
Verification of Evolving Software ∗

Sagar Chaki Natasha Sharygina Nishant Sinha
chaki|natalie|nishants@cs.cmu.edu

ABSTRACT
We define the substitutability problem in the context of
evolving software systems as the verification of the following
two criteria: (i) previously established system correctness
properties must remain valid for the new version of a system,
and (ii) the updated portion of the system must continue to
provide all (and possibly more) services offered by its earlier
counterpart. We present a completely automated procedure
based on learning techniques for regular sets to solve the
substitutability problem for component based software. We
have implemented and validated our approach in the context
of the ComFoRT reasoning framework and report encour-
aging preliminary results on an industrial benchmark.

1. INTRODUCTION
Model checking [7] is a formal verification approach for

detecting behavioral anomalies (including safety, reliability
and security problems) in hardware and software systems.
While model checking produces extremely valuable results,
often uncovering defects that otherwise go undetected, there
are several barriers to its successful integration into sofware
development processes. In particular, model checking is
hamstrung by scalability issues and is difficult for software
engineers to use directly.

Most current research on model checking focuses on im-
proving its scalability, and innovative techniques such as au-
tomated predicate abstraction and assume-guarantee rea-
soning have greatly improved the applicability of model
checking to industrial-scale systems. However, there has
been less progress on its transition from an academic to a
practically viable discipline.

For instance, any software system inevitably evolves as
designs take shape, requirements change, and bugs are dis-
covered and fixed. While model checking is useful at each
of these stages, it is usually applied to the entire system at

∗This work was done as part of the Predictable Assembly
from Certifiable Components initiative at the Software En-
gineering Institute.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

every point irrespective of the amount of modification the
system has actually undergone. The amount of time and
effort required to verify an entire system can be prohibitive
and repeating the exercise after each (even minor) system
update discourages its use by practitioners.

In this article we present a framework that, while not
affecting the initial model checking effort, is aimed at re-
ducing dramatically the effort to keep analysis results up-
to-date with evolving systems. More specifically, we make
the following two contributions. First, we define the sub-
stitutability problem as the verification of the following two
criteria: (i) previously established system correctness prop-
erties must remain valid for the new version of an evolving
software, and (ii) the updated portion of the system must
continue to provide all (and possibly more) services offered
by its earlier counterpart. Second, we present a completely
automated procedure to solve the substitutability problem in
the context of component based software.

We will define our notion of components and their behav-
iors more precisely later. Intuitively, a behavior of a com-
ponent involves a sequence of observable message-passing
interactions with other components. We denote the set of
behaviors of a component C by B(C ). Also given two com-
ponents C and C ′ we will write C 4 C ′ to mean that
B(C ) ⊆ B(C ′). Suppose we are given an assembly of com-
ponents: A = {C1, . . . ,Cn}, a safety property ϕ, and a new
component, C S

i , to be used in place of Ci. We assume that ϕ
was proven to hold on the original assembly A. We wish to
check for the substitutability of C S

i for Ci in A with respect
to the property ϕ. More specifically, our aim is to develop
a procedure that achieves the following goals:

1. Containment. Verify that Ci 4 C S

i , i.e., every
behavior of Ci is also a behavior of C S

i . To this
end, we will construct a component CF

i such that
B(CF

i ) = B(Ci) ∪ B(C S

i ). In particular, if Ci 4 C S

i ,
then CF

i will be the same as C S

i . If the check fails,
we provide the developers with feedback regarding the
differences between Ci and C S

i . Assuming that the
missing behaviors would be added to C S

i subsequently,
we proceed with CF

i as a safe abstraction of the new
component in the next phase.

2. Compatibility. Verify that the new assembly A′ =
{C1, . . . ,C

F

i , . . . ,Cn} satisfies the safety property ϕ.
Note that in general B(CF

i ) ⊃ B(Ci) owing to addi-
tional behaviors from C S

i . Hence A′ might violate ϕ
even though ϕ was satisfied by A. Therefore, in our
framework, compatibility must be explicitly verified.



Component Assembly

Check counterexample

Component Subsitutability:

Counterexample is provided

1) Containment Check:Ci 4 CS
i

CS
i

CF
i

Yes, CF
i can be used

instead of Ci

No, CF
i can not be used instead of Ci

C1 Ci Cn

2) Compatibility Check:

{C1, ...,CF
i , ...,Cn} � ϕ

Figure 1: Overview of Component Substitutability.

