
Selective Open Recursion:
Modular Reasoning about Components and Inheritance

Jonathan Aldrich
School of Computer Science
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213, USA

jonathan.aldrich@cs.cmu.edu

Kevin Donnelly
Computer Science Department

Boston University
111 Cummington Street
Boston, MA 02215, USA

kevind@bu.edu

ABSTRACT
Current component-based systems with inheritance do not
fully protect the implementation details of a class from its
subclasses, making it difficult to evolve that implementation
without breaking subclass code. Previous solutions to the
so-called fragile base class problem specify those implemen-
tation dependencies, but do not hide implementation details
in a way that allows effective software evolution.

In this paper, we show that one instance of the fragile
base class problem arises because current object-oriented lan-
guages dispatch methods using open recursion semantics even
when these semantics are not needed or wanted. Our solu-
tion, called Selective Open Recursion, makes explicit the meth-
ods to which open recursion should apply. As a result,
classes can be more loosely coupled from their subclasses,
and therefore can be evolved more easily without breaking
subclass code.

We have implemented Selective Open Recursion as an ex-
tension to Java, along with an analysis that automatically in-
fers the necessary program annotations. We have collected
data for the Java standard library suggesting that the addi-
tional programmer effort required by our proposal is low,
and that Selective Open Recursion aids in automated reason-
ing such as compiler optimizations.

1. Inheritance and Information Hiding
In his seminal paper, Parnas laid out the classic theory of

information hiding: developers should break a system into
modules or components in order to hide information that
is likely to change [10]. Thus if change is anticipated with
reasonable accuracy, the system can be evolved with local
rather than global system modifications, easing many soft-
ware maintenance tasks. Furthermore, the correctness of
each component can be verified in isolation from other com-
ponents, allowing developers to work independently on dif-
ferent sub-problems.

Unfortunately, developers do not always respect the infor-
mation hiding boundaries of components—it is often tempt-
ing to reach across the boundary for temporary convenience,
while causing more serious long-term evolution problems.
Thus, encapsulation mechanisms such as Java’s packages
and public/private data members were developed to give
programmers compiler support for enforcing information
hiding boundaries.

While the encapsulation mechanisms provided by Java
and other languages can help to enforce information hiding

public class CountingSet extends Set {
private int count;

public void add(Object o) {
super.add(o);
count++;

}
public void addAll(Collection c) {
super.addAll(c);
count += c.size();

}
public int size() {
return count;

}
}

Figure 1: The correctness of the CountingSet class de-
pends on the independence of add and addAll in the im-
plementation of Set. If the implementation is changed
so that addAll uses add, then count will be incremented
twice for each element added.

boundaries between an object and its clients, enforcing in-
formation hiding between a class and its subclasses is more
challenging. The private modifier can be used to hide
some method and fields from subclasses. However, inher-
itance creates a tight coupling between a class and its sub-
classes, making it difficult to hide information about the im-
plementation of public and protected methods in the su-
perclass. In component-based systems with inheritance, it is
easy for a subclass to become unintentionally dependent on
the implementation details of its superclass, and therefore to
break when the superclass changes in seemingly innocuous
ways.

1.1 The Fragile Base Class Problem
This issue is known as the Fragile Base Class Problem, one of

the most significant challenges faced by designers of object-
oriented component libraries. Figure 1 shows an example of
the fragile base class problem, taken from the literature [12,
9, 2].

In the example, the Set class has been extended with an
optimization that keeps track of the current size of the set in
an additional variable. Whenever a new element or collec-
tion of elements is added to the set, the variable is updated
appropriately.



Unfortunately, the implementation of CountingSet
makes assumptions about the implementation details of
Set—in particular, it assumes that Set does not implement
addAll in terms of add. This coupling means that the im-
plementation of Set cannot be changed without breaking
its subclasses. For example, if Set was changed so that the
addAll method calls add for each member of the collection
in the argument, the count variable will be updated not only
during the call to addAll, but also for each individual add
operation—and thus it will end up being incremented twice
for each element in the collection.

