes the next law to be applied.
Some boxes have filled arrows on top of it indicating that
this law can be applied repeatedly.

Figure 3: Atomization

In the banking system, every account is a checking or sav-
ings account. The atomization process also considers parent
signatures that are not partitioned by the subsignatures. In
this case, we have to create a new subsignature, extending
the parent signature. We do not have a law that allows us
to introduce a subsignature in a parent signature already
declared. We regard this law as future work.

The basic laws proposed here can also be useful to refactor
models [10, 9]. For instance, we refactored a simple but non-
trivial Java types specification. Applying the laws, a model
describing Java types in terms of subtyping relations can be
transformed into another in terms of supertypes, having the
same semantics.

We can also use our laws to derive complex large-grained
transformations (refactorings) by composing them [9]. Since
these refactorings are derived using semantics-preserving laws,
they also preserve semantics. We have derived large-grained
transformations such as the extract interface refactoring, in-
troducing a collection, and move and reverse a relation [9].
These refactorings can be useful, for example, to introduce
design patterns [8] into a model. However, we will not show
these here due to the lack of space. Furthermore, by using
the laws, we can verify whether two models have the same
meaning.

5. RELATED WORK
Zaremski and Wing [25] determines whether two software
components are related by a specification matching process.
This can be useful, among other things, to reuse components
and substitute one component by another without affecting
the observable behaviour. To verify whether the specifica-
tion of one component matches the other, the authors use a
theorem prover. We believe that our set of laws can be useful
in this case. Suppose that each Java component is annotated
with Alloy, similarly as described elsewhere [16]. Since we al-
ready proved that our laws are semantics-preserving [9], ap-
plying the laws, we just have to check syntactically whether
one specification component is equivalent to another, instead
of proving it. However, since we do not prove that our set
of laws is complete, we may not use them always.

Related work [23, 6, 12, 18] has been carried out on transfor-
mation of UML class diagrams. They do not state in which
conditions a transformation can be applied. Therefore, some
transformations do not preserve semantics in some situa-
tions. For instance, creating a generalization between classes
not always preserve semantics (Figure 4). Given the con-
straints in a specification, it can become inconsistent by in-
troducing a generalization. For instance, we cannot declare
the S class to extend the T class when a explicit constraint
in the specification states that S has more elements than
T. The introduction of a generalization in this case makes
the specification inconsistent, since the generalization con-
strains T to include S. Therefore, we can deduce that T has
the same number or more elements than S, which contra-
dicts the explicit constraint in the specification. We cannot
apply Law 1 to introduce a generalization in Figure 4, since
T is already declared.

These transformations do not preserve semantics because
some of them use a semi-formal UML semantics. Others
partly define a semantics for UML but do not verify sound-
ness of the transformations, or do not consider OCL con-
straints. We conclude that it is important to prove the
soundness of the transformations, in order to guarantee that
a transformation preserves semantics. It is easy to make a
small change in a model and make it inconsistent.

A similar work proposes basic laws for Refinement Object-

Figure 4: Introduce Generalization

Oriented Language (ROOL) [3]. ROOL is less powerful for
specifying structural properties among types compared to
Alloy. Whereas ROOL supports only attribute declarations,
as in Java [13], Alloy supports the declaration of bidirec-
tional relations with arbitrary arities and multiplicities, as
in UML. Another difference is that we cannot define global
constraints in ROOL. This related work is similar to ours
in the sense that they propose basic laws that are used not
only for giving the axiomatic semantics of the language, but
also for deriving refactorings.

Laws for top level design elements of UML-RT (Real Time)
[4] have also been proposed [21]. Our laws do not deal with
refinements, as theirs. Moreover, their work does not intend
to propose basic laws, as ours. They propose laws not only
for structural constructs, as our laws, but also laws for be-
havioural constructs, such as laws for capsules. They assume
that relationships are directed and predicates involve only
relationships as attributes, as in ROOL. Additionally, the
authors consider implementation-oriented models. More-
over, their proposed laws rely on the absence of global con-
straints on the model, such as those involving cardinality
(number of instances) of classes in the entire system. Our
laws also work for models containing global constraints.

6. CONCLUSIONS
In this paper, we propose basic laws for Alloy and show
how they can be used for deriving complex transformations,
such as refactorings and optimizations. In contrast to model
transformations usually defined in an ad hoc way, these laws
describe semantics-preserving transformations. Addition-
ally, we propose an equivalence notion for Alloy models.

The laws presented here have been proven sound with re-
spect to a formal semantics for Alloy [9]. Consequently,
they should act as a tool for carrying out model transfor-
mations. One immediate application of the basic laws is to
define an interface from which one can derive more complex
transformations, as illustrated in Section 4, and to refactor
specifications [10]. Although our laws are specific to Alloy,
they can be leveraged to object modeling in general. For in-
stance, we can leverage them to UML class diagrams giving
a precise semantics for it in Alloy [20].

All basic laws are very simple to apply since their precon-
ditions are simple syntactic conditions. Nevertheless, these
laws can be used as powerful guidance for deriving complex
transformations. The law for introducing a formula that
is deduced from the model also has syntactic conditions, if
we consider relational and predicate calculi. We extended
the Alloy Analyzer tool to include the implementation of a

number of the basic laws, in such a way that the user does
not need to verify the preconditions and apply the laws [9].
The user is only required to inform the parameter values for
the transformations. Furthermore, our laws can be used for
educational purposes in object modeling, since they clarify
the meaning of a number of important constructs. Addition-
ally, they could be useful to verify, with syntactic conditions,
whether the specification of one component is equivalent to
another. In case they are equivalent, we can substitute a
component by another.