We believe that our methodology is uniquely distinguished
by the two phases it involves. Containment ensures that
the substituted component satisfies the following criterion
(CONT): it provides all services rendered by the original com-
ponent Ci. If the new component C S

i does not satisfy CONT,
we generate a component which does, viz., CF

i .
The new component C S

i will usually be the result of de-
sign changes, bug fixes and other updates by a varied group
of software professionals. Thus, it is unrealistic to expect
C S

i to always bear a specific relationship with the original
component Ci. For instance, C S

i will seldom refine Ci in the
sense that all behaviors of the C S

i are already there in Ci.
We believe that in order to be viable, any approach to the
substitutability problem must allow additional behaviors in
C S

i , and yet ensure that all old features of Ci continue to be
supported. This is precisely the purpose of the containment
phase which culminates in the construction of CF

i . To the
best of our knowledge, ours is the first framework to address
this issue explicitly.

Compatibility guarantees that CF

i can be safely inte-
grated with the other components in the assembly. Re-
call that this must be checked explicitly since in general
B(CF

i ) ⊃ B(Ci). The compatibility check results in either
a substitutable component CF

i or produces a counterexam-
ple showing why the substitution of C S

i is not feasible. The
component CF

i is such that: (i) it renders every service of
Ci and yet (ii) the new assembly A′ = {C1, . . . ,C

F

i , . . . ,Cn}
satisfies the safety property ϕ. The complete substitutabil-
ity check procedure is outlined in Figure 1.

In addition to the computation of CF
i , a major focus of

the containment phase is to compute a set of behaviors in
B(Ci) \ B(C S

i ). Since these behaviors express features of Ci

that are absent in C S

i , they can be used to generate feed-
back for the developers. Such feedback can be of critical
help by localizing the changes required to add the missing
features back to C S

i . We discuss this issue further in Sec-
tion 5.4. We use automata-theoretic learning techniques for
both the containment and compatibility phases of our ap-
proach. Specifically, we use techniques based on a learning
algorithm for regular sets proposed by Angluin [2]. As we
shall see later, our use of learning will aid in efficient feed-
back generation.

Finally, we employ state/event-based modeling tech-
niques [4] in order to be able to model and reason about
both the data and communication aspects of software. We
use labeled Kripke structures (LKSs) to model, as well as
to specify, software systems. This is important for our ap-
proach to be practically applicable to real-life component-
based systems.

We implemented and validated our approach in the con-
text of the Component Formal Reasoning Technology (Com-
FoRT) [10] reasoning framework being developed as part
of the Predictable Assembly from Certifiable Components
(pacc) [14] initiative at the Software Engineering Institute
(SEI), Carnegie Mellon University (CMU). Specfically we
implemented our substitutability framework as part of the
model checking engine of ComFoRT, which is based on the
C model checker magic [5, 11] developed at CMU. In the
rest of this article we will use the ComFoRT model checker
and magic synonymously.

The ComFoRT model checker employs automated predi-
cate abstracion to extract finite models from concurrent C
programs. Since abstract models often contain unrealistic
behaviors, any counterexample obtained from an abstract
model must be validated against the concrete system. If the
counterexample is found to be spurious, the model must be
refined and verification repeated. This iterative procedure
is known as counterexample guided abstraction refinement
(CEGAR) and implemented by magic in a completely auto-
mated form. Furthermore, in the context of concurrent sys-
tems, magic conducts both counterexample validation and
abstraction refinement steps in a component-wise manner.
Both predicate abstraction and automated CEGAR were
critical for applying our technique to industrial component-
based systems.

In summary, we believe that the presented component
substitutability procedure has several advantages:

• Unlike conventional approaches, our methodology does
not subscribe to the idea of trace-theoretic refinement
while checking for substitutability. We believe that it
is unduly restrictive to require a new component to
directly refine its old counterpart in order be replace-
able, and instead allow new components to have more
behaviours. The extra behaviors are critical since they
provide vendors with flexibility to implement new fea-
tures into the product upgrades1.

• Our technique identifies features of the old component
Ci which are missing in the new component C S

i . It
also generates feedback to localize the modifications
required in C S

i to add the missing features back.

• Our method uses techniques based on learning algo-
rithms for regular sets for accomplishing both phases
of the substitutability check. This unified approach
enables automatic verification of evolving software.

• Our technique supports component-wise abstraction,
counterexample validation and abstraction refinement
steps of the verification procedure and is thus expected
to scale to large software designs.