The root of the problem described above (which is just one
instance of the larger fragile base class problem) is that the
subclass depends on the calling patterns between methods in
its superclass. Object-oriented languages provide open recur-
sion, in which self-calls are dynamically dispatched, allow-
ing subclasses to intercept self-calls from the superclass and
thus depend on when it makes these calls. Open recursion
is useful for many object-oriented programming idioms—for
example, the template method design pattern [7] uses open
recursion to invoke customized code provided by a subclass.
However, sometimes making a self-call to the current object
is just an implementation convenience, not a semantic re-
quirement. The whole point of encapsulation is to ensure
that subclasses do not depend on such implementation de-
tails, so that a class and its subclasses can be evolved in-
dependently. Thus inheritance breaks encapsulation when
implementation-specific self-calls are made.

Examples like these have led some to call inheritance anti-
modular. Most practitioners, recognizing the value of inher-
itance for achieving software reuse in component-based sys-
tems, would not go so far, but this example illustrates that
reasoning about correctness is challenging in the presence of
inheritance.

A number of previous papers have addressed the fragile
base class problem in various ways [8, 12, 13, 2, 11]. These
solutions, however, either give up the power of open recur-
sion entirely, or expose details of a class’s implementation
that ought to be private (such as the fact that the addAll
method calls or does not call add in the example above).

1.2 Contributions
The contribution of this paper is Selective Open Recur-

sion, a new approach that provides the benefits of inheritance
and open recursion where they are needed, but allows pro-
grammers to effectively hide many details of the way a class
is implemented. In our system, described in the next sec-
tion, method calls on the current object this are dispatched
statically by default, meaning that subclasses cannot inter-
cept internal calls and thus cannot become dependent on
those implementation details. External calls to the methods
of an object—i.e., any method call not explicitly invoked on
this—are dynamically dispatched as usual.

If an engineer needs open recursion, she can declare a
method “open,” in which case self-calls to that method are
dispatched dynamically. By declaring a method “open,” the
author of a class is promising that any changes to the class
will preserve the ways in which that method is called.

In section 3, we describe our implementation of Selective
Open Recursion as an extension to Java. We have imple-
mented a static, whole-program analysis that annotates an
existing Java program with the minimal set of “open” decla-
rations that are necessary so that the program has the same

semantics in our system. Results of applying our analysis to
the JDK 1.4 standard library show that open annotations are
rarely needed and that Selective Open Recursion increases
the potential for program optimizations such as inlining. Sec-
tion 4 discusses related work and section 5 concludes.

2. Selective Open Recursion
We argue that the issue underlying the instance of the frag-

ile base class problem described above is that current lan-
guages do not allow programmers to adequately express the
intent of various methods in a class. There is an impor-
tant distinction between methods used for communication
between a class and its clients, vs. methods used for commu-
nication between a class and its subclasses.

Some methods are specifically intended as callbacks or ex-
tension points for subclasses. These methods are invoked re-
cursively by a class so that its subclasses can provide cus-
tomized behavior. Examples of callback methods include
methods denoting events in a user interface, as well as ab-
stract “hook” methods in the template method design pat-
tern [7]. Because callback methods are intended to be in-
voked whenever some semantic event occurs, any changes
to the base class must maintain the invariant that the method
is always invoked in a consistent way.

In contrast, many accessor and mutator functions are pri-
marily intended for use by clients. If the implementation
of a class also uses these functions, it is typically as a con-
venience, not because the class expects subclasses to over-
ride the function with customized behavior. The fragile base
class problem described above occurs exactly when a “client-
oriented” method is called recursively by a superclass, but is

also overridden by a subclass.1 Because the recursive call to
the method was never intended to be part of the subclass-
ing interface, the maintainer of the base class should be able
to evolve the class to use (or not use) such methods without
affecting subclasses.

The key insight underlying Selective Open Recursion is
that subclasses do not need to intercept recursive calls to
methods that were not intended as callbacks or extension
points—they can always provide their behavior by overrid-
ing the external interface of a class. At most, intercepting
recursive calls to “client-oriented” methods is only a minor
convenience, and one that creates an undesirable coupling
between subclass and superclasses.