Although we have a comprehensive set, relative to what have
been proposed so far, of basic laws for Alloy, we still need
to prove a reduction theorem stating that our set of laws
is complete, in the sense of allowing reduction of arbitrary
Alloy specifications to a normal form. We need more laws
such as for introducing an empty subsignature. This nor-
mal form is expressed in a small subset of the language
operators, following approaches adopted for ROOL [3] and
imperative languages [14], among others. We also intend
to study and formalize the relationship between modeling
and programming laws. In particular, we need to inves-
tigate whether model refactorings have corresponding pro-
gram refactorings. This might be useful for implementing
tools that apply model and code refactorings in a synchro-
nized way.

7. ACKNOWLEDGMENTS
This work benefited from the discussions during the Soft-
ware Productivity Group’s meetings. In addition, we would
like to thank all the anonymous referees, whose appropri-
ate comments helped improving the paper. This work was
partially funded by CAPES and CNPq, grant 521994/96-9.

8. REFERENCES
[1] K. Beck. Extreme Programming Explained.

Addison-Wesley, 2000.

[2] G. Booch, I. Jacobson, and J. Rumbaugh. The Unified
Modeling Language User Guide. Addison-Wesley, 1999.

[3] P. Borba, A. Sampaio, and M. Cornélio. A refinement
algebra for object-oriented programming. In 17th
European Conference on Object-Oriented
Programming, ECOOP’03, pages 457–482, Darmstadt,
Germany, 2003.

[4] B. Douglass. Real Time UML - Developing Eficient
Objects for Embedded Systems. Addison-Wesley, 1998.

[5] J. Edwards, D. Jackson, E. Torlak, and V. Yeung.
Faster constraint solving with subtypes. In
Proceedings of the 2004 ACM SIGSOFT International
Symposium on Software Testing and Analysis
(ISSTA), pages 232–242. ACM Press, 2004.

[6] A. Evans. Reasoning with UML class diagrams. In
Second IEEE Workshop on Industrial Strength Formal
Specification Techniques, WIFT’98, Boca Raton/FL,
USA, pages 102–113. IEEE CS Press, 1998.

[7] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999.

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994.

[9] R. Gheyi. Basic laws of object modeling. Master’s
thesis, Federal University of Pernambuco, 2004.

[10] R. Gheyi and P. Borba. Refactoring alloy
specifications. In A. Cavalcanti and P. Machado,
editors, Electronic Notes in Theoretical Computer
Science, Proceedings of the Brazilian Workshop on
Formal Methods, volume 95, pages 227–243. Elsevier,
2004.

[11] R. Gheyi, T. Massoni, and P. Borba. An equivalence
notion of object models. Technical Report, 2004.

[12] M. Gogolla and M. Richters. Equivalence rules for
UML class diagrams. In The Unified Modeling
Language, UML’98 - Beyond the Notation. First
International Workshop, Mulhouse, France, pages
87–96, 1998.

[13] J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Addison-Wesley, 1996.

[14] C. Hoare, J. Spivey, I. Hayes, J. He, C. Morgan,
A. Roscoe, J. Sanders, I. Sorenson, and B. Sufrin.
Laws of programming. Communications of the
Association for Computing Machinery, 30(8):672–686,
1987.

[15] D. Jackson. Alloy 3.0 reference manual. At
http://alloy.mit.edu/beta/reference-manual.pdf, 2004.

[16] S. Khurshid, D. Marinov, and D. Jackson. An
Analyzable Annotation Language. In Proceedings of
the 17th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 231–245. ACM
Press, 2002.

[17] A. Kleppe and J. Warmer. The Object Constraint
Language: Precise Modeling with UML.
Addison-Wesley, 1999.

[18] K. Lano and J. Bicarregui. Semantics and
transformations for UML models. In The Unified
Modeling Language, UML’98 - Beyond the Notation.
First International Workshop, Mulhouse, France, June
1998, pages 97–106, 1998.

[19] B. Liskov and J. Guttag. Program Development in
Java. Addison-Wesley, 2001.

[20] T. Massoni, R. Gheyi, and P. Borba. A UML class
diagram analyzer. In Third International Workshop on
Critical Systems Development with UML (CSDUML),
affiliated with UML Conference, Lisbon, Portugal,
2004.

[21] A. Sampaio, A. Mota, and R. Ramos. Class and
capsule refinement in UML for real time. In
A. Cavalcanti and P. Machado, editors, Electronic
Notes in Theoretical Computer Science, Proceedings of
the Brazilian Workshop on Formal Methods,
volume 95, pages 23–51. Elsevier, 2004.

[22] J. Spivey. The Z Notation: A Reference Manual. C. A.
R. Hoare Series Editor. Prentice Hall, 1989.

[23] G. Sunyé, D. Pollet, Y. Traon, and J.-M. Jézéquel.
Refactoring UML models. In The Unified Modeling
Language, UML’01 - Modeling Languages, Concepts,
and Tools. Fourth International Conference, Toronto,
Canada, volume 2185 of LNCS, pages 134–148.
Springer-Verlag, 2001.

[24] A. Tarski. On the calculus of relations. Journal of
Symbolic Logic, 6(9):73–89, 1941.

[25] A. Zaremski and J. Wing. Specification matching of
software components. ACM Transactions on Software
Engineering and Methodology, 6(4):333–369, 1997.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