This article is organized as follows. In Section 2 we dis-
cuss related work. Preliminary definitions and notations are

1Verification of these new features remains a responsibility
of designers of the upgraded systems.



presented in Section 3 followed by a description of the L∗

learning algorithm in Section 4. Details of our core compo-
nent substitutability framework are presented in Section 5.
Finally we present experimental results in Section 6 and
conclude in Section 7.

2. RELATED WORK
This work relates to multiple projects targeting verifica-

tion of component-based systems. In general, in contrast to
our work, other projects often impose the restriction that
every behavior of the new component must also be a behav-
ior of the old component. In such a case the new component
is said to refine the old component.

Alfaro et. al. [9, 6] define a notion of interface automa-
ton for modeling component interfaces and show compat-
ibility between components via refinement and consistency
between interfaces. However, automated techniques for con-
structing interface automata from a component implemen-
tations are not presented. Labeled Kripke structures (LKSs)
coupled with the interface alphabet as they are used in this
work for constructing component abstractions are similar to
interface automata. In contrast, this work is based on sound
predicate abstraction techniques that automatically extract
LKSs from component implementations. Also our work is
not limited to showing refinement between the old compo-
nent and the new one and therefore it suits more to realistic
systems.

Ernst et. al. [13] suggest a technique for checking compat-
ibility of multi-component upgrades. However, they restrict
themselves to input/output specifications of components by
abstracting away temporal information about the sequence
of actions. They acknowledge that even though the abstrac-
tion is not sound, their approach is useful in detecting impor-
tant problems. In contrast to that, since our work employs
existential abstraction, our framework is sound. Another
drawback of this related work is that due to the nature of
the input/output abstraction that eliminates sequencing of
actions, component specifications are not complete. This
is not a problem in our work since predicate abstraction
is over-approximation and preserves all possible behaviors
of the original components. Another difference with our
project is that [13] component consistency criteria imply
that all behaviors of component upgrades are also behaviors
of their old counterparts.

The compatibility check in the current work is automated
following ideas of Cobleigh et. al. [8] of using learning for
regular sets techniques. While [8] focuses on automating
assume-guarantee reasoning, our work solves a more general
problem of the component substitutability. We use compo-
sitional reasoning to discharge new behaviors of the com-
ponent upgrades in new assemblies. Our approach differs
from theirs in a number of ways. Firstly, we take care of
state labeling information of LKSs by including both state
and transition labels in the language definition of LKSs.
Also in our case, the compatibility check is embedded in
the abstraction-refinement framework for C programs, which
makes verification tractable.

3. BACKGROUND AND NOTATION

Definition 1 (Finite Automata). A non-
deterministic finite automaton (NFA) is a 5-tuple
(S ,S0, Σ, ∆,F ) with S a finite set of states, S0 ⊆ S a

set of initial states, Σ a finite alphabet, ∆ ⊆ S × Σ × S a
transition relation, and F ⊆ S a set of final (accepting)
states. The language of an NFA M is denoted by L(M) and
defined in the usual way. A deterministic finite automaton
(DFA) is a NFA such that S0 has exactly one element and
∆ is a function from S × Σ to S.

Definition 2 (Labeled Kripke Structure). A la-
beled Kripke structure (LKS for short) is a 6-tuple
(S , Init ,AP ,L, Σ, δ) with S a finite set of states, Init ⊆ S a
set of initial states, AP a finite set of (atomic) state propo-
sitions, L : S → 2AP a state-labeling function, Σ a finite
set of events or actions (alphabet), and δ ⊆ S × Σ × S a
transition relation.

For any NFA, DFA (or LKS) with transition relation ∆ (or

δ), we write q
α

−→ q′ to mean (q, α, q′) ∈ ∆ (or (q, α, q′) ∈ δ).
We wish to define the language of an LKS in terms of that
of an equivalent NFA. However since the states of an NFA
are not labeled, we will have to transform the state label-
ing of the LKS to events in accordance with some scheme.
Moreover, we would like to vary the alphabet of the result-
ing NFA by focusing on different sets of propositions. This
idea is captured by an induced NFA.