We thus propose to add a new modifier, open, which al-
lows developers to more fully declare their underlying de-
sign intent. An open method has open recursion semantics;
it is treated as a callback for subclasses that will always be
recursively invoked by the superclass whenever some con-
ceptual event occurs. Ordinary methods—those without the
open keyword—are not part of the subclassing interface.
While external calls to ordinary methods are dynamically
dispatched as usual, recursive calls where the receiver is ex-
plicitly stated to be the current object this are dispatched
statically.2 Because open recursion does not apply to meth-
ods that are not marked open, subclasses cannot depend on

1There are other instances of the fragile base class problem—
for example, name collisions between methods in a class and
its subclasses—that we do not consider here.
2If the receiver is not syntactically this but is an alias, we
treat the call as external. This ensures that the dispatch mech-
anism used is easily predicted by browsing the source code.



public class Set {
List elements;

public void add(Object o) {
if (!elements.contains(o))
elements.add(o);

}
public void addAll(Collection c) {

Iterator i = c.iterator();
while (i.hasNext())
this.add(i.next());

}
}

Figure 2: In the first solution to the problem described in
Figure 1, the developer decides not to mark either add or
addAll as open. Thus, when addAll invokes add, the call
is dispatched statically, so that Set’s implementation of
add executes even if a subclass overrides the add method
(Client calls to add are dispatched dynamically as usual).
Thus, subclasses cannot tell if addAll was implemented
in terms of add or not, allowing the maintainer of Set to
change this decision.

when they are invoked by the superclass, and the fragile base
class problem cannot occur.

In our proposal, there are two choices a designer can make
to solve the problem described in Figure 1. In the first solu-
tion, shown in Figure 2, the designer of the Set class has
decided that neither add and addAll are intended to act
as subclass callbacks, and so neither method was annotated
open. In this case, subclasses cannot tell whether addAll is
implemented in terms of add or not, and so the fragile base
class problem cannot arise. Even if addAll calls add on the
current object this, this call will be dispatched statically and
so subclasses cannot intercept it. Note that calls to add from
clients are dispatched dynamically as usual, so that an imple-
mentation of CountingSet can accurately track the element
count simply by overriding both add and addAll.

In the second solution, shown in Figure 3, the designer
of the Set class has decided that add represents a seman-
tic event (adding an element to the set) that subclasses may
be interested in reacting to. The designer therefore annotates
add as open, documenting the promise that even if the im-
plementation of Set changes, the add method will always
be called once for each element added to the set. The imple-
mentor of CountingSet can keep track of the element count
by overriding just the add function. Any changes to the Set
class will not break the CountingSet code, because the im-
plementor of Set has promised that any changes to Set will
preserve the semantics of calls to add.

2.1 Using Selective Open Recursion
With any new language construct, it is important not only

to describe the construct’s meaning but also how to use it ef-
fectively. We offer tentative guidelines for the use of open,
which can be refined as experience is gained with the con-
struct.

We expect that public methods will generally not be
open. The rationale for this guideline is that public meth-
ods are intended for use by clients, not by subclasses. In
general, any internal use of these public methods is probably

public class Set {
List elements;

/* called once for every added element */
public void open add(Object o) {
if (!elements.contains(o))

elements.add(o);
}
public void addAll(Collection c) {
Iterator i = c.iterator();
while (i.hasNext())

this.add(i.next());
}

}

Figure 3: In the second solution to the problem described
in Figure 1, the developer decides that the add method de-
notes a semantic event of interest to subclasses, and there-
fore marks add as open. By doing this, the developer is
promising that any correct implementation of Set will call
add once for each element added to the set. Therefore, a
subclass interested in “add element” events can override
the add method without overriding addAll.

coincidental, and subclasses should not rely on these calls.
There are exceptions—for example, the add method could
be both public and open, depending on the designer’s
intent—but these idioms can also be expressed by having the
public method invoke a protected open method. For
example, instead of making the add method open, the de-
veloper could implement both add and addAll in terms of
a protected, open internalAdd method that serves as
the subclass extension point. Using this protected method
solution is potentially cleaner because it separates the client
interface from the subclassing interface.