Definition 3 (Induced NFA). The NFA induced by
an LKS M = (S , Init ,AP ,LM , ΣM , δ) is denoted by
NFA(M) and defined as: (S ∪ {si}, {si}, ΣN , ∆, S ∪ {si})
where si 6∈ S is a new state, ΣN = (ΣM ∪ {τ}) × 2AP , and
∆ is defined as follows:

∀s ∈ Init � si
<τ,LM (s)>

−→ s ∈ ∆

∀s
α

−→ s
′ ∈ δ � s

<α,LM (s′)>
−→ s

′ ∈ ∆

Definition 4 (LKS Language). The language of an
LKS M is denoted by L(M) and defined as the language of
the induced NFA(M). Note that L(M) is prefix-closed:

∀w � w ∈ L(M) =⇒ ∀w
′ ∈ prefix(w) � w

′ ∈ L(M)

Definition 5 (Abstraction). Given two LKSs M1

and M2 we say that M2 is an abstraction of M1, denoted by
M1 4 M2, iff L(M1) ⊆ L(M2). Note that this concretizes
our intuitive notion of abstraction being a form of behavioral
containment since the set of behaviors of an LKS is captured
by its language.

Definition 6 (Parallel Composition).
Let M1 = (S1, Init1,AP1,L1, Σ1, δ1) and M2 =
(S2, Init2,AP2,L2, Σ2, δ2) be two LKSs. The parallel
composition of M1 and M2, denoted by M1 ‖ M2, is the
LKS (S1 × S2, Init1 × Init2,AP1 ∪ AP2,L, Σ1 ∪ Σ2, δ),
where L(s1, s2) = L1(s1) ∪ L2(s2), and δ is such that

(s1, s2)
α

−→ (s′1, s
′
2) iff one of the following holds:

1. α ∈ (Σ1 \ Σ2) ∪ {τ} and s1
α

−→ s′1 and s′2 = s2

2. α ∈ (Σ2 \ Σ1) ∪ {τ} and s2
α

−→ s′2 and s′1 = s1

3. α ∈ (Σ1 ∩ Σ2) \ {τ} and s1
α

−→ s′1 and s2
α

−→ s′2

In other words, LKSs must synchronize on shared actions
(except τ ) and proceed independently on local actions (and
τ ). This notion of parallel composition is derived from CSP
[16].



Definition 7 (Components and Models). In our
framework a component is essentially a C program com-
municating with other components via blocking message
passing. Since C programs are in general infinite state
systems we will extract finite LKS models from components
via predicate abstraction [5], and perform further analysis
on these models. The data and message-passing aspects
of a component C will be transformed conservatively into
predicates and actions of its model M . Consequently, M is
guaranteed to be a sound abstraction of C .

Definition 8 (Assembly and Environment). A
component assembly A is a collection of components
{C1, . . . ,Ck}. For 1 ≤ i ≤ k, let Mi be a model of Ci.
Then the collection of models {M1, . . . , Mk} is called a
model assembly corresponding to A and denoted by MA.
The environment of a component Ci with respect to A is
a set Env(Ci) ⊆ A such that each component in Env(Ci)
communicates with Ci via message-passing. Similarly, the
environment of a model Mi with respect to MA is the model
assembly corresponding to Env(Ci).

4. LEARNING REGULAR SETS
Central to our substitutability check procedure is the L∗

inference algorithm for regular languages developed by An-
gluin [2] and later improved by Rivest et. al. [15]. In the
rest of this article we will only concern ourselves with the
original algorithm of Angluin. Let U be an unknown regu-
lar language over some alphabet Σ. In order to learn U , L∗

needs to interact with a minimally adequate teacher MAT
for U , which can answer two kinds of queries.

1. Membership. Given a word ρ ∈ Σ∗, MAT returns true
if ρ ∈ U and false otherwise.

2. Candidate. Given a DFA D, MAT returns true if
L(D) = U and false otherwise. If MAT returns
false, it also returns a counterexample word w in the
symmetric difference of L(D) and U .

Given an unknown regular language U and a MAT for
U , the L∗ algorithm iteratively constructs a minimal DFA
D such that L(D) = U . It maintains an observational table
T where it records information about elements and non-
elements of U . The rows of T are labeled by the elements
of S ∪ S · Σ where S is a prefix-closed set over Σ∗. The
columns of T are labeled by the elements of a suffix-closed
set E over Σ∗. Let us denote the set S∪S ·Σ by Row. Then
the following condition always holds for T :

∀s ∈ Row � ∀e ∈ E � T [s, e] = true ⇐⇒ s · e ∈ U

Additionally, for any s ∈ Row, let us define a function rs as
follows:

∀e ∈ E � rs(e) = T [s, e]

Then T is said to be closed and consistent if the following
two conditions hold respectively:

∀t ∈ S · Σ � ∃s ∈ S � rs = rt

∀s1, s2 ∈ S � rs1
= rs2

=⇒ ∀a ∈ Σ � rs1·a = rs2·a

L∗ starts with a table T such that S = E = ∅ and in each
iteration proceeds as follows. It first updates T using mem-
bership queries (starting with words of length at most one)

till T is closed and consistent. Next L∗ builds a candidate
DFA D(T ) from T and makes a candidate query with D(T ).
If the MAT returns true to the candidate query, L∗ returns
D(T ) and stops. Otherwise, L∗ updates T with all prefixes
of the counterexample returned by MAT and proceeds with
the next iteration. The complexity of L∗ is expressed by the
following theorem.

Theorem 1. [2] If n is the number of states of the min-
imum DFA accepting U and m is the upper bound on the
length of any counterexample provided by the MAT, then
the total running time of L∗ is bounded by a polynomial
in m and n. Moreover, the observation table T is of size
O(m2n2 + mn3).

Optimizations. Note that in our case, the unknown lan-
guage U is always prefix-closed since, by definition, the lan-
guage of LKSs are prefix-closed. This allows us to augment
L∗ with some optimizations similar to those proposed by
Berg et. al. [3]. A prefix-closed language L is characterized
by the property that for a trace ρ ∈ L, all prefixes of ρ are
in L. Conversely, for a trace ρ 6∈ L, no extension of ρ is in
L.

Therefore, whenever L∗ makes a membership query with
ρ, we first look up all of ρ’s prefixes in a query cache. The
cache returns false if any of the prefixes are present and
marked false. Otherwise if ρ itself is present and marked
true, the cache returns true. If none of the above cases
hold, the query is passed on to the MAT. These optimiza-
tions yielded up to 20% speedup during our experiments (cf.
Section 6).

5. COMPONENT SUBSTITUTABILITY
Recall that the substitutability problem involves two ma-

jor phases: containment and compatibility. Suppose we are
given an assembly of components: A = {C1, . . . ,Cn} and an
LKS ϕ such that A 4 ϕ. Also, we are given a new compo-
nent C S

i to be used in place of Ci. Our goal is to check for
the substitutability of C S

i for Ci in A while preserving all
previous services as well as the validity of ϕ. Figure 2 shows
the schematic diagram of our substitutability framework.

The complete substitutablility procedure occurs in a
CEGAR-style loop. In each iteration of the loop, substi-
tutablility checks are performed on abstract models instead
of concrete components. Suppose Mi and M S

i are the mod-
els of Ci and C S

i respectively. Therefore we will check for
the substitutability of M S

i for Mi with respect to the prop-
erty ϕ. Note that the final result is either a substitutable
model M F

i or a counterexample CE . However, CE may
be spurious with respect to either Ci or C S

i and therefore
must be checked for validity against both. If CE is spuri-
ous we will refine Mi and/or M S

i and repeat the CEGAR
loop. Otherwise, we will report CE as an evidence of non-
substitutablility of C S

i and terminate.
In case we are able to prove substitutablility, we will also

generate a set of traces in L(Mi) \ L(M S
i ). These traces

will then be used to provide constructive feedback to the
developers (cf. Section 5.4).

5.1 Containment
The containment check accepts models Mi and M S

i as
inputs. In general, it might also be provided with an
LKS B which captures a set of prohibited behaviors such



False
CE

CE spurious?
Yes

CE
True

CE analysis

False

CE

Predicate    Abstraction

B

L*

False
CE

Phase 1:

Containment

Phase 1:

Compatibility

Phase 2:

CE provided

True

Bug LKS New Component LKS

is Substitutable

True

L*

Old Component LKS

Ci CS
i

L(MS
i )∪ (L(Mi)\L(B)) ≡ L(MF

i )

MF
i

MF
i

A \Ci

MF
i

MF
i is not Substitutable

GenerateCF
i

CE Assumption, A

MS
iMi

MF
i ||A � ϕ

Provide Feedback
to Developers

RefineCi, CS
i

MA \Mi

MA \Mi � A

Figure 2: Substitutability framework.

as previously detected bugs. Our goal in this phase is
to apply a learning algorithm to build a new DFA M F

i ,
which includes all the behaviors of M S

i and Mi except
those of B. In other words we wish to learn the language
U = L(M S

i ) ∪ (L(Mi) \ L(B)). Additionally we wish to
compute a set of traces F ⊆ L(Mi) \ L(M S

i ) which can be
subsequently used for feedback generation.