On the other hand, we expect that protected methods
will either be final or open. Protected methods are usually
called on the current object this, so overriding them is use-
ful only in the presence of open recursion. Protected meth-
ods that are not intended to represent callbacks or extension
points for subclasses should be marked as final.

Private methods in languages like Java are unaffected by
our proposal; since they cannot be overridden, open recur-
sion is not relevant.

2.2 An Alternative Proposal
The discussion above suggests an alternative proposal: in-

stead of adding a new keyword to the programming lan-
guage, simply use open recursion dispatch semantics for
all (non-final) protected methods and treat all public
methods as if they were non-open. This alternative has the
advantage of simplicity; it takes advantage of common pat-
terns of usage, does not add a new keyword to the language,
and encourages programmers to cleanly separate the public
client interface from the protected subclass interface.

However, there are two disadvantages to the alternative.
If, in addition to performing a service for a client, a public
method also represents an event that subclasses may want
to extend, the programmer will be forced to create an addi-
tional protected method for the subclass interface, creating
a minor amount of code bloat. Furthermore, the proposal
that makes open explicit is a more natural evolutionary path;



existing Java code need only be annotated with open (per-
haps with the analysis described in Section 4), whereas in the
alternative proposal public methods that are conceptually
open would have to be re-written as a pair of public and
protected methods.

2.3 Applications to Current Languages
Our proposal extends languages like Java and C# in or-

der to capture more information about how a class can be
extended by subclasses. However, the idea of “open” meth-
ods can also be applied within existing languages, providing
engineering guidelines for avoiding problematic uses of in-
heritance.

The discussion above suggests that developers should
avoid calling public methods on the current object this.
If a public method contains code that can be reused else-
where in the class, the code should be encapsulated in a
protected or private method, and the public method
should call that internal method. This guideline was pre-
viously suggested by Ruby and Leavens [11], and appears
to be common practice within the Java standard library
in any case. For example, the java.util.Vector class
in the JDK 1.4.2 internally calls a protected method,
ensureCapacityHelper, to verify that the underlying
array is large enough—even though the public method
ensureCapacity could be used instead.

Protected methods should be final if they don’t repre-
sent an explicit extension point for subclasses. The author
of a library should carefully document under which circum-
stances non-final protected methods are called, so that sub-
classes can rely on the semantics.

Methodological solutions like this one have the advan-
tage that they do not change the semantics of the language.
However, for a methodology to be effective, it must be fol-
lowed. The advantage of Selective Open Recursion is that
the keyword open encourages developers to make an ex-
plicit choice about the nature of the methods they define,
then enforces that choice naturally through the dispatch se-
mantics o the language. Thus, both the syntax and semantics
of our proposal work together to reinforce good use of inher-
itance, while a methodological solution relies primarily on
programmer discipline, possibly augmented with lint-like
style checkers.

2.4 A Rejected Alternative Design
Based on the insight that the fragile base class problem

arises when open recursion is used unintentionally, there is a
natural alternative design to be considered. In the discussion
above, we chose to annotate methods as being open or not;
an alternative is to annotate call sites as using dynamic or
static dispatch. We rejected this alternative for two reasons.
First, it is a poor match for the design intent, which asso-
ciates a method—not a call site—with a callback or extension
point. Second, because the design intent is typically associ-
ated with methods, it would be very surprising if different
recursive calls to the same method were treated differently.
By annotating the method rather than the call site, our pro-
posal helps developers be consistent.

2.5 Family Polymorphism
The fragile base class problem can be generalized to sets of

classes that are closely related. For example, if a Graph mod-
ule defines classes for nodes and edges, it is likely that the

node and edge class are closely related and will often be in-
herited together. Just as self-calls in an object-oriented setting
can be mistakenly “captured” by subclasses, calls between
node and edge superclasses might be mistakenly captured
by node and edge subclasses.

This paper is primarily focused on the version of the prob-
lem that is restricted to a single subclass and superclass,
in part because the right solution is more clear-cut in this
setting. However, some languages provide first-class sup-
port for extending related classes together through mech-
anisms like Family Polymorphism [6]. In this setting, our
proposal could potentially be generalized to distinguish be-
tween inter-object calls that should be dispatched dynami-
cally and those that should be dispatched statically. Further
work is needed to understand how to apply our proposal ef-
fectively in this setting.