Recall that NFA(M) denotes the NFA induced by an
LKS M . Thus the alphabet over which the learning occurs
is ΣNF A(Mi) ∪ΣNF A(MS

i
). In addition, the membership and

candidate queries are discharged as follows using a model
checker.

Membership. In order to check for membership of a
word ρ, the model checker checks whether it is accepted by
either Mi or M S

i and not accepted by B. Note that these
three checks are performed separately without composing
Mi, M S

i and B.
Candidate. The candidate query for an intermediate

candidate DFA D involves the following language equiva-
lence check: U = L(D). We avoid explicit computation
of U (which would defeat the entire purpose of learning)
while discharging the candidate query as follows. First we
subdivide the candidate query into two subset checks: (i)
U ⊆ L(D) and (ii) L(D) ⊆ U . Next we perform the first
check by verifying individually: (a) L(M S

i ) ⊆ L(D) and (b)
L(Mi) \ L(B) ⊆ L(D). Finally we peform the second check
in the following iterative manner.

1. Check if L(D) ⊆ L(M S
i ). If the answer is yes, then

L(D) ⊆ U and we return true. Otherwise we get a

trace CE ∈ L(D) \ L(M S
i ).

2. Check if CE ∈ L(Mi) \ L(B). If not, then CE ∈
L(D) \U and we return false along with CE as coun-
terexample. Otherwise CE ∈ L(Mi) \ L(M S

i ).

3. Add CE to F . Repeat from step 1 but look for coun-
terexamples other than those already in F . We achieve
this by suitably modifying our model checker that per-
forms step 1 above.

As mentioned previously, a key feature of our framework
is to allow the new component to have more behaviors than
the previous one. These extra behaviors might cause the
new component assembly to violate the global property ϕ.
Therefore the compatibility of the new component with the
rest of the assembly must be verified separately. This forms
the basis of the next phase in substitutability.

5.2 Compatibility
Recall that the global safety property is expressed as an

LKS ϕ and that we write M1 4 M2 to mean L(M1) ⊆
L(M2). On successful completion of the containment phase
we obtain a DFA M F

i such that L(M F
i ) = L(M S

i )∪(L(Mi)\
L(B)). We now need to verify that the component M F

i is
compatible, i.e, safe under the given environment Env(Mi).
In other words we need to check that M F

i ‖ Env(Mi) 4 ϕ.
This is done by a combination of assume-guarantee style
reasoning and learning similar to Cobleigh et. al. [8]. Hence
we will not describe this phase in much detail but simply
summarize the salient features as follows:



1. Learn an assumption DFA A for M F
i such that M F

i ‖
A 4 ϕ using L∗ with a model checker as a MAT.

2. Check if Env(Mi) 4 A. If so, return true. Otherwise
a counterexample CE is obtained.

3. Check if M F
i ‖ CE 4 ϕ. If so, use CE to weaken the A

and repeat from step 1. Otherwise, return false along
with CE as the counterexample to the compatibility
phase.

Note that since L(M F
i ) contains traces from both L(Mi)

and L(M S
i ), any counterexample CE returned by the above

procedure must be checked against both Ci and C S

i for spu-
riousness.

5.3 Why Learn?
Our use of techniques based on L∗ provides us the follow-

ing advantages:

• We can use our model checker to answer the mem-
bership and candidate queries and also to generate a
counterexample in the event of the failure of a candi-
date query.

• Our use of learning during the containment phase en-
ables us to compute a DFA for L(M S

i )∪(L(Mi)\L(B))
without having to compose Mi, M S

i or B. As a side-
effect we are also able to generate a set of traces
F ⊆ L(Mi) \ L(M S

i ) which can be subsequently used
for feedback generation.

• L∗ is incremental, computes the smallest DFA, and
also enables us to proceed without precisely defining
the language to be learned, e.g., during compatibility.

• Efficiency of L∗ depends only on the length of indi-
vidual counterexamples and the minimum automaton
representation of the unknown language. This char-
acteristic allows us to leverage the competency of the
model checker in generating suitable counterexamples.