2.6 Pure Methods
A central aspect of our approach is that a class must docu-

ment the circumstances under which all of its open methods
are called internally. As suggested by Ruby and Leavens [11],
it is possible to relax this requirement for pure methods which
have no (visible) side-effects and do not change their result
with inheritance. Since these methods have no effects and
always return the same result, a class can change the way in
which they are called without affecting subclasses. An auxil-
iary analysis or type system could be used to verify that pure
methods have no effects, including state changes (other than
caches), I/O operations, or non-termination.

2.7 Specification and Verification Benefits
We believe that Selective Open Recursion has potential

benefits to formal specification and verification techniques.
Intuitively, reasoning about non-openmethods is easier than
reasoning about open methods, since calls to open methods
on this must be formally treated as callbacks to methods
of a subclass. Reasoning about code with callbacks to an
unknown function defined in a subclass is inherently more
challenging than analyzing a locally-defined set of functions,
because the analysis results will be dependent or parame-
terized by the behavior of that function. By making open
recursion selective, our technique can reduce the number of
callbacks that formal verification techniques must confront.
We are currently working to make these intuitions more pre-
cise by proving a representation independence theorem in a
formal model of selective open recursion.

3. Implementation and Analysis
We have implemented Selective Open Recursion as an ex-

tension to the Barat Java compiler [3]. Our implementation
strategy leaves open methods and private methods un-
changed. For each non-open public/protected method
in the source program, we generate another protected
final method containing the implementation, and rewrite
the original method to call the new method. We leave all calls
to open methods unchanged, as well as all calls to methods
with a receiver other than this. For every call to a non-
open method that has this as the receiver, including implicit
uses of this but not other variables aliased to this, we call
the corresponding implementation method, thus simulating
static dispatch.

Our implementation of Selective Open Recursion is avail-
able at http://www.archjava.org/ as part of the open



source ArchJava compiler.

3.1 Inference of Open Recursion
In order to ease a potential transition from standard Java

or C# to a system with Selective Open Recursion, we have
implemented an analysis that can automatically infer which
methods must be annotated with open in order to preserve
the original program’s semantics. Of course, our system is
identical to Java-like languages if every method is open, so
the goal of the analysis is to introduce as few open anno-
tations as possible. Extra open annotations are problematic
because they create the possibility of using open recursion
when it was not intended, thus triggering fragile base class
problems like the example above. In general, no analysis
can do this perfectly, because the decision to make a method
open is a design decision that may not be expressed explic-
itly in the source code. However, an analysis can provide
a reasonable (and safe) default that can be refined manually
later.

In order to gain precision, our analysis design assumes
that whole-program information is available. A local ver-
sion of the analysis could be defined, but it would have to
assume that every method called on this is open, because
otherwise some unknown subclass could rely on the open
recursion semantics of Java-like languages. This assumption
would be extremely conservative, so much so that it would
be likely to obscure any potential benefits of Selective Open
Recursion.

Our analysis design examines each public and
protected method m of every class C. The program
potentially relies on open recursion for calls to m whenever
there is some method m

′ in a class C
′
≤ C that calls m on

this, and some subclass C
′′ of C

′ overrides m, and that
subclass either doesn’t override m

′ or makes a super call
to m

′. The analysis conservatively checks this property,
and determines that the method should be annotated open
whenever the property holds.

3.2 Experiments
We have applied our analysis to a large portion of the

Java library, namely all of the packages starting with java
except for java.nio (which was more difficult to compile
due to the code generation that is used in that package), and
java.sql (which triggered a bug in our implementation).
We used the JDK 1.4.2 as our codebase.

A threat to validity of this experiment is that a true deter-
mination of which methods might be open would have to
make a closed world assumption, implicitly considering all
possible clients of the library. The library developer might
have created “hook” methods for use by future clients that
are self-called and ought to be open, but which are not over-
ridden within the library. Our analysis will not catch these
methods as being open. However, we believe that because
there is substantial use of inheritance and overriding within
the library, our analysis should find most of the relevant open
methods.

Open Annotations. There are 9897 method declarations in
the portion of the standard library that we analyzed. Of
these, we determined that only 246 would require open an-
notations in our system to preserve the current semantics of
the standard library. This is a small fraction (less than 3%) or
the methods in the library, suggesting that open annotations

would be infrequently needed in practice.
In principle, it is possible that open annotations would not

be needed on a codebase because that codebase was not mak-
ing use of inheritance in any case. In fact, however, we found
1394 of the methods in the standard library are actually over-
ridden, indicating substantial though not ubiquitous use of
inheritance. The 246 open methods still make up less than
18% of the methods that were overridden.

The evidence that few open annotations are needed in
practice supports the utility of Selective Open Recursion.
Calling patterns within a class can be easily changed if few of
that class’s methods are open. In order to support correct us-
age of inheritance it is important that the ways in which open
methods are called are documented [8, 12, 11], and so having
fewer open methods lessens the documentation burden on
implementors.

Optimization Potential. Since having few “open” anno-
tations makes it easier for developers to reason about cor-
rectness of changes to a class, it is natural to expect that
it might aid in automated reasoning—such as for compiler
optimizations—as well. We tested this hypothesis on the
same part of the Java library by looking at the potential for
method inlining. We found that the library contains 22339
method calls, of which 6852 were self-calls. Only 716 of these
self-calls were to open methods, meaning that they need to
be dynamically dispatched. The remaining 6136 calls could
potentially be inlined in a system with Selective Open Re-
cursion. In standard Java, however, it would be unsafe in
general to inline these calls, as Java treats all methods as im-
plicitly open.

This data indicates that Selective Open Recursion allows
27% of all method calls in the libraries analyzed to be in-
lined. It is possible that some of these calls could already
have been inlined because the target method is private or
final, however. We are currently working to gather data
that will tell us the true increase in optimization potential.

A whole program analysis could catch many of the opti-
mization opportunities that Selective Open Recursion does,
simply by observing that a particular program does not use
all of the open recursion that Java supports. Whole program
optimization of Java programs is complicated, however, be-
cause many programs load code dynamically, and this code
could invalidate optimizations such as inlining. Because our
Selective Open Recursion proposal changes the semantics of
dispatch so that subclasses cannot intercept non-open self
calls, it enables optimizations like inlining without the need
for whole-program information.

4. Related Work
A significant body of related research focuses on docu-

menting the dependencies between methods in a specializa-
tion interface. Kiczales and Lamping proposed that a method
should document which methods it depends on, so that sub-
classes can make accurate assumptions about the superclass
implementation [8]. Steyaert et al. propose a similar ap-
proach in a more formal setting [12]. Ruby and Leavens
suggest documenting method call dependencies as part of a
broader focus on modular reasoning in the presence of inher-
itance [11]. They also document a number of design guide-
lines that are applicable to the setting of Selective Open Re-
cursion.

A common weakness of the “dependency documentation”



approaches described above is that they solve the fragile
base class problem not by hiding implementation details,
but rather by exposing them. Since the calling patterns of
a class are part of the subclassing interface—and since sub-
classes may depend on them—making significant changes to
the implementation of the class become impossible. Steyaert
et al. acknowledge this and suggest documenting only the
“important method calls,” but the fragile base class problem
can still occur unless unimportant method calls are hidden
from subclasses using a technique like ours. Our work re-
quires that calling patterns be maintained for calls to open
methods, but does not impose this requirement for non-open
methods, allowing a much wider range of implementation
changes.

Bloch, Szyperski, and others suggest using forwarding in
place of inheritance as a way of avoiding the fragile base class
problem [2, 13]. However, as Szyperski notes, not all uses of
inheritance can be replaced by forwarding because open re-
cursion is sometimes needed [13]. Selective Open Recursion
provides a middle ground between inheritance and forward-
ing, providing open recursion when it is needed but the more
modular forwarding semantics where it is not.

Mikhajlov and Sekerinski consider a number of different
ways in which an incorrect use of inheritance can break a re-
finement relationship between a class and its subclasses [9].
They prove a flexibility theorem showing that under cer-
tain conditions, when a superclass C is replaced with a new
implementation D, then C’s subclasses still implement re-
finements of the original implementation C. Their results,
however, do not appear to guarantee that the semantics of
C’s subclasses are unaffected by the new implementation D,
which is the contribution of our work.