5.4 Feedback to Developers
In this section we present several approaches for providing

feedback to developers that will enable them to add missing
features back to C S

i . Recall that upon successful comple-
tion of the substitutability check, we obtain a set of traces
F ⊆ L(Mi) \ L(M S

i ). Let π be any trace in F . Hence
π ∈ L(Mi). Recall that L(Mi) was defined to be the lan-
guage of the induced NFA NFA(Mi). Since the actions of
the NFA induced by any LKS M contain information about
the propositional labeling of M , it is possible to retrieve this
information from any trace of NFA(M) and convert it back
to a corresponding trace of M . Thus, in particular, we can
obtain a trace ρ of Mi corresponding to π. The trace ρ
constitutes our first level of feedback.

By itself, trace ρ provides limited assistance to a devel-
oper. While it shows a missing behavior, it does not relate
this behavior to the new component C S

i . Our next level of
feedback attempts to improve this situation by identifying
portions of the actual code for C S

i which are relevant to the
missing behavior expressed by Tr . One way to achieve this
would be via a mapping Map from statements (or control
points) of Ci to those of C S

i . We intend to investigate the
automated generation of Map as well as the fragments of
C S

i relevant to ρ as part of our future work.

Our most advanced form of feedback is aimed at elim-
inating completely the need for developers to modify C S

i .
Suppose we are given a trace ρ and the portions of C S

i rele-
vant to ρ as described earlier. Our goal is to automatically
generate a modified version CF

i of C S

i such that CF

i has all
the features of Ci which were missing in C S

i . Clearly, this
is an extremely difficult problem in the general case and we
must impose appropriate restriction in order to find effec-
tive solutions. For instance, we can restrict our changes to
only branch statements and library routine calls. Addition-
ally such code modifications can be made in the form of
templates which can be inspected, and improved for perfor-
mance if necessary, by the developers.

6. IMPLEMENTATION AND EXPERI-
MENTAL EVALUATION

We implemented our methodology for checking compo-
nent substitutability in the ComFoRT framework developed
at Carnegie Mellon Software Engineering Institute. The
ComFoRT model checking engine is based on Magic model
checking tool [5]. We used Magic capabilities to extract fi-
nite LKS models from C programs using predicate abstrac-
tion to construct abstract component models. The Magic
model checker also serves as a minimally adequate teacher
for the learning algorithms of the containment and compata-
bility checks. Each of these checks instantiates its own L∗

learner, which perform the task of learning their respective
DFAs. If the compatibility check returns a counterexample,
the counterexample validation and abstraction-refinement
modules of Magic are employed to check for spuriousness
and do refinement, if necessary.

We validated the component subsitutability framework
while verifying upgrades of a benchmark provided to us by
our industrial partner, ABB Inc. [1]. We verified part of
an interprocess communication protocol (IPC-1.6) used to
mediate communication in a multi-threaded robotics control
automation system that must satisfy safety-critical require-
ments.

The IPC protocol provides multiple forms of commu-
nication including synchronous point-to-point, broadcast,
publish/subscribe, and asynchronous communication, all of
which are implemented in terms of messages passing between
queues owned by different threads. The protocol handles the
creation and manipulation of message queues, synchronizing
access to shared data using various operating system prim-
itives (e.g., semaphores and critical sections), and cleaning
up internal state when a communication fails or times out.

We analyzed the portion of the IPC protocol that is used
for synchronous communication among multiple threads.
With this type of communication, a sender sends a mes-
sage to a receiver and blocks until an answer is received or
it times out. A receiver asks for its next message and blocks
until a message is available or it times out. Whenever the
receiver gets a synchronous message, it is then expected to
send a response to the message’s sender. The target of our
verification was the IPC component that implements this
communication scheduling, comprising of about 1500 lines
of C code. We abstracted away communication with other
IPC components by specifying external choice channels that
were set to pass all possible inter-component inputs non-
determinstically.

We used a set of properties describing functionality of



the verified portion of the IPC protocol. For example, we
checked that no faults discovered during testing of older ver-
sions of the code are present in the current code. An example
of such a property is an assertion that no messages are lost
from the queue without being delivered to the receiver.

We upgraded the WriteToQueue component of the IPC
assembly by both adding and removing some behaviors.
These modifications resulted in a violation of the contain-
ment check and hence a substitutable DFA was produced at
the end of this check. This DFA was found to be smaller as
compared to the old and new component LKSs. We believe
this was the case with our examples since multiple states
of the LKS obtained by predicate abstraction of a single
control location in the C program accepted the language.
Therefore, they were determined to be equivalent by the L∗

algorithm and were collapsed into a single one in the DFA.
The compatibility check saves an order of magnitude in

terms of memory (upto 50%) as compared to the verification
of the composition of components directly. This is primar-
ily because the assumptions generated during the assume-
guarantee reasoning were of a small size as compared to the
component LKSs, which in turn led to lesser sizes of prod-
uct automata. Also, we observed verification time improve-
ments of order of upto 10% by implementing the query cache
for the membership queries in the learner. Another 10% im-
provement in time was obtained by doing the prefix-closed
optimizations (cf. Section 4) during learning.

7. CONCLUSIONS AND FUTURE WORK
The current work proposes a solution to the component

substitutability problem using a regular language inference
along with a model checker. Although we provide an ap-
proach oriented towards the new component for verifying
global assembly properties during its evolution, there are
several ways to improve its efficiency. For example, we would
like to use the results from verifying the previous assem-
bly while checking the compatibility of the new component.
Further, since the earlier assembly was verified to be correct,
only the new behaviors of the evolved component should be
considered during compatibility.

This work also brings out several interesting avenues of re-
search. The L∗ algorithm is a general framework for learning
regular languages. However, our goal is to learn program be-
havior, which are earmarked by specific characteristics, e.g.,
the language is prefix-closed. We intend to investigate more
such domain-specific characteristics of programs which in-
crease the efficiency of the inference algorithm. We also aim
to develop an algorithm for learning LKSs directly instead
of appealing to its language definition in terms of NFA.

We have used an assume-guarantee framework for learning
only safety properties in this work. In order to extend its
scope to liveness properties, we plan to study the learning
of ω − regular [12] languages. Finally, we plan to focus on
providing improved feedback to developers which will enable
them to add missing features and/or fix bugs in the updated
components.

8. REFERENCES
[1] ABB Inc. http://www.abb.com.

[2] D. Angluin. Learning regular sets from queries and
counterexamples. In Information and Computation,
volume 75(2), pages 87–106, November 1987.

[3] T. Berg, B. Jonsson, M. Leucker, and M. Saksena.
Insights to Angluin’s learning. Technical Report
2003-039, Department of Information Technology,
Uppsala University, Aug. 2003.

[4] S. Chaki, E. Clarke, J. Ouaknine, N. Sharygina, and
N. Sinha. State/event-based software model checking.
In Integrated Formal Methods, pages 128–147, 2004.

[5] S. Chaki, E. M. Clarke, A. Groce, S. Jha, and
H. Veith. Modular verification of software components
in C. In Proceedings of ICSE 2003, pages 385–395,
2003.

[6] A. Chakrabarti, L. de Alfaro, T. A. Henzinger,
M. Jurdzinski, and F. Y. Mang. Interface
compatibility checking for software modules. In
Proceedings of the 14th International Conference on
Computer-Aided Verification, pages pp. 428–441.
Lecture Notes in Computer Science 2404,
Springer-Verlag, 2002.

[7] E. Clarke, O. Grumberg, and D. Peled. Model
Checking. MIT Press, December 1999.

[8] J. M. Cobleigh, D. Giannakopoulou, and C. S.
Pasareanu. Learning assumptions for compositional
verification. In Tools and Algorithms for the
Construction and Analysis of Systems, volume 2619.
Springer-Verlag, April 2003.

[9] L. de Alfaro and T. A. Henzinger. Interface automata.
In Proceedings of the Ninth Annual Symposium on
Foundations of Software Engineering. ACM Press,
2001.

[10] J. Ivers and N. Sharygina. Overview of ComFoRT: A
model checking reasoning framework.
CMU/SEI-2004-TN-018, 2004.

[11] MAGIC. http://www.cs.cmu.edu/~chaki/magic.

[12] O. Maler and L. Staiger. On syntactic congruences for
omega-languages. In Symposium on Theoretical
Aspects of Computer Science, pages 586–594, 1993.

[13] S. McCamant and M. D. Ernst. Early identification of
incompatibilities in multi-component upgrades. In
ECOOP 2004 — Object-Oriented Programming, 18th
European Conference, Olso, Norway, June 16–18, 2004.

[14] PACC website. http://www.sei.cmu.edu/pacc.

[15] R. L. Rivest and R. E. Schapire. Inference of finite
automata using homing sequences. In Information and
Computation, volume 103(2), pages 299–347, April
1993.

[16] A. W. Roscoe. The Theory and Practice of
Concurrency. Prentice-Hall International, London,
1997.