Our use of static dispatch for calls on this is related to
the freeze operator provided by module systems such as Jig-
saw [4]. The freeze operation statically binds internal uses of
a module declaration, while allowing module extensions to
override external uses of that declaration. The freeze oper-
ator, however, has not been previously proposed as a solu-
tion to the fragile base class problem, nor (to our knowledge)
has it previously been integrated into an object-oriented lan-
guage implementation.

Some languages, including C++, provide a way to stati-
cally call a particular implementation of a method [5]. While
this technique can be used as an implementation strategy for
our proposal, we believe it is cleaner to associate “open-ness”
with the method that is called rather than the call site, as dis-
cussed earlier.

Our solution to the fragile base class problem was in-
spired by our earlier work on a related modularity problem
in aspect-oriented programming [1]. Just as a CountingSet
subclass of Set can observe whether addAll is imple-
mented in terms of add, a Counting aspect can be defined
that uses advice to make the same observation. Our solu-
tion there was to prohibit aspects from advising internal calls
within a class or module—just as we solve the fragile base
class problem by using static dispatch to prevent subclasses
from intercepting implementation-dependent calls in their
superclass. In the aspect-oriented setting, we allow modules
to export pointcuts that act as disciplined extension points,
similar to open methods.

Relative to previous work, ours is the first to address the
fragile base class problem by distinguishing methods for
which open recursion is needed from methods for which it

is not.

5. Conclusion
This paper argued that the fragile base class problem oc-

curs because current object-oriented languages do not dis-
tinguish internal method calls that are invoked for mere con-
venience from those that are invoked as explicit extension
points for subclasses. We proposed to make this distinction
explicit by labeling as open those methods to which open re-
cursion should apply. Our results mean that object-oriented
component library designers can freely change more aspects
of a library’s implementation without the danger of breaking
subclass code.

6. Acknowledgments
We thank Craig Chambers, Donna Malayeri, Todd Mill-

stein, Frank Pfenning, and the anonymous reviewers for
their feedback on earlier drafts of this material.

7. References
[1] J. Aldrich. Open Modules: A Proposal for Modular

Reasoning in Aspect-Oriented Programming. In AOSD
Workshop on Foundations of Aspect Languages, March
2004.

[2] J. Bloch. Effective Java. Addison-Wesley, Reading,
Massachusetts, 2001.

[3] B. Bokowski and A. Spiegel. Barat–A Front-End for
Java. Freie Universitt Berlin Technical Report B-98-09,
1998.

[4] G. Bracha. The Programming Language Jigsaw: Mixins,
Modularity and Multiple Inheritance. Ph.D. Thesis,
Dept. of Computer Science, University of Utah, 1992.

[5] M. A. Ellis and B. Stroustrup. The Annotated C++
Reference Manual. Addison-Wesley, Reading,
Massachusetts, May 1990.

[6] E. Ernst. Family Polymorphism. In European Conference
on Object-Oriented Programming, June 2001.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1994.

[8] G. Kiczales and J. Lamping. Issues in the Design and
Documentation of Class Libraries. In Object-Oriented
Programming Systems, Languages, and Applications, 1992.

[9] L. Mikhajlov and E. Sekerinski. A Study of the Fragile
Base Class Problem. In European Conference on
Object-Oriented Programming, 1998.

[10] D. L. Parnas. On the Criteria to be Used in
Decomposing Systems into Modules. Communications of
the ACM, 15(12):1053–1058, December 1972.

[11] C. Ruby and G. T. Leavens. Safely Creating Correct
Subclasses without Seeing Superclass Code. In
Object-Oriented Programming Systems, Languages, and
Applications, October 2000.

[12] P. Steyaert, C. Lucas, K. Mens, and T. D’Hondt. Reuse
Contracts: Managing the Evolution of Reusable Assets.
In Object-Oriented Programming Systems, Languages, and
Applications, October 1996.

[13] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. ACM Press and
Addison-Wesley, New York, NY, 1998.


